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Abstrakt / Abstract
Kráčející roboti mají vzhledem ke

své pohyblivosti velký potenciál pro
použití v nerovném prostředí. Spolu
s nejrůznějšími interními i externími
senzory jako dálkoměrem, dotykovými
senzory, kamerou, atd. se může pohy-
bovat autonomně a vysoce efektivně.

Na rozdíl od jiných přístupů je v této
práci použit sériově vyráběný šestinohý
robot bez dalších přídavných senzorů.
Jediným zdrojem informací o prostředí
jsou jeho vlastní servomotory.

Pro tohoto robota je vyvinut takový
vzor chůze, který mu umožní překonávat
nerovný terén jen na základě vnitřních
senzorů a za stálé podpory nejméně pěti
nohou.

Klíčová slova: plánování pohybu;
šestinohý kráčející robot; nerovné pro-
středí.

Překlad titulu: Návrh pohybových
primitiv pro šestinohý kráčející robot
pohybující se v nerovném prostředí

The crawlers have great potential to
be successful in a rough environment
due to their high motion capabilities.
Along with other internal or external
sensors like range-finder, force sensitive
sensors, camera, etc., the robot can
become an autonomous agent with very
high efficiency.

In contrast with other approaches, a
mass produced hexapod robot without
any additional sensors is used in this
thesis. The only information about the
environment comes from its own actua-
tors.

A custom gait which allows the robot
traversing rough terrain based on the in-
ternal sensors only and with continuous
support of at least five legs is developed
for this robot.

Keywords: motion planning; hexa-
pod walking robot; legged locomotion;
rough environment.
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Chapter 1
Introduction

Although new technological principles are more and more amazing, they’re often looking
back to Mother Nature for inspiration. New technologies may be faster, robust, more
powerful, more precise, but the natural optimization processes evolved during thousands
of years are irreplaceable in our age where everything has to be done as fast as possible.

Nice example can be seen in robotics where legged locomotion is a rapidly growing
domain. No animal has wheels, either.

1.1 Motivation
Various robots have been developed to perform various tasks. Considering only non-
aerial vehicles, wheeled robots are good on flat terrains like pavements or roads (or
Mars). Caterpillar tracks adds more flexibility to wheeled robots for traversing rough
terrain. But the best results can be achieved with legged animal-like robots (crawlers).
Their high degree of freedom (DOF), which is usually 3 DOF per leg, along with long
leg range creates a vast domain of gaits and motion.

The crawlers have great potential in rescue operations, unstructured terrain explor-
ing, load carriage and a lot of more, still undiscovered areas.

Robots, in general, are agents which deliberate regarding to the information they
have about the outer environment. This includes a laser range-finder data of distances
to the obstacles around the robot, 3-D camera images, pressure sensor data, etc. All of
these data helps the robot to improve it’s behavior.

But, when the robot doesn’t have such sensors, the operating options are very limited.
However, there’s always some data available that can be utilized. Such data can come
from actuators itself. Imagining a blind man focusing only on his sense of touch, a
robot might be able to perform similarly.

1.2 Thesis Organization
This thesis is divided into several parts.

A brief summary of related existing work is written in Chapter 2. The hexapod that is
used in this thesis is described in Chapter 3 including the analysis of the communication
(Section 3.3) that can be achieved between the hexapod and the PC and the analysis
of data reading described in Section 3.4.

A single leg description (Chapter 4) focuses on the compliance and stiffness of a
leg (Section 4.1), on the direct and inverse kinematics (Section 4.2) and on the leg
capability of perceive it’s surroundings (Section 4.5).

The key part of this thesis – the newly developed gait – is presented in Chapter 5.
Individual parts as the ground detection mechanism (Section 5.3), the body leveling
transformation (Section 5.4) and the analysis of the body motion (Section 5.5) are
described in detail.

The results of the testing of the gait performance are presented in Chapter 6.
Various related ideas and topics are discussed in Chapter 7.
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Chapter 2
Related Work

Many research groups are working on a similar topic. However, their approaches can
be quite different with different resources available.

2.1 Using Additional Sensors
There’s a lot of crawlers with external sensors, but the one built by Boston Dynamics1)
called BigDog2) [1] exceeds all of them. BigDog is about 1 m tall and long, weighs
over 100 kg, is powered with a combustion engine and has over 50 sensors. BigDog
can run at 7 km/h, carry over 150 kg and climb slopes up to 35◦. He can also traverse
rocky, muddy or snow-covered inclined surfaces which makes him the most advanced
rough-terrain robot on Earth.

Another quadruped robot manufactured by Boston Dynamics called LittleDog3) also
benefits from various sensor information. He’s a bit smaller (0.3 m long, 0.18 m wide,
0.26 m tall, and weighs approximately 2.5 kg). In a solution [2] of a DARPA4) Learning
Locomotion program, there is used a combination of a terrain scan from an external
motion capture system with onboard inertial and force sensors to create a smooth and
fast trajectory over optimized footsteps. LittleDog is strong enough to use his body
dynamics to even jump on small obstacles.

A lot of robots wear a force sensitive resistor (FSR) with more or less DOF on each
foot for better reading the ground reaction force. The force information can be used
to classify the terrain beneath [3–5], or just to detect the ground and improve current
gait performance [2, 6–10].

2.2 Internal Sensors Only
Another approach is to use only passive compliance for traversing rough terrain. Bio-
inspired robots belong here, such as centipede robot [11] with flexible body which helps
traversing obstacles, or fast running robots with underactuated legs [12] which benefits
from a passive DOF that helps to store and distribute energy more effectively.

A wheel can also be designed to traverse obstacles smoothly, like an eccentric
wheel [13]. Rotating legs are mounted on RHex5) (again by Boston Dynamics) which
bounding and stair traversing capabilities were studied in [14]. Modifying the RHex
legs can enable amphibious operations [15]. Combination of wheel and leg can lead
to a wheeled-leg robot [16] which takes the positive effects from both wheel and leg
approaches like high efficiency of motion on flat and high maneuverability on a rough
terrain.
1) http://www.bostondynamics.com/
2) http://www.bostondynamics.com/robot_bigdog.html
3) http://www.bostondynamics.com/robot_littledog.html
4) http://www.darpa.mil/
5) http://www.bostondynamics.com/robot_rhex.html

2

http://www.bostondynamics.com/
http://www.bostondynamics.com/robot_bigdog.html
http://www.bostondynamics.com/robot_littledog.html
http://www.darpa.mil/
http://www.bostondynamics.com/robot_rhex.html


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Other Approaches

The passive compliance and internal actuator information can also be used to classify
the terrain [17].

The most related work is a research done by Palankar et al. [18–19]. They also
worked on a technically blind hexapod robot with 18 DOF. But, in contrast with this
thesis, they inserted a passive compliant actuator in each leg in order to measure the
ground reaction force through it’s displacement. Thus, their robot had a total of 24
DOF (18 active, 6 passive).

2.3 Other Approaches
Sensor data is not the only way to increase the rough terrain movement performance.
Optimal foothold selection is also an important aspect. A planner is used to optimize
the foothold selection online in the case of LittleDog robot [2]. The continuous follow-
the-leader gait as is described in [20] reduces the demand on foothold selection by
reusing them with the other legs. The footsteps can be replanned [21] if a fault is
detected.

A stability criterion can be defined in order to increase the body stability over a
rough terrain [20, 22].
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Chapter 3
Hexapod Structure

This thesis is based on a mass produced hexapod robot PhantomX Hexapod Mark II
built by Trossen Robotics1). The hexapod is shown in Figure 3.1 where we can see that
it has six identical legs each with three identical actuators. The body hides a moth-
erboard with an Arduino-compatible ArbotiX Robocontroller2) and a wireless XBee
module3). An optional battery can be attached under the hexapod body instead of a
cable wiring to an 11V adapter.

Figure 3.1. PhantomX Hexapod Mark II. (Taken from [23])

3.1 Dimensions
The dimensions of a default hexapod position are shown in Figure 3.2 in which the legs
are in a symmetric default positions with the distances (in mm) as in the picture. The
body is simplified, but each leg coxa joint (θC) is in the right position. All joints will
be described later in Chapter 4.

The blue area represents the theoretical middle leg operating space in the ground
projection plane (about 100 mm below the robot in default). The dashed arc repre-
sents the extended operating space under the robot. In practice, this is not achievable
since the leg endpoint is following the stride line along the walking direction (gray
line). Furthermore, a typical leg operating angle is much smaller in order to avoid leg
collisions. The leg stride length is therefore limited too.
1) http://www.trossenrobotics.com/
2) http://www.trossenrobotics.com/p/arbotix-robot-controller.aspx
3) http://www.digi.com/xbee/
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walking direction

θC

118 120

52

130

240

200

x

y

Figure 3.2. Schema of a default position of a hexapod. The leg positions are symmetric
with the distances (in mm) as shown in the picture. The blue area represents the theoretical
middle leg operating space in the ground projection plane (which is 100 mm below the robot
in default). The blue dashed arc shows possible operating space assuming the leg can go

under the robot (negative radius).

Figure 3.3. Dynamixel Servo AX-18A. (Taken from [24])

3.2 Actuators
Each leg has three joints which are actuated by an AX-18A Dynamixel servo shown in
Figure 3.3.

The servo can be used in either wheel mode or joint mode. It has an operating angle of
300◦ in the joint mode. The servo resolution is 1024 units in the 300◦ operating radius,
thus 1 unit equals 0.29◦. Other parameters are given in the datasheet in Appendix D.

The servo has various read/write fields that can be set as they’re well described in
the manual [24]. We will mostly stay with the default initial values. Only compliance
margin and slope parameters are optimized as will be described later in Section 4.1.

The servo has an internal position controller that runs at frequency 30 Hz and holds
the last set position. The maximal and minimal position limits are handled in the
running program on PC in the way that the position is never set beyond some limits
to avoid mechanical damage on servos.

The controller is only proportional, so when compliance is set high enough and force
is applied on a servo, it’s position deviates. This effect is used in Section 4.5.
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3. Hexapod Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3 Communication

The communication runs at two stages. First between an external computer and main
board and second between main board and all of the servos. The main computation
runs on an ordinary external computer. New computed servo positions are then sent
to the hexapod every 33 ms. An example of such time frame is shown in Figure 3.4.

7 14 300 ms 33 ms

Read femur
angle θF

Read tibia
angle θT W

rit
e Sleep (time for

calculations)

Figure 3.4. An example of a hexapod time frame.

The main program loop runs at frequency 33 Hz, hence 33 ms time frame. Each data
reading lasts about 7 ms. In this example, the femur and tibia angle of a single leg
(the moving one) is read in each cycle. Calculations are not very time consuming (only
straightforward equations with the most recent leg positions), so new positions can be
computed and sent to the hexapod quite immediately after the 14ms mark. Further-
more, the writing command doesn’t block the running thread, so another computation
can be made just after the data is sent until the 33ms mark.

