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Abstract
Technological advances have enabled manufacturing of radar devices small enough to be
carried by mobile robots. One of such devices is IGEP Radar Lambda manufactured by
a Spanish company ISEE. We have evaluated the prospects of using the Lambda sensor
in mobile robotics. The Lambda radar operates on 24 GHz ISM band in FMCW mode.
It provides range measurements at ranges 0.9–25 m with beam width 26◦ and standard
error 19 cm.

We have designed an algorithm based on Bayes filter to reconstruct environment maps
from radar data. The algorithm has been tested in indoor and outdoor environment and
yielded satisfactory results.

The sensor results are promising. The sensor provides false measurements under cer-
tain conditions as of now, but we believe that substantial improvements can be achieved
by better data processing