It was experimentally tested that the bus on the hexapod is occupied for about
16 ms after receiving new positions. Any further reading attempt will be delayed for
this amount of time, so only two data readings can be done during one frame. The rest
time is filled with waiting for the next frame.

3.3.1 PC – Board
The transmission between an external computer and a hexapod can be done using
either a standard USB cable or through a wireless XBee module. Since the wireless
communication is neither as reliable nor as fast as the wired one, the wired connection
si preferred.

It was experimentally tested that a wireless connection achieving the same response
as in the example drawn in Figure 3.4 would need a time frame of about 100 ms, which
is three times greater.

3.3.2 Board – Servo
The data frame given from an external computer contains desired positions of all of the
18 servos. The data is then sent to corresponding servos synchronously, so the servos
will start moving to the new positions all at the same time.

In contrast, reading from servos works asynchronously, so the data can only be read
individually.

3.4 Data Reading
As can be seen in the manual [24], there are a lot of fields that can be read. But
since the robot is blind and the data reading is limited, we need to chose carefully the
right ones. Besides the static fields like voltage limit, temperature limit, baud rate or
compliance settings, the dynamic ones keeps the current values of e.g. moving speed,
position, applied load, temperature or voltage. Since reading a single value of a single

6
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0 1 2 3 4 5 6 7 8 9 10 11 12
Time (s)

Load

Pos

Figure 3.5. Comparison between reading load and position of a servo. Both data belong
to the same servo and were obtained during the same motion (random shaking with a leg).
Both data also have the same number of values. The main difference can be seen in the
smoothness. The same load value is read multiple times in contrast with the position value

which smoothly follows the harmonic wave.

servo is very time consuming and as was said above in Section 3.3 that we can read
only two values during a time frame, the only relevant fields that make sense to read
and that could be helpful are the current position and applied load. No other field can
reflect the environment around hexapod.

These two quantities were read in a loop during an experiment shown in Figure 3.5.
They both reflects the force applied on the servo. But the resolution is very different.
Reading the applied load (which is inferred from the internal torque value; there’s no
torque sensor) shows the fact that this value is not refreshed too often, in contrast with
reading the current position.

The position reading smoothly follows the harmonic wave created by hand-shaking
with the leg. Therefore, it’s the only value that will be used and read in this work. It’s
effects will be discussed later in Section 4.5.

3.5 Gaits
PhantomX hexapod robot contains several pre-programmed gaits. All of the gaits are
based on a movement on a flat terrain. Although the robot can traverse some simple
obstacles, he is blind and he assumes that there’s a 100% flat ground beneath.

First, let us unify some frequently used terms. The following definitions 3.1 to 3.7
are adapted from [20].

Definition 3.1. The transfer phase of a leg is the period in which the foot is not on the
ground. The leg state of a leg in transfer phase is 1.
Definition 3.2. The support phase of a leg is the period in which the foot is on the
ground. The leg state of a leg in support phase is 0.
Definition 3.3. The cycle time, T , is the time for a complete cycle of a leg locomotion
of a periodic gait.
Definition 3.4. The duty factor, βi, is the time fraction of a cycle time in which leg i
is in the support phase.
Definition 3.5. The leg phase, φi, is the fraction of a cycle period by which the contact
of leg i on the ground lags behind the contact of leg 1.

7



3. Hexapod Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Left front

Left middle

Left rear

Right front

Right middle

Right rear

TRIPOD gait WAVE gait RIPPLE gait

Figure 3.6. Timing plot for different gaits shows leg phasing and the transfer and support
phases for all legs. (Adapted from [18])

Definition 3.6. The leg stride, λ, is the distance that the center of gravity translates
during one complete locomotion cycle.
Definition 3.7. The leg stroke, S, is the distance through which the foot is translated
relative to the body during the support phase.
Definition 3.8. The xyz-coordinate system has it’s x-vector pointing in the forward
walking direction, it’s y-vector pointing perpendicularly to the left and it’s z-vector
pointing vertically upwards. They form a right-handed base.

The main gaits are shown in Figure 3.6. All legs share the same pattern of repeating
transfer and support phases in each gait. The difference is in their phase shift φi which
is closely related to the leg order. The difference between these gaits is mostly in the
number of legs in the transfer phase at a time. The wave gait has always only one leg
in the transfer phase. The ripple gait has always two legs in different periods of the
transfer phase. The tripod gait has two groups of legs always in the opposite phases.

The leg order and determining the transfer and support phases influences greatly
both the speed and the stability of the resulting gait. Because the stability is crucial
in the rough terrain locomotion, we chose the ripple gait leg order with an extended
support phase such that there’s only one leg in the transfer phase at a time for our
hexapod. This gait will be described in detail in Chapter 5.

3.5.1 Gait Controller
The gait controller handles the start and end positions in each step of a leg cycle. An
example of these positions in a default triangular stroke is shown in Figure 3.7. Another
example within a leg working space can be seen in Figure 4.4 later in Section 4.3.

A default ripple gait (as presented in Figure 3.6) is analyzed in Figure 3.7. The steps
in a locomotion cycle are numbered from 1 to 6. It can be seen that steps 1 and 2 form
the transfer phase as the leg is not on the ground during these two steps. The other
four steps form the support phase. The duty factor is the ratio between the number of
support phase steps and the total number of steps, hence β = 2/3.

The blue path represents the leg path with respect to the body, while the red path
represents the same path with respect to the ground. The stride length can be measured
from the red path since the points 2 to 6 share the same coordinates and form the
footholds. The distance between them in two successive leg cycles gives us the leg
stride λ.

8
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1 1′ 1′

23456 2′ − 6′ 2′ − 6′
x

z

stroke (S)

stride (λ)

Figure 3.7. An example of a leg trajectory in body coordinates (blue) and ground coordi-
nates (red). The duty factor is there β = 2/3 and stroke S = βλ.

The leg stroke can be measured from the blue path. It’s the distance traveled by the
leg during the support phase. Since the distance traveled by the hexapod is the same
in each step, the stroke S = βλ.
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Chapter 4
Hexapod Leg

A hexapod leg has three revolving joints and links between them. The exact measures
(in mm) along with the overal leg schema are shown in Figure 4.1.

The first joint (Coxa – θC) has a vertical axis of rotation. The next adjacent joint
(Femur – θF ) has a horizontal axis as well as the last joint (Tibia – θT ). The joints are
named after the adjacent links.

The actuators are just in the position of the joints which increases the weight of a
leg (unlike a pantograph leg). On the other hand, it increases it’s maneuverability by
adding another DOF.

Coxa Fe
mur

Ti
bi

a

θC

θF

θT 52 65 90

15

94

Figure 4.1. The Side view of a model of a hexapod leg. The Left picture shows a typical
leg operating position while the right picture shows a leg with zero femur and tibia joint
angles. The links are simplified, but the distances (in mm) shown in the right picture are

those of the real hexapod.

4.1 Compliance
Compliance can be utilized well in passive joints to store energy especially in the case of
running robots [12]. It has another importance for slowly walking robots in unstructured
terrain. In this case, the load can be distributed better among all legs when they’re not
stiff.

The key factor of the success of the developed gait described later in Chapter 5 is
the leg compliance setting. The legs (joints) have to be compliant enough to achieve
a better resolution of leg displacement caused by an external (ground reaction) force
(like in haptic sensing with compliant joints [25]).

As was mentioned earlier in Section 3.2, the actuators can be set with a desired com-
pliance margin and slope. The influence of each parameter is illustrated in Figure 4.2.
The level of output torque can be modeled using five parameters. Different behavior
can be achieved in clockwise (CW) and counter-clockwise (CCW) direction. A minimal
torque value (punch) can be set as well as a minimal position error needed to apply the
torque for correcting the error.

10
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CCW CW

Position Error

CCW

Output Torque

CW

A B C D

E

E

Goal Position

Figure 4.2. Compliance of the actuator AX-18A can be adjusted using five parameters
(A–E). Both margin (C, resp. B) and slope (D, resp. A) can be set in clockwise (CW),
resp. counter-clockwise (CCW) direction. Punch can be set using parameter E. (Adapted

from [24])

Joint Margin Slope Punch (note)
Coxa 1 32 32 (default initial values)
Femur 0 128 32 (maximum slope value)
Tibia 1 64 32 (smallest w/o resonance)

Table 4.1. Compliance setting of all servos in both CW and CCW directions (see Fig-
ure 4.2). The margin is set in servo units. The slope has unidentified units, but the higher

the value, the more flexible the servo is (see the documentation [24]).

The final values used in experiments are shown in Table 4.1. The same values are
set for all servos and in both CW and CCW direction. The punch value is kept at the
default initial value. This value is also a minimum value. The coxa joint keeps it’s
initial values as this joint has minimal influence on the overal gait performance.

According to the servo documentation [24], the slope value has no units, but the
higher the compliance slope value, the more flexible the joint is. Actually, the values
can vary from 2 to 128 (but only multiples of 2 are used internally; rounded down).

Assuming that the default minimum punch value is only a compensation to the
servo nonlinearities (deadzone), the femur joint compliance setting tends to be a linear
mapping of the position error to the torque value. Therefore a zero margin is set. The
compliance slope is set to it’s maximum value for the femur joint for a better resolution
in the position error values.

The tibia joint is set stiffer than the femur joint because it doesn’t reflect the ground
reaction force due to it’s position usually above the foot, anyway. Therefore, it’s com-
pliance is set to as small applicable values as possible without any resonance occurrence.

4.1.1 Resonance
When a joint is set too stiff, a resonance may appear. This happens especially in the
case of the tibia joint because it’s the last joint in the leg and the weight it carries is
therefore very small.

Although the compliance slope value can be set up to 2, even a value of 16 can make
the coxa joint oscillating slightly. The same happens when decreasing the initial margin
from 1 to zero. Thus, it’s recommended to left the initial compliance settings of the
coxa joints.

11
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4.2 Kinematics

Mapping between joint space and working space is quite nonlinear for a robot with
revolving joints. Fortunately, a hexapod leg has only three joints and two of them have
parallel rotation axes. This simplifies the kinematic task a lot.

Initially, the hexapod needed only mapping from working space into joint space
(inverse kinematics) to make the legs move along a straight line instead of a circular
one as would be more natural for revolving joints. But as will be described later in
Chapter 5, it needs to be known where a leg currently stopped when it reached the
ground. This involves the direct kinematics.

4.2.1 Coordinate Systems
According to the Denavit-Hartenberg notation [26] mentioned below, five Cartesian
coordinate systems are used here to cover the path from the body to the foot. Note
that different leg gives different coordinate systems (except the base one). The leg-
relative ones are described in Figure 4.3.

OW

xW

yW

OT

xT

yT

OF
xF

yF

OC

yC

zC

Figure 4.3. Defined coordinate systems of a hexapod leg that follows the Denavit-
Hartenberg notation.

Definition 4.1. Coordinate system OB lies in the COG with the x-axis heading forward
and the z-axis heading upwards.
Definition 4.2. Coordinate system OC is created by translating OB into the rotation
axis of the leg’s coxa joint. No rotation is applied.
Definition 4.3. Coordinate system OF lies in the femur joint with the z-axis lying in
the femur rotation axis. The coxa joint lies on the negative part of the x-axis of OF .
Definition 4.4. Coordinate system OT lies in the tibia joint with the z-axis lying in the
tibia rotation axis. The femur joint lies on the negative part of the x-axis of OT .
Definition 4.5. Coordinate system OW lies in the foot world coordinates.

The rotation of the coordinate system OW doesn’t need to be specified because
nothing but it’s origin will be used in the next sections. Thus, it could be arbitrary.

12
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4.2.2 Direct Kinematics
Computing the direct kinematics of the hexapod, i.e., computing the position of the
foot from the three given joint angles, is very straightforward. Assuming that the
base coordinate system is translated from the center of gravity (COG) to the coxa
joint rotation axis, the parameters given in Table 4.2 in accordance with the Denavit-
Hartenberg notation are enough to compute the foot coordinates of the left middle leg
of a hexapod.

i αi (rad) ai (mm) θi (rad) θoffi (rad) di (mm)
C (coxa) π/2 52 θC π/2 0
F (femur) 0 66 θF −0.22 0
T (tibia) 0 130 θT −0.59 0

Table 4.2. A Denavit-Hartenberg notation of the left middle leg of a hexapod. Assuming
that the z-axis of the base coordinate system lies in the rotation axis of the coxa joint.

The transformation which maps the joint angles [θC , θF , θT ] to the world coordinates
[x, y, z] is inferred in Appendix E.1.

4.2.3 Inverse Kinematics
Although it would be more precise and model error tolerant when using an inverse
kinematics of a floating base system [27–30], it’s much more complicated and thus, we
will stay with a fixed base.

As was mentioned above, the inverse kinematics of a hexapod leg is simplified using
orthogonal and parallel axes. The resulting joint angles [θC , θF , θT ] can be computed
from the world coordinates of a foot [x, y, z] using equations inferred in Appendix E.2.

4.3 Working Space
A leg working space is a mapping from joint space into working space and thus it’s
borders are determined by the joint angle limits. A projection of the working space of
a middle leg in two different planes is shown in Figure 4.4.

The Left picture shows a side view of a hexapod with it’s right middle leg. The blue
highlighted area represents a projection of the working space into a plane parallel with
the walking direction (x-axis). The plane is in the default distance from the coxa joint
(which is 130 mm for a middle leg) of which the coordinate system (OC) is drawn. The
distance can be seen in the right picture where the same plane is projected as a gray
dashed line. Ideally, when a default gait is applied, the foot coordinates of a middle leg
never leaves this plane.

The right picture shows a rear view of a hexapod with the same leg (but in a different
position). The blue, respectively orange arcs represents the foot position while moving
the femur, respectively the tibia joint only and keeping the other joint fixed, so they
form the operating space within an xy-plane of femur (or tibia or foot) coordinates
system (see Section 4.2.1). The coordinate systems OF , OT and OW rotates around the
coxa joint rotation axis and follow the leg. The projection of the operating space in the
right picture is therefore the same for arbitrary plausible rotation of the coxa joint.

The red path describes the same motion in both pictures – a default triangular move
with leg stroke S = 140 mm (which is very high considering the possible leg collisions).

13
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1

23 4

OCy

z

OC
x

z

1
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4

Figure 4.4. Working space of a hexapod leg. The left picture shows a side view of a
hexapod with blue highlighted operating space of a middle leg within a plane in the default
distance from a hexapod. The same plane is drawn in the right picture as a gray dashed
line. The right picture shows the middle leg in the default position (point 3; in contrast
with the left picture). The blue and orange arcs form represents the motion of femur and
tibia joints and they form the operating space in a rotating plane around the coxa joint

rotation axis. The red path shows a default triangular motion.

All of the points lie in the same plane in the hexapod coordinates (OB or OC), as can
be seen in the left picture. But in the right picture, the path is projected to a plane
(xy-plane of coordinate systems OF , OT and OW ) rotated around the coxa joint by a
corresponding angle. Thus, the points are not on a line.

We can see that the working space of a leg has great reserves, especially in the y-axis
projection, assuming that the red path shown in the pictures represents a motion that
is large enough to need to take care of possible leg collisions.

4.4 Position Controller
The default triangular motion shown as a red path in Figure 4.4 is designed as a
compromise between the hexapod height h above the ground and the distance between
the legs and the body. The hexapod loses it’s stability when the height h is bigger. On
the other hand, the torque applied on servo is dependent on the leg lateral distance.
The only critical moment is in the transfer phase in which the leg is moving up very
close to the working space limits (see point 1).

This behavior (operating near the limits) is allowed when the hexapod is following
a deterministic gait, i.e., the legs are following still the same path within the working
space and the only disturbance can come from the outer environment. Such a gait can
be designed solely for a flat ground operations which is not the case of this work. We
need to achieve a higher fault tolerance for a new developed gait described in Chapter 5.

Firstly, the gait lifting level is very low (but high enough for a flat ground operations),
so we need to increase this level to avoid obstacle hitting by a leg in the transfer phase.

Secondly, we need to increase the leg depression by adding a drop level. This allows
the leg reach a terrain hole or a beginning of a slope down terrain.

14
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Thirdly, the default lifting level is near it’s limits. In order to increase the robustness
and create a bigger reserve, we have to slope the path such that the foot position at
the lifting level is farther from the body and the foot position at the drop level is closer
to the body.

All of the three improvements are shown in Figure 4.5 on a path of a zero-stride gait
(the hexapod is running in place). The terms lifting level and drop level are shown as
horizontal lines here. The background image is a magnified cutout of Figure 4.4. The
blue path represents the path between the points 1 and 3 in Figure 4.4 (assuming a
zero stride, the path is a straight line now). The orange path represents the improved
path following the three points of the proposal above. Because the inverse kinematics
is computed for the initial and terminal points only, the points between are created by
a linear interpolation of the computed joint coordinates of the outer points in the joint
space. Thus, the resulting path is not a straight line in the working space.

ground level

lifting level

drop level

OCy

z

Figure 4.5. Comparison between a default (blue) and an improved (orange) leg path within
a leg working space. The dashed orange path shows the actual path with respect to the

interpolation in the joint space.

As was broached above, the leg motion is partitioned. A number of steps is computed
from the given transition time divided by the length of a time frame (33 ms – see
Section 3.3). Joint coordinates of a given terminal point are computed using the inverse
kinematics. All steps are distributed uniformly along a line in the joint space connecting
the terminal point joint coordinates and the current position joint coordinates.

4.5 Sensing
This is the key part of the gait’s ability to successfully walk over uneven terrain. The
interaction between the leg and the ground (the ground reaction force) needs to be
measured somehow. Due to the lack of other sensors, we have to rely on the servo
positioning system. As was mentioned in Section 3.2, the servo position controller
(included in the servo itself) is only proportional. It’s position deviates when a load
is applied on the servo. This deviated position can be read and compared with the
desired one. Using the direct kinematics, we can reconstruct the deviated foot position
by reading the actual femur and tibia joint angles (assuming that the coxa joint isn’t
directly affected by the leg motion as it’s rotation axis and the foot path lie in the same
plane).

According to the data reading, we can calculate with three variables. The femur
angle displacement, the tibia angle displacement and the computed foot position dis-
placement. Each of the variables acts differently and has a different resolution.
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The foot position displacement in the z-axis would be enough for estimating the

ground reaction force if the path was a line perpendicular to the ground. But as can
be seen from Figure 4.5, the path is inclined from a vertical direction.

In Figure 4.4 (or 4.5), we can see that the default leg operating position lies approxi-
mately under the tibia joint. The ground reaction force (acting upwards) therefore has
only a little influence on the tibia angle displacement. Moreover, the leg motion path
is sloped so it better traces the femur joint rotation (the blue arcs in the pictures) and
thus the femur joint angle reflects the ground reaction force quite authentically.

Although the femur angle displacement mostly shows similar trends as the z-axis
displacement, it has about twice as large resolution (comparing servo units vs. mm).

An example of usage of the sensing behavior in the ground detection case is shown
in Figure 5.2 later in Section 5.3.
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Chapter 5
Blind-Tread Gait

The robot has no external sensors. It has neither a camera nor a laser scanner. The
only feedback from the outer world the robot has is the joint angle displacement of its
servos. Thus, the only information comes from the contact with the ground.

The new developed gait presented here has to manage these facts. First of all, the
robot is technically blind. So, the gait evolved in something like slow cautious tread,
hence the name Blind-Tread Gait. When a leg is moving down, it can hit the ground in
theoretically arbitrary moment. In order to obtain more precise results, only one leg at
a time is moving. This avoids most of the interference between the legs. The time that
the leg in the transfer phase spends on a moving-down step is not deterministic because
the leg is moving down with a constant speed while the distance from the ground is
unknown. Therefore, synchronizing more than one leg at a time is not an easy task.
Moreover, according to the communication limits introduced in Section 3.3, only two
servo position values (e.g. femur and tibia joint angles) can be read in one 33ms time
frame, so there’s no time left for reading the position of another leg.

In a related work of Palankar et al. [18–19], they used a similar approach with a blind
hexapod robot. They measured the ground reaction force by a passively compliant joint
inserted between the body and the coxa joint in the open kinematic chain. Each leg
has it’s own distributed feedback controller which controls the elevation or depression
rate of a leg according to the measured displacement in the passive compliant joint
in order to keep the leg supporting the robot (keep in touch with the ground). Their
controller is therefore an upgrade to a default leg position controller and can be applied
on arbitrary gait.

In this work, such an approach is not feasible since a lot of hardware upgrade would
have had to be done. We have only one controller with limited capabilities commanding
all six legs. Thus, our approach is to develop a brand new gait with a cycle divided into
several steps which are statically stable. There are no dynamic transitions between the
steps, so it’s kind of a stop motion.

5.1 Overall View
An overall picture of the blind-tread gait is shown in Figure 5.1. This diagram shows
a leg cycle of an active leg which is searching for a new foothold. This cycle is then
repeated for the other legs and six consecutive cycles combine to a gait cycle. The legs
are alternating in a ripple gait with a given order: LF – RR – LM – RF – LR – RM1).

At the start (and at the end) of each cycle, all legs lay on the ground and the body
is leveled equally with respect to the average positions of all legs (see more below in
Section 5.4.1). Then, one leg moves up and forward and begins to approach the ground.
Sensor data is gathered along the leg path, as is described below in Section 5.2. Once
the ground is detected (using rule described below in Section 5.3), the leg stops moving

1) LF = left-front, RR = right-rear, LM = left-middle, etc.
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STABLE STATE
. all legs on ground. body leveled

Choose next leg
from given order

Move leg up
and forward

Move leg down
(small step)

Ground
detected?

Compute
R and ~t

Leg positions
(relative to body)

Transform all
leg positions

Apply positions –
– level body

YES NO

trajectory
sam

pling

Figure 5.1. Blind-tread gait diagram. Only one leg at a time is moving except the level-
body step where all legs are assigned new positions with respect to the body but the

contact points (footholds) stay the same.

and memorizes its new position (with respect to the body – coordinate system OB).
All six leg positions are then used in a linear regression function (see more below in
Section 5.4.1) which computes an approximation of a flat ground (plane) providing
parameters a, b and c – the coefficients of the plane’s equation. These parameters form
a rotation matrix R which models the rotation of the regression plane with respect to
OB (derived in Section 5.4.3). Other parameters (tx, ty and tz) derived in Section 5.4.4
ensure that the average of all new leg x-coordinates and y-coordinates will be zero and
the average of z-coordinates (in the least square mean) will equal the default body
height h of the robot. The body is then leveled to equal the angle and distance with
the computed plane by applying the new leg positions.

The only steps in the blind-tread gait leg cycle shown in Figure 5.1 in which a motion
occurs are highlighted in orange. The transfer phase consists of a leg moving up, forward
and down. The support phase consists only of the body leveling in the six consecutive
leg cycles.

The resulting body trajectory is studied in Section 5.5.

5.2 Trajectory Sampling

The leg depression trajectory towards the terminal point at the drop level is sampled
into numerous interpolation steps (see Section 4.4). At the end of each interpolation
step, a data reading is executed from which an information about the acting ground
reaction force is acquired.

Thus, we obtain a discrete function of the ground reaction force depending on the
foot position along the depression trajectory.
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Figure 5.2. A complete active-leg cycle. Vertical lines divide the cycle into four steps: up,
forward, down (with ground detection – dashed line) and leveling back. In this example,
the down step is not interrupted when the ground is detected, but keeps the leg depressing
to the drop level instead to show how the ground reaction force affects the overal leg

position vertical displacement.

5.3 Ground Detection

Following the sensing behavior described in Section 4.5, we can estimate the moment
when the leg actually hits the ground. An example of a complete leg cycle of an active
leg (performed on a flat ground) is shown in Figure 5.2.

In the first step, the leg is elevating following the red graph. When the elevation
transition time is set low and hence the elevation speed is high, the leg inertia holds
the leg down and the femur joint deviates to it’s negative direction. The femur servo
compliance is set very high (see Table 4.1 in Section 4.1) and so it’s angle displacement
is high too.

The femur servo slowly recovers during the horizontal motion and due to the leg
inertia, it begins to deviate in it’s positive direction when depressing. The resulting
angle displacement grows with a higher transition speed and can be accidentally mis-
taken for a ground-hitting event. So the depression speed has to be set carefully (as in
Figure 5.2).

A ground hitting event is detected here but the motion doesn’t stop to show the leg
sensing capabilities.

The computed leg z-axis displacement represents a perpendicular ground reaction
force which can be used in the meaning of a support level of a leg. The femur angle
displacement has a similar trend and a bigger resolution, so solely this raw value is used
for detecting the ground-hitting event instead of using z-axis displacement computed
through the direct kinematics.

A threshold value corresponding to a support level of an approximately even force
distribution among all of the legs have to be chosen carefully. The value is most affected
by the weight of the robot.

When the ground is detected, the new foothold position is remembered.
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5.4 Body Leveling

The next step of the blind-tread gait is the recalculation of the body position1) in the
way that it better fits the newly achieved active-leg position. This needs to be done
because when a hexapod is approaching a sloped terrain, the body would either hit the
terrain or enter a position in which the terrain is unreachable if the body remains in
the same position (height).

However, there can be found infinitely many body positions for given foot positions.
The only limitation is that all of the foot positions have to be within the working space
of corresponding leg. Each body position offers different possibilities of movement
depending on how close to the working space limits the legs are.

Because the hexapod has to walk over a rough terrain without any perception about
the terrain ahead, there has to exist an equilibrium body position somewhere „in the
middle“ of the body positions space. Such a body position offers balanced possibilities
of movement in all directions.

Since the body has no actuator itself, the foot positions has to be recalculated instead.
Assuming that all legs lay on the ground, applying their new positions will enforce the
body to move while the legs keep their footholds. It’s obvious that the new foot positions
have to keep the same distances between each other as the old ones. This is preserved
when the change of the foot coordinates is induced by a motion that can be modeled
by an orthonormal rotation matrix R or a translation vector ~t or both.

OB x

z

O′B x′
z′

h

h

tz

tx

d

d

ϕ
(tanϕ = a)

Figure 5.3. Demonstration of body leveling process. A new leg position (orange) enforce
the body position to move from OB to O′B .

Figure 5.3 shows a schematic diagram of body leveling process. The schema is ex-
aggerated (such a leg range is unreachable in real) and simplified (reduced number of
legs from six to two) for better reading and clearer pointing out of the key principles.

The figure shows a hexapod in the default position (gray). Then, a leg (orange) has
found it’s new foothold on a higher terrain. A regression plane z = ax+ by+ c (bottom
blue dashed line) is computed. The plane goes through actual leg positions (with more
legs, it goes through as close as possible in the sense of least square mean). The slope
of the regression plane forms the rotation matrix R which rotates around the initial
COG (origin of the coordinate system OB). The rotated coordinate system (which is
1) The body position is meant in a 6D space containing both position and orientation.
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not drawn here, but later in Figure 5.4) is then translated in it’s z-axis by tz to achieve
the height h above the regression plane (the same as was above the ground before)
and translated in it’s x-axis by tx so that the sum of the x-coordinates in the resulting
coordinate system O′B is zero. The translation in the y-axis by ty is analogical to the
x-axis. Thus, the body is kept „in the middle“ of the legs and at a constant height h
above the linear approximation of the ground.

5.4.1 Linear Regression
A linear and planar (and much more types of) fitting using the linear regression is nicely
described for example in [31]. Although planar fitting using orthogonal regression would
be more accurate (because this is what we tend to achieve – an average leg depression
with respect to the tilted body), it is much more complicated and the resulting pitch
and roll angles will be small enough to keep the difference between orthogonal and
vertical method under resolution.

Given the foot positions in the initial coordinate system OB , we need to determine
the parameters a, b and c so that the plane z = ax+ by + c best fits the positions, e.i.,
their squared distance from the plane is minimized. The computation of the parameters
is inferred in Appendix E.3.

5.4.2 Transformation
Given the foot positions {[xi, yi, zi]}6

i=1 in coordinate system OB and the linear regres-
sion plane in the form z = ax+ by+ c (also in OB), we can construct a transformation
matrix A4×4 in homogeneous coordinates which encapsulates both the rotation matrix
R3×3 and the translation vector ~t (described in Figure 5.3).

The body transformation uses the alibi (active) representation of motion1). Unlike
the classical transformation, we use a translation vector ~t expressed in the rotated
coordinate system O′B (so we use R~t instead of ~t ). This will be helpful later in Sec-
tion 5.4.4 when parameterizing this vector. The new body coordinates

[
x′B , y

′
B , z

′
B

]
can

be therefore written as 
x′B
y′B
z′B
1

 =

 R R~t

0 0 0 1



xB

yB

zB

1

 . (1)

Note that the leg positions remains unchanged in the alibi representation of motion
in which the coordinates are computed with respect to the initial coordinate system
OB .

As was mentioned earlier, the actuators are not in the body but in the legs actually.
The desired leg coordinates which enforce the body to move to it’s coordinates expressed
in Equation (1) has to be computed using the alias (passive) representation of motion.
This involves a coordinate system attached to the moving body moving to it’s new
position O′B . Computing the leg coordinates

[
x′i, y

′
i, z
′
i

]
in O′B implies inverting the

transformation matrix in the equation above. Since we are searching for an orthonormal
rotation matrix R, it has a property R−1 = RT and RTR = I.

1) The terms alias and alibi were introduced in the classical monograph [32]. All of the background
mathematics used here is nicely described in [33–34].
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The leg coordinates (using the inverse transformation inferred in Appendix E.4) can

be computed as 
x′i
y′i
z′i
1

 =

 RT −~t

0 0 0 1



xi

yi

zi

1

 . (2)

There are two unknowns that have to be solved – the rotation matrix R and the
translation vector ~t. Everything else is straightforward.

5.4.3 Rotation
The rotation matrix R represents a motion of rotating the coordinate system OB such
that it’s new coordinate axes vectors are the same as in the coordinate system O′B but
without respect to their origins (the translation will be handled later), so we obtain
an auxiliary coordinate system O′′B (described in Figure 5.4). It has also a significant
relationship with the regression plane.

Since we’re rotating orthonormal vectors of coordinate system OB , the rotation ma-
trix vectors can be directly obtained from the vectors of coordinate system O′′B . If we
expand the basis of the coordinate system OB to it’s basic vectors

[
~bx,~by,~bz

]
, we can

express the basic vectors of O′′B similarly as in Equation (1) and we get~b′′x
∣∣∣∣∣∣∣∣~b
′′
y

∣∣∣∣∣∣∣∣~b
′′
z

 = R′

~bx

∣∣∣∣∣∣∣∣~by

∣∣∣∣∣∣∣∣~bz

 , (3)

where R′ is an orthogonal rotation matrix whose basic vectors
[
~R′x, ~R

′
y, ~R

′
z

]
have the

same directions as the basic vectors of R but they don’t have the same magnitude.
We know that the basic vectors of OB

[
~bx,~by,~bz

]
form a standard basis. The columns

of matrix R′ are therefore~b′′x
∣∣∣∣∣∣∣∣~b
′′
y

∣∣∣∣∣∣∣∣~b
′′
z

 = R′


1
0
0

∣∣∣∣∣∣∣∣
0
1
0

∣∣∣∣∣∣∣∣
0
0
1

 =

 ~R′x
∣∣∣∣∣∣∣∣ ~R
′
y

∣∣∣∣∣∣∣∣ ~R
′
z

 . (4)

Although we don’t know the actual coordinates of axes of O′′B , we have several clues
that should limit the infinite space of all possible orientations enough to get the only
solution:.The x- and y-coordinate axes are parallel to the regression plane z = ax+ by + c..The x-axis is heading forward in the walking direction..The rotation matrix R′ is orthogonal.

The second point ensures that the x-axis of O′′B lies in the xz-plane of both coordinate
systems OB and O′B . This plane is drawn in Figure 5.4. Together with the first point,
we can draw the x-axis in the xz-plane as x′′ of coordinate system O′′B which represents
the rotation only. The slope of x′′ with respect to x is the same as the slope of the
regression plane projected into the xz-plane and it can be computed directly from the
plane’s equation z = ax+ by + c.

∂z

∂x
= a = tanϕ, (5)
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~bx

~bz

z = ax+ by + c

−h

c

(tz − h)
OB = O′′B

x

z

1

a

1a

x′′

z′′

tx

tz

x′′′

z′′′

O′′′B = O′B

x′

z′

h

h

Figure 5.4. Transformation diagram of parameterization of the body leveling. The y-axes
are omitted here. The transformation starts with the initial basis OB (red). A rotated
basis O′′B (orange) is found such that it’s x-axis coordinates follows the tangent of the slope
of the regression plane. A translation vector in O′′B is applied to find the origin of O′′′B and
terminal basis O′B . A normalization was applied to create an orthonormal basis O′B from

an orthogonal basis O′′′B .

where ϕ is the angle between x′′ and x (see Figure 5.3). According to the tangent, the
ratio between the z- and x-coordinates of ~b′′x therefore equals a.

The coordinates of the basic vector ~b′′x are then fully parameterized as

~b′′x =

 1
0
a

 = ~R′x. (6)

The first point from the list above also tells us that (assuming we have an orthogonal
basis) the z-axis has to be perpendicular to the regression plane. Such a vector is a
normal vector of the plane and it can be computed directly from the plane’s equation
which we rewrite into a more general form

z = ax+ by + c

0 = ax+ by − z + c. (7)

The coordinates of the normal vector are the coefficients at the x, y and z variables
in the general form of the plane’s equation. The normal vector can be multiplied by
an arbitrary scalar, so we will multiply it by −1 to get a vector heading upwards as is
heading the z-axis vector of OB . Hence we get the parameterized coordinates of the
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basic vector ~b′′z as follows

~b′′z =

−a−b
1

 = ~R′z. (8)

We can now partially fill in Equation (4) by substituting the parameterized basic
vectors from Equations (6) and (8) to get an almost fully parameterized rotation matrix

R′ =

 1
0
a

∣∣∣∣∣∣~b′′y
∣∣∣∣∣∣
−a
−b
1

 . (9)

The rotation matrix R′ is orthogonal, so the third basic vector has to be linearly
independent of the two others, i.e., their scalar multiplication has to be zero, hence

~b′′x
~b′′y

T = 0 = ~b′′z
~b′′y

T . (10)

There are infinitely many of such vectors that forms an orthogonal basis. Let us
define the elements of ~b′′y as ~b′′y = [y1, y2, y3]T and choose one of the vector’s coordinates
manually. Since we want to keep the notation consistent, we will follow Definition 3.8
and choose

y2 = 1, (11)

which ensures that the y-axis will be pointing to the left side of the hexapod perpen-
dicularly to the walking direction. It is also a safety choice because the basic vector ~b′′y
will always have coordinates close to [0, 1, 0]T in real operations1).

We can then formulate a set of equations using the scalar multiplication from Equa-
tion (10) as

~b′′x
~b′′y

T = y1 + + ay3 = 0
~b′′z
~b′′y

T = −ay1 − by2 + y3 = 0. (12)

Expressing y3 from the second equation and substituting it to the first equation (and
substituting from Equation (11)), we can compute y1 by following

y3 = ay1 + b

y1 = −ay3

y1 = −a(ay1 + b)
y1 = −a2y1 − ab

y1 = −ab
a2 + 1 . (13)

The last coordinate y3 follows a simple computation

y3 = ay1 + b

y3 = −a2b

a2 + 1 + b(a2 + 1)
a2 + 1

y3 = b

a2 + 1 . (14)

1) If we chose for example y3 = 1, the other coordinates would be infinite, which should never happen.
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The resulting basic vector ~b′′y is simplified by multiplying by (a2 + 1) and hence

~b′′y =

 −aba2 + 1
b

 = ~R′y. (15)

In order to fulfill the orthonormality of the rotation matrix R, we need to normalize
the three basic vectors

[
~b′′x,

~b′′y ,
~b′′z
]

computed in Equations (6), (15) and (8).
Let us define ||~x|| =

√
~x · ~x as the Euclidean norm of ~x. We conclude that∣∣∣∣~b′′x∣∣∣∣ = ∣∣∣∣~R′x∣∣∣∣ =√a2 + 1∣∣∣∣~b′′y∣∣∣∣ = ∣∣∣∣~R′y∣∣∣∣ =√a2b2 + a4 + 2a2 + 1 + b2∣∣∣∣~b′′z ∣∣∣∣ = ∣∣∣∣~R′z∣∣∣∣ =√a2 + b2 + 1. (16)

Dividing each basic vector by it’s norm, we obtain an orthogonal basis with unit
vectors – an orthonormal basis. After switching the notation by using Equation (4)
where ~b′′i = ~R′i, we get an orthonormal rotation matrix

R =

 ~R′x

||~R′x||

∣∣∣∣∣∣∣∣
~R′y

||~R′y||

∣∣∣∣∣∣∣∣
~R′z

||~R′z||

 =


1
0
a

∣∣∣∣∣∣∣∣
−ab
a2 + 1
b

∣∣∣∣∣∣∣∣
−a
−b
1



||~R′x||

0
0

0
||~R′y||

0

0
0
||~R′z||


−1

. (17)

5.4.4 Translation
The vector ~t = [tx, ty, tz], as is partially described in Figure 5.4, represents the trans-
lation between the coordinate systems OB and O′B with it’s coordinates written in the
rotated basis of O′B (or O′′B). This uncommon notation lets us write the transformation
of the foot coordinates as in Equation (2) where the translation looks a lot simpler.
Written in more detail, we obtain

x′i

y′i

z′i

1

 =


RT −~t

0 0 0 1




xi

yi

zi

1

 =


——~R′x

T
/
||~R′x||—— −tx

——~R′y
T
/
||~R′y||—— −ty

——~R′z
T
/
||~R′z||—— −tz

0 0 0 1




xi

yi

zi

1

 . (18)

When we rewrite the equation line by line, we get

x′i =
~R′x [ xi yi zi ]

||~R′x||
− tx

y′i =
~R′y [ xi yi zi ]

||~R′y||
− ty

z′i =
~R′z [ xi yi zi ]

||~R′z||
− tz (19)

25



5. Blind-Tread Gait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We can then sum up all the legs in each equation and hence

6∑
i=1

x′i =
~R′x
[∑6

i=1 xi

∑6
i=1 yi

∑6
i=1 zi

]
||~R′x||

− 6tx

6∑
i=1

y′i =
~R′y
[∑6

i=1 xi

∑6
i=1 yi

∑6
i=1 zi

]
||~R′y||

− 6ty

6∑
i=1

z′i =
~R′z
[∑6

i=1 xi

∑6
i=1 yi

∑6
i=1 zi

]
||~R′z||

− 6tz (20)

As was mentioned earlier, we want to find a translation vector which averages the foot
position coordinates. We want to have the resulting coordinate system O′B lying in the
averages of their coordinates with respect to the inclined regression plane. Therefore,
the coordinates xi and yi are summed up to zero in the coordinate system O′B . We can
simply sibstitute

6∑
i=1

x′i = 0

6∑
i=1

y′i = 0 (21)

to the previous equation.
There comes the advantage of choosing a rotated translation vector R~t instead of ~t

in Equation (1) because we obtained a very simple expression of such a vector in the
inverse transformation that can be implied from Equation (20). We conclude that

tx =
∑6

i=1 xi + a
∑6

i=1 zi

6 · ||~R′x||

ty = −ab
∑6

i=1 xi + (a2 + 1)
∑6

i=1 yi + b
∑6

i=1 zi

6 · ||~R′y||
. (22)

Although the tz coordinate of the translation vector ~t could be also computed simi-
larly as the two other coordinates from Equation (20), we need to include the hexapod
height h above the ground which has to be the same in both coordinate systems. This
can be done a bit simpler following the description in Figure 5.4.

The regression plane z = ax+ by + c, which is drawn here, shows us a right triangle
(dashed) with it’s two sides sharing the same angle between them as is between the z′′-
axis and the original z-axis. Because the z′′-axis creates another right triangle with the
unit vector of~bz, these two triangles have the same angles and they are therefore similar.
We can utilize this fact and obtain a simple equation of the ratio of the triangle’s sides
lengths as

1
||~b′′z ||

= 1
||~R′z||

= tz − h
c

. (23)

The coordinate tz is thus simply expressed as

tz = c

||~R′z||
− h. (24)
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After simplifying the notation using (
∑ ≡ ∑n

i=1 ) and substituting Equation (16),
the resulting translation vector as it’s coordinates are described in Figures 5.3 and 5.4
is therefore

~t =

 txty
tz

 =


∑

xi+a
∑

zi

6
√

a2+1
−ab

∑
xi+(a2+1)

∑
yi+b

∑
zi

6
√

a2b2+a4+2a2+1+b2

c√
a2+b2+1 − h

 . (25)

5.5 Body Movement
The hexapod body motion is very dependent on the terrain it is crossing. If we consider
an ideal flat environment1), the body motion can be deterministic although it’s not
constant.

There’s no explicit forward body motion. The only body motion comes in the last
step of the blind-tread gait (see diagram in Figure 5.1) when the body is leveled to
the average of the x-coordinates of the foot positions. This average has been moved
forward, because one (active) leg has moved forward. The body is therefore following
the legs.

The leg stroke S is not as simply defined as in the ordinary gaits described in Sec-
tion 3.5. It varies in every next step. Assuming an ideal environment, the leg stroke
can be described by a schema in Figure 5.5.

S0 = 100

x
y

S̄ ' 12
7 S02λ̄

λ̄ = 1
6 S̄

x
y

Figure 5.5. Dependencies between the leg stride λ, the initial leg stroke S0 (left picture)
and the final asymptotic stroke value S̄ (right picture) which is reached after a few gait

cycles in an ideal flat environment.

The left picture shows a hexapod in a default initial position. The blue marks
represents the footsteps for each leg at the end of it’s transfer phase. The footstep
marks are sticked with the hexapod body which means that when a leg is chosen as an
active leg, it moves up, forward and down to reach exactly the marked position in the
1) In an ideal environment, all leg positions are the desired ones and the ground detecting is 100% accurate
which means that when a hexapod is running in place, the legs keeps the same positions after performing
their motions. The leg trajectory is also a straight line going through the default leg position.
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transfer phase. So, at the beginning of the support phase, the active leg is always in
the same (marked) position with respect to the body (in an ideal environment). The
initial distance between the default position and the next footstep position is the same
for all legs and the leg stroke S which travels this distance is initially S0 = 100 mm in
the example in Figure 5.5. The distance S0 can be set arbitrarily, but the possible leg
collisions have to be handled carefully.

Since the next footstep positions are sticked with the body, the distance traveled by
an active leg during it’s transfer phase varies with increasing number of steps performed.
This effect is described in the right picture of Figure 5.5. The red marks holds the same
footsteps with respect to the body as in the left picture. But after leaving the initial
position, the actual foot positions differ. In the right picture, a snapshot of a hexapod
in a stable state of the gait cycle (see diagram in Figure 5.1) after five complete gait
cycles performed with it’s left front leg (orange) chosen as an active leg is shown here.
The distance the left front leg has to travel has converged to the value of1)

S̄ = 12
7 S0, (26)

where the leg stroke S0 is the initial stroke value and hence the distance between the
default leg positions and their corresponding next-step footmarks and S̄ is the converged
leg stroke value after performing several gait cycles.

The leg stride λ is completely dependent on the leg stroke S. Since the body motion
is averaging the foot positions and the only position changed is the active-leg position,
the leg stride is exactly one sixth of the leg stroke. Together with the leg stroke S̄, it
converges to

λ̄ = 1
6 S̄ = 2

7S0, (27)

where λ̄ is the converged stride value after performing several gait cycles.

0 6 12 18 24 300

10

20

30

40

Step number (1 gait cycle = 6 steps)

St
rid

e
le

ng
th
λ

Initial stroke generator
Optimized stroke generator

λ̄ = 1
6 S̄

Figure 5.6. Dependency between the leg stride λ and the number of steps performed. The
stride length value converges after a few gait cycles.

The graph of the converging leg stride λ to λ̄ is shown in Figure 5.6. We can see
that the initial value of λ in the first step is equal λ1 = 100/6 = 16.666. As the body
1) This value is computed experimentally and without a proof. For an arbitrary number of legs n, this
value converges obviously to S̄ = S0 × 2n/(n +1). A proof can be given for such a gait with two legs only,
but the complexity of a proof grows disproportionately with the number of legs.
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moves forward, the legs are staying back and therefore their stroke increases to get to
their next footstep. When all of the legs have moved at least once, the graph of λ
discretely changes as the first leg moves the second time. This is because the leg stride
λ is dependent on the last six moves which the current λ is averaging. We can say that

λn = 1
6

n−1∑
i=n−6

λi, (28)

for n > 6. Furthermore, we can add a λ0 to cover all steps within a single equation

λi =



0 for i < 0

S0 for i = 0

1
6

n−1∑
i=n−6

λi for i > 0
. (29)

Since this discontinuity leads to a behavior we don’t want to achieve, a simple stroke
generator was applied to improve the graph of λ. The first six steps are suppressed in
a following rate

Si =


i

6S0 for i < 6

S0 for i ≥ 6
. (30)

This improvement gives us a better behavior of the blind-tread gait in the first two
gait cycles. We can see in Figure 5.6 that the stride length λ converges very fast and
there can hardly be observed any discontinuities after completing three gait cycles.

As can be seen from the right picture of Figure 5.5, the distance between each leg
and it’s next footstep in each stable state of the blind-tread gait is equal to a multiple
of λ̄ corresponding to a given leg order.

In real situations, the leg stroke and stride are not deterministic. They vary depend-
ing on the footstep position that a leg has found in it’s transfer phase. The leg positions
can differ slightly when crossing a rough terrain, so the initial stroke value S0 cannot
be set very high.

The robot can also move and rotate his body in all six dimensions in addition to
leveling the body. But this additional transformation is independent of the transfor-
mation described above, so it isn’t included in the gait diagram in Figure 5.1 although
it uses the leg positions transformation for body movement too.

The body position can be moved forward with respect to it’s base coordinate system
OB and not affecting all of the actions described in this chapter at all. But it can give
an advantage when moving a sloped terrain to shift the COG to a position where the
stability of the robot is higher. Shifting the body position also negatively influences the
leg working space, so the stroke value S0 is limited when improving the COG position.
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Chapter 6
Experimental Results

The blind-tread gait performance was tested on various terrains under various walking
speeds. The experiments were performed on the same robot as was described in previous
chapters without any additional sensors to measure the gait performance. The results
are visualized here using the robot’s internal data only. All internal data were written
during the experiments while not affecting the robot’s behavior (e.g. the speed). Only
in the steady states between the leg steps, all joint angles were read in a pack which
increased the total experiment time by about 5%.

Although the robot’s parameters were set in a way to increase the gait speed, there
were some limitations that couldn’t have been exceeded. The limits come mainly from
the actuators which can’t operate in a high speed with a compliance set to the highest
value and keep the motion smoothness at the desirable level both at the same time.

The resulting speed of the gait (not the speed of the robot) is about two and a half
minutes per ten complete gait cycles (no matter what distance the robot has actually
traveled).

6.1 Steady Performance
Firstly, we have to verify whether the developed gait meets the expectations of a gait
that can handle operations in a rough environment. The simplest rough terrain is a flat
ground. A result from a steady experiment on a flat ground where the legs are running
in place, i.e., there’s no forward movement, is shown in Figure 6.1.

Three different controllers were used to control the body position of the hexapod
during ten complete gait cycles performed. The compared controllers share the same
ground detection mechanism (explained in Section 5.3) but they differ in the way they
handle the positions transformation. The methods are.No transformation – each leg keeps it’s position where it detected the ground..Average Z – all legs are shifted such that the average of their z-coordinates is equal

to the default hexapod height h above the ground..Transformation – all legs are transformed following the method described in Sec-
tion 5.4.

We can see that when no transformation is used, the hexapod is falling to it’s left side.
When a z-averaging method is used, the height h above the ground is kept constant, but
the falling to the left side is not avoided. Finally, a developed transformation method
keeps all legs at the same elevation level in a long time horizon. The effort which keeps
the legs leveled can be seen from a frequent adjustments to the leg positions (orange),
occasional adjustments (blue) and no adjustments between the leg’s active cycles at all
(red).
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Figure 6.1. Flat ground comparison between different controllers used when a leg reaches
the ground. Data is gathered from all legs during 10 complete gait cycles on a flat ground
when horizontal movement is suppressed (legs are running in place). Transformation con-

troller is the only one which keeps the legs balanced and thus, the body is not tilted.

6.2 Key Performance Indicator
The performance measure which reflects the gait performance is very hard to find since
we have a limited data available. Having an accelerometer or force sensors would be a
good solution, but the hexapod should have utilized these sensors itself too. Considering
what data are actually available, we end with a set of actual and desired foot positions,
a set of actual and desired joint angle positions and a set of computed parameters (a,
b and c of the regression plane and tx, ty and tz of the translation vector).

Imagining the dependencies between each of these parameters and positions and the
quality of the gait, we don’t have a clear winner. Let us think about what we tend to
achieve. One of the main goals of the developed gait is that it can smoothly traverse a
rough terrain. The difference between this and the default gaits presented in Section 3.5
is that the default gaits have always the foot positions of all support legs lying in the
same plane. Although they can traverse a slightly rough terrain, there will always be
a leg in a support phase which is actually moving in the air, i.e., not supporting the
robot at all. This is the area where the blind-tread gait can compete very well.

A good performance indicator could therefore be a visualization of the support func-
tion of all legs. We will be expecting a graph where all of the legs will be more or less
supporting the robot. The measure of support level can be approximated by the foot
position displacement in the z-axis as is discussed in Section 4.5. This value approx-
imates the resulting ground reaction force quite authentically (the best among all of
the data available). We can also use the femur joint angle displacement (as is used in
the detection of the ground in Section 5.3) but the force the femur angle displacement
corresponds to has a different direction compared to the z-axis displacement. It has a
better resolution, but the lower resolution of z-axis will be enough.

Thus, the z-axis displacement of all legs will be used to measure the performance of
the blind-tread gait in all of the experiments below.
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6.3 Scenarios

All scenarios of the experiments are shown in Figure 6.2.
Firstly, the gait performance was tested on a flat ground (a) where the results are not

affected by the terrain difficulties. Every single inaccuracy can be spotted here. The
hexapod has to prove here that the gait is designed general enough to walk smoothly
on an even terrain.

Secondly, a slightly sloped terrain (b) with angle of 10◦ was set to prove the hexapod
ability to move smoothly over a transition to an inclined plane. The inclined plane is
made from wood on which the hexapod hasn’t a good adhesion. Due to the frequent
slippages, this terrain isn’t so easy despite it’s low angle.

Thirdly, a greater angle of 20◦ of an inclined plane (c) was set in order to check how
far the hexapod can go on a sloped terrain. Since it is the same piece of wood as in
(b), this terrain is even more slippery due to it’s angle. The position of the COG plays
an important role here.

Fourthly, a stairs (d) with the height of each step about 5 cm and the same slope as
in (c) was set to examine the hexapod on even more challenging terrain.

Flat Slope 10◦ Slope 20◦
Stairs

20◦

(a) (b) (c) (d)

Figure 6.2. Testing scenarios for all experiments.

6.4 Testing Stride Length
There are many parameters (as usually) that can be optimized all the time. Some of
them are set and never changed because they have a negligible influence on the overal
performance, some of them are set and never changed because they are crucial and
changing their value would cause the loss of stability for example, some of them has
influence on too many factors so it is very hard to find their right value mostly because
they have different right values for different environments.

Among all of the parameters that can be changed on hexapod, we chose to make
experiments with variable stride length (by setting the initial leg stroke S0 – described
in Section 5.5) because such an experiment indicates the true variability in a hexapod
motion.

Along with the stride length, the body position forward offset has also been changing
during the experiments mostly in order to compensate the COG position which was
inclined by a sloped terrain. Such a change was never made on the fly but before the
experiment started since we knew what terrain the hexapod is going to deal with.

A set of figures for each scenario is shown in the following sections. A graph of the leg
z-axis displacement is shown in each figure for all legs and the area between the graph
and the zero value is filled to highlight the actual value of leg displacement in time
(negative displacement which indicates that the leg is not supporting is highlighted in
red). Because the leg positions are most of the time in the supporting phase constant
and they’re changed only in the body leveling step, the values measured were gathered
after each leveling step only. Thus, the gait cycle contains six steps in which all legs
should lay on the ground.
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Each scenario contains four experiments each with growing initial stroke (S0 = 30,
40, 50 and 60 mm).

6.4.1 Flat Ground
The experiments performed on a flat ground are shown in Figures 6.3, 6.4, 6.5 and 6.6.

Firstly, we can see that the ground reaction force is not uniformly distributed between
the legs. Although all of the legs share the same controller, for example the right middle
leg and partially the right front leg are always supporting less than the left middle and
front leg. If we look in more detail at the first few steps, we can see that the right
middle leg always starts with a negative support level. The only reason can be that the
hexapod legs are not completely symmetric. The rear legs carry the greatest portion
of support and as can be seen from these figures, they alternate in carrying significant
part of the weight of the robot.

Despite the irregularities, we can conclude that all of the legs are more or less sup-
porting the robot all the time at all tested walking stride lengths.

6.4.2 Inclined Slope (10◦)
The results of a transition from a flat ground to a 10◦ inclined slope are shown in
Figures 6.7, 6.8, 6.9 and 6.10.

In this scenario, the hexapod made the first two gait cycles on a flat ground before
reached an inclined plane. The time the hexapod spent traversing the transition be-
tween these two terrains varies with the walking stride length. In the first experiment
with the lowest value of stride, the hexapod reached the inclined slope completely by
all legs just at the end of the last gait cycle. The time needed to traverse the transition
is roughly linearly dependent on the stride length, so in the last experiment with the
highest value of stride, the last several gait cycles were performed completely on the
inclined plane.

The performance is similar to the previous scenario although the total measured
support level is lower, but this could be due to the sloped terrain on which the coxa
joints shares a portion of support too (but they’re not measured). Nevertheless, we can
see that the observations from previous scenario about the right front and middle legs
came true. Especially the right front leg is hardly supporting the robot (comparing to
the left front leg). With higher walking strides and with greater body tilt, the right
front leg is supporting less which can be interpreted as the result of the slope of the
terrain which shifts the COG above the rear legs (which can be shown on the graphs
of rear legs support level).

6.4.3 Inclined Slope (20◦)
The results of a transition from a flat ground to a 20◦ inclined slope are shown in
Figures 6.11, 6.12, 6.13 and 6.14.

When compared to the previous scenario of half as slope terrain, we can’t directly
see much differences except that the total measured support level is a bit lower which
is, as was said before, due to the direction of the ground reaction force partially covered
by the coxa joints.

The fact that can’t be seen from these figures is that the terrain is slippery for the
hexapod. The slippage occurrence is frequent mainly in the case of the front legs. The
slippage occurs when a leg is hitting the ground and increases it’s support level in
order to achieve the ground detection threshold value (described in Section 5.3). In
this moment, there is no weight left that could be supported by the other adjacent legs
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which are therefore elevated enough to lose their friction with the plane and the leg is
slipping down the plane due to the compliance in the coxa joints (although the coxa
joints are set as stiff as possible – see Section 4.1).

As in the previous scenario, we can conclude that the level of support of individual
legs follows the expected values as the main support is made by the rear legs while the
front legs try not to lose their (minimal) support level.

6.4.4 Stairs
The stairs scenario is the complex one. It has an advantage that there is no slippage
down the slope as can be seen in the case of an inclined plane. But there is a great
disadvantage for a blind robot that he doesn’t know where a stair actually begins. The
worst case is when a leg finds it’s foothold on the edge of a stair and, few steps later
when the support level of this leg increases, the foot falls to the previous step and the
stability of whole hexapod is severely disrupted. This happened many times during the
experiments shown in Figures 6.15, 6.16, 6.17 and 6.18 but every time it didn’t take a
lot of time for the hexapod to successfully recover to the full support operation. The
hexapod managed to climb the stairs although he had no idea about the terrain he was
crossing.
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Figure 6.3. Support level of all legs while walking on a flat ground with S0 = 30 mm.
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Figure 6.4. Support level of all legs while walking on a flat ground with S0 = 40 mm.
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Figure 6.5. Support level of all legs while walking on a flat ground with S0 = 50 mm.
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Figure 6.6. Support level of all legs while walking on a flat ground with S0 = 60 mm.
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Figure 6.7. Support level of all legs while walking on a 10◦ slope with S0 = 30 mm.
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Figure 6.8. Support level of all legs while walking on a 10◦ slope with S0 = 40 mm.
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Figure 6.9. Support level of all legs while walking on a 10◦ slope with S0 = 50 mm.
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Figure 6.10. Support level of all legs while walking on a 10◦ slope with S0 = 60 mm.
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Figure 6.11. Support level of all legs while walking on a 20◦ slope with S0 = 30 mm.
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Figure 6.12. Support level of all legs while walking on a 20◦ slope with S0 = 40 mm.

0
10

Support level of a leg

0
10

0 12 24 36 48 60
0

10

0 12 24 36 48 60

LF

LM

LR

RF

RM

RR

Gait step number (1 gait cycle = 6 steps)

Le
g

di
sp

la
ce

m
en

t
(m

m
)

Figure 6.13. Support level of all legs while walking on a 20◦ slope with S0 = 50 mm.
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Figure 6.14. Support level of all legs while walking on a 20◦ slope with S0 = 60 mm.
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Figure 6.15. Support level of all legs while climbing stairs with S0 = 30 mm.
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Figure 6.16. Support level of all legs while climbing stairs with S0 = 40 mm.
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Figure 6.17. Support level of all legs while climbing stairs with S0 = 50 mm.
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Figure 6.18. Support level of all legs while climbing stairs with S0 = 60 mm.
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Chapter 7
Discussion

A hexapod has a great potential in mobile robotics. It’s six legs allows him to utilize a
variety of different gaits for different purposes like using a tripod gait for a fast motion
over a flat terrain, switching to the blind-tread gait when an unstructured transition
needs to be traversed, then apply a stairs-climbing gait, etc.

Although a hexapod is very popular, there are octopods or even a centipede inspired
robots with many legs already. More legs brings a great operational variability to a
legged walking robot. Besides all of the actions he can perform due to it’s numerous
legs, he might even be able to self-repair his current gait when a leg breaks down in
order to regain it’s walking stability.

7.1 Tactile Sensing
Another extensive area is the tactile perception. Assuming that the robot has a similar
ground detection mechanism as the one described in Section 5.3 implemented, gaining
an information about the actual leg positions opens up a new dimension for him if the
robot doesn’t have any scanning sensors like range-finder or camera. In the developed
gait in Chapter 5, the acquired foot positions on an uneven terrain are used only once
and then they are forgotten. If they were kept in the memory with a precise link to the
current robot’s position (which implies an accurate odometry), the robot could have
it’s own footstep map.

Besides the fact that the robot can trace back it’s own trajectory, it’s motion can be
used to create such footsteps primarily in order to map the terrain around the robot.
Since the robot has numerous legs, the number of footsteps will not be small. Assuming
that the robot has a particular goal, he can chose which area to map more densely and
which loosely according to the terrain smoothness. In order to increase the precision of
the mapping, he can stay at one place with only one leg in the air patiently scanning
the terrain by touching the surface around the robot.

The map created from the footsteps can be corrected using additional information
from other sensors, or it can be used to correct the robot’s mapping accuracy by visiting
the mapped positions multiple times.

The tactile sensing can also be used in a careful manipulation. When such a gait is
applied that the robot has one or more legs free while still able to walk, he can become
an ant-like robot using it’s legs to find, pick up and drag items.

7.2 Unstructured Environment
Operating in an unstructured environment requires a general gait that can handle all
unperceived obstacles and terrain difficulties. We can divide the term of unstructured
environment into three main areas that are graded with increasing difficulty of the
environment.
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.A static environment with arbitrary shape of the surface..The same as above but with considering adhesion (muddy, wet surfaces)..A dynamic environment with outer forces acting on the robot.

The blind-tread gait presented in this work is able to handle the first type (level)
of unstructured environment. It has a little problems with a slippery terrain. After a
slippage occurs, most of the legs stay in their current configuration and they are waiting
for their time to move. An ideal case would be measuring the foot displacement online
for all legs at a time (as in the work of Palankar et al. [18–19]). But this approach
would require a custom hardware with each leg handled by an individual controller
instead of a mass produced robot. Online reading can lead to a dynamic gait that has
a potential to be able to handle the third type of environment if the controllers of the
legs are continuously setting appropriate positions in order to keep the leg support at
the same (desired) level.

7.3 Future Work
The current state of the blind-tread gait presented in Chapter 5 has been successfully
experimentally tested on walking on a flat and sloped terrain (with slope up to 20◦),
traversing transitions between such terrains and even climbing the stairs.

There are many possible upgrades that can improve it’s performance. Among the
first could be increasing precision and robustness of the ground detection mechanism
by using more than a single servo angle displacement.

Another area that needs to be explored well is the leg working space. The working
space has been described in this work but further work is needed to cover the sensitive
area of possible leg collisions and increase the reach of the legs which is now very limited.

Experiments with various loads on the robot could also give us another important
information about the robot’s capabilities. In this work a fully unloaded hexapod was
tested only.

In the case of adding external sensors, an accelerometer could help the robot with
better fitting the body position forward offset in order to compensate the shifted COG
when walking up or down the slope.

Another important area is a self-calibration. An accelerometer can help here a lot by
detecting and compensating the body leveling errors on a flat ground. The legs are not
balanced in the factory settings. When a hexapod is staying on a flat ground, each leg
detects a different z-axis displacement which could be corrected by getting the position
information from another sensor.
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Chapter 8
Conclusion

Starting with an ordinary remote controlled hexapod walking robot without any exter-
nal sensors, a newly developed walking gait called Blind-Tread Gait was applied that
adds to the hexapod the ability to walk successfully over a rough terrain environment.

The hexapod is technically blind and can only utilize it’s actuator positions. After
studying the core of the hexapod and the limits of it’s actuators, a motion sub-primitive
was developed that allows the hexapod to detect the ground during a leg motion prim-
itive within a gait cycle. Such detected positions are used as a footsteps for hexapod
legs in successive gait steps.

The body position and orientation is computed using the body-leveling transforma-
tion described in Section 5.4 which ensures that the body moves to an equilibrium
position with respect to the leg positions after every leg motion. The resulting body
motion is described and analyzed in detail as well as the leg stroke.

The developed gait was examined in several experiments. It’s performance was mea-
sured on a graph of support level of each leg while the hexapod was walking on a
flat terrain, sloped terrain and climbing the stairs. All experimental scenarios were
repeated with different walking stride lengths. The results show us that the newly
developed gait’s performance does not significantly decrease with a more challenging
terrain or a greater walking stride length. The gait is so general that the hexapod can
even climb the stairs quite smoothly. Although he occasionally slips from a stair’s edge
(because he is still blind), the recovery time is very fast despite the fact that there’s no
explicit recovery mechanism.
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1. Seznamte se s akčními členy šestinohé kračející robotické platformy. 
2. Seznamte se s dostupnými základními primitivy pohybu platformy. 
3. Navrhněte dekompozici primitiv na pohybová subprimitiva. 
4. Zobecněte primitiva pohybu s využitím subprimitiv tak, aby bylo možné využít zpětnou vazbu  
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    pracovního prostředí robotu. 
7. Diskutujte možnosti rozšíření navrženého přístupu pohybových primitiv se zpětnou vazbou  
    pro pohyb robotu v nestrukturovaném prostředí. 
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Appendix B
Used Terms and Software

B.1 Abbreviations
DOF Degree of Freedom.
COG Center of Gravity.

B.2 Symbols
θC The coxa joint angle.
θF The femur joint angle.
θT The tibia joint angle.
h The hexapod height above the ground.
λ Leg stride.
S Leg stroke.
β Duty factor.
Oi Coordinate system.

θi, di, ai, αi Denavit-Hartenberg parameters.
I Identity matrix.

A4×4 Tranformation matrix in homogeneous coordinates.
R3×3 Rotation matrix.
a, b, c Parameters of the regression plane z = ax+ by + c.

tx, ty, tz The coordinates of the body-leveling translation vector ~t = [tx, ty, tz]T .
||~x|| Euclidean norm of ~x

(
||~x|| =

√
~x · ~x

)
.

B.3 Software
MATLAB A numerical computing environment. Used for testing and simulations.
CTUstyle A novel plainTEX template for thesis at CTU. Used to typeset this thesis.

Created by Petr Olšák1).
PGF/TikZ PGF is a TEX macro package for generating graphics with a user-friedly

syntax layer called TikZ2). Used to program all of the graphics in this
thesis (excluding photos). Created by Till Tantau.

1) http://petr.olsak.net/ctustyle.html
2) http://sourceforge.net/projects/pgf/
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Appendix C
CD Content

The enclosed CD contains an electronic copy of this thesis in it’s root directory.
It also contains the source files in a following directory structure

./thesis — The source plainTEX files used to typeset this thesis.

./robot — The source C++ files of the hexapod control program.

./external — The source files of an external Dynamixel library.

./matlab — The MATLAB scripts used to verify and simulate the gait behavior.
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Appendix D
Hardware Datasheets

D.1 ROBOTIS Dynamixel Servos

Dynamixel
AX Series

Model
AX-12A

(Visit Product Page)
AX-12W

(Visit Product Page)
AX-18A

(Visit Product Page)

Stall Torque @ Max Voltage 1.5N.m (16.5 kg-cm) 0.2N.m (2.0 kg-cm) 1.8N.m (18 kg-cm)
Speed (RPM) 59 470 97
Nominal Operating Voltage 12v 12v 12v
Stall Current Draw 1.5A 1.4A 2.2A
Dimensions 32x50x40 mm 32x50x40 mm 32x50x40 mm
Weight 54.6g 52.9g 54.5g
Resolution 0.29° 0.29° 0.29°
Operating Angle 300 300 300
Gear Reduction 254 : 1 32 : 1 254 : 1
Geartrain Material Eng. Plastic Eng. Plastic Eng. Plastic
Onboard CPU ATMega8 

(ATMEGA8-
16AU@16MHZ, 8 Bit)

ATMega8 
(ATMEGA8-
16AU@16MHZ, 8 Bit)

ATMega8 
(ATMEGA8-
16AU@16MHZ, 8 Bit)

Position Sensor Potentiometer Potentiometer Potentiometer
Com Protocol TTL TTL TTL
Com Speed 1mbps 1mbps 1mbps
Compliance/PID Compliance Compliance Compliance

Dimensional Drawing PDF PDF PDF

AX Series Dyanmixels & Brackets
(Click to View Full Line)

http://www.trossenrobotics.com
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Appendix E
Equations

E.1 Direct Kinematics
We can create transformation matrices from a Denavit-Hartenberg notation [26] of a
hexapod leg kinematics in Table 4.2. The transformation matrixA4×4 is in homogeneous
coordinates, so it contains both rotation and translation.

The transformation matrix between two adjacent coordinate systems Oi and Oi−1 is

Ai−1
i =


cos θi − sin θi cosαi sin θi sinαi ai cos θi

sin θi cos θi cosαi − cos θi sinαi ai sin θi

0 sinαi cosαi di

0 0 0 1

 . (1)

The transformation matrices from the coxa joint (OC) through the femur (OF ) and
tibia joints (OT ) to the foot (OW ) looks as follows for our parameters of D-H notation.

AC
F =


cos θ′C 0 sin θ′C aC cos θ′C
sin θ′C 0 − cos θ′C aC sin θ′C

0 1 0 0
0 0 0 1

 (2)

AF
T =


cos θ′F − sin θ′F 0 aF cos θ′F
sin θ′F cos θ′F 0 aF sin θ′F

0 0 1 0
0 0 0 1

 (3)

AT
W =


cos θ′T − sin θ′T 0 aT cos θ′T
sin θ′T cos θ′T 0 aT sin θ′T

0 0 1 0
0 0 0 1

 , (4)

where θ′i = θi + θoffi . The ai actually stands for an i-th link length here.
The transformation matrix AC

W = AC
FA

F
TA

T
W represents the mapping between the

coxa joint coordinate system and the foot coordinate system. The foot coordinates lies
in the origin of the coordinate system OW . To get this coordinates in the coordinate
system OC (which is fixed with the hexapod body), we use the transformation matrix
AC

W .

AC
W


0
0
0
1

 =


cos θ′C(aC + aT cos(θ′F + θ′T ) + aF cos θ′F )
sin θ′C(aC + aT cos(θ′F + θ′T ) + aF cos θ′F )

aT sin(θ′F + θ′T ) + aF sin θ′F
1

 =


x
y
z
1

 (5)

The foot has coordinates [x, y, z]T in the coordinate system OC (which lies in the
coxa rotation axis) following the equation (5).
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E.2 Inverse Kinematics
Given the foot coordinates [x, y, z], the coxa joint angle θC can be computed directly
from the x and y coordinates

θC =
{

atan2(x, y)− θoffC if x ≥ 0;
atan2(−x,−y)− θoffC if x < 0.

(6)

Next, we will simplify the notation by introducing the coordinates [xF , yF , zF ] which
are the foot coordinates expressed in the coordinate system OF (see Appendix E.1).

xF =
√
x2 + y2 − aC

yF = z

zF = 0 (7)

We can also express the length of the leg from the femur joint (OF ) to the foot (OW )
as

dF W =
√

(xF )2 + (yF )2.

According to the law of cosines and the angle above horizon, we get the femur and
tibia angles θF , θT

θF = arccos
(
aF

2 − aT
2 + dF W

2

2aFdF W

)
− atan2

(
yF , xF

)
− θoffF (8)

θT = π − arccos
(
aF

2 + aT
2 − dF W

2

2aFaT

)
− θoffT , (9)

where ai is actually the i-th link length and θoffi is the i-th joint offset (see Table 4.2).
This equations works for cordinates [x, y, z] in the positive operating radius of a leg

(see Figure 3.2). If we wanted to allow also the negative radius, a more complex solution
especially of the coxa joint θC would have had to be done.

E.3 Linear Regression
Given a set of n coordinates (xi, yi, zi) in 3D space, we can find a plane z = ax+ by+ c
in which the squared distance between each coordinate and the plane (in the z-axis) is
minimized.

The sum can be written as S =
∑n

i=1[(axi + byi + c) − zi]2 and it’s a nonnegative
function of three variables S(a, b, c). It’s graph is a parabola in each variable and the
minimum can be found using partial derivations

∂S

∂a
= 0 = 2

n∑
i=1

[(axi + byi + c)− zi]xi

∂S

∂b
= 0 = 2

n∑
i=1

[(axi + byi + c)− zi]yi

∂S

∂c
= 0 = 2

n∑
i=1

[(axi + byi + c)− zi]. (10)
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E Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
These equation can be rewritten as

n∑
i=1

(ax2
i + bxiyi + cxi) =

n∑
i=1

zixi

n∑
i=1

(axiyi + by2
i + cyi) =

n∑
i=1

ziyi

n∑
i=1

(axi + byi + c ) =
n∑

i=1
zi (11)

and in a matrix notation, we get


∑n

i=1 x
2
i

∑n
i=1 xiyi

∑n
i=1 xi∑n

i=1 xiyi

∑n
i=1 y

2
i

∑n
i=1 yi∑n

i=1 xi

∑n
i=1 yi n



a

b

c

 =


∑n

i=1 zixi∑n
i=1 ziyi∑n

i=1 zi

 . (12)

The parameters [a, b, c]T can be expressed by multiplying the equation by an inverse
of the left matrix. Substituting the matrices, we get

X

 ab
c

 = Y (13)

 ab
c

 = X−1Y = adjX
detXY. (14)

Assuming that each sum is for i = 1 to n, we will simplify the notation using (
∑ ≡∑n

i=1 ). The determinant of X is therefore

detX = n
∑
x2

i

∑
y2

i + 2
∑
xiyi

∑
yi

∑
xi − (

∑
xi)2∑ y2

i − n(
∑
xiyi)2 −∑x2

i (
∑
yi)2.

The adjugate matrix (adjX) can be expressed as

adjX =

=


n
∑
y2

i − (
∑
yi)2 ∑

xi

∑
yi − n

∑
xiyi

∑
xiyi

∑
yi −

∑
xi

∑
y2

i∑
xi

∑
yi − n

∑
xiyi n

∑
x2

i − (
∑
xi)2 ∑

xi

∑
xiyi −

∑
x2

i

∑
yi∑

xiyi

∑
yi −

∑
xi

∑
y2

i

∑
xi

∑
xiyi −

∑
x2

i

∑
yi

∑
x2

i

∑
y2

i − (
∑
xiyi)2

 .

The resulting parameters [a, b, c]T can be expressed by mutliplying the matrices above
by following Equation (14).
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E.4 Inverse Transformation
Given the transformation matrix A, we can separate it to the rotation and translation
part.

A =

 R R~t

0 0 0 1

 =

 R 0

0 0 0 1


 I ~t

0 0 0 1

 (15)

Following the identity (XY )−1 = Y −1X−1, the inverse of A can be performed by
inverting the separated matrices.

A−1 =


 R 0

0 0 0 1


 I ~t

0 0 0 1



−1

=

 I ~t

0 0 0 1


−1  R 0

0 0 0 1


−1

=

 I −~t

0 0 0 1


 RT 0

0 0 0 1



=

 RT −~t

0 0 0 1

 (16)

55


	TITLE
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents/
	Tables/Figures
	Introduction 
	Motivation 
	Thesis Organization 

	Related Work 
	Using Additional Sensors 
	Internal Sensors Only 
	Other Approaches 

	Hexapod Structure 
	Dimensions 
	Actuators 
	Communication 
	PC -- Board 
	Board -- Servo 

	Data Reading 
	Gaits 
	Gait Controller 


	Hexapod Leg 
	Compliance 
	Resonance 

	Kinematics 
	Coordinate Systems 
	Direct Kinematics 
	Inverse Kinematics 

	Working Space 
	Position Controller 
	Sensing 

	Blind-Tread Gait 
	Overall View 
	Trajectory Sampling 
	Ground Detection 
	Body Leveling 
	Linear Regression 
	Transformation 
	Rotation 
	Translation 

	Body Movement 

	Experimental Results 
	Steady Performance 
	Key Performance Indicator 
	Scenarios 
	Testing Stride Length 
	Flat Ground 
	Inclined Slope ($10^circ $) 
	Inclined Slope ($20^circ $) 
	Stairs 


	Discussion 
	Tactile Sensing 
	Unstructured Environment 
	Future Work 

	Conclusion 
	References
	Specification 
	Czech Version 

	Used Terms and Software 
	Abbreviations 
	Symbols 
	Software 

	CD Content 
	Hardware Datasheets 
	ROBOTIS Dynamixel Servos 

	Equations 
	Direct Kinematics 
	Inverse Kinematics 
	Linear Regression 
	Inverse Transformation 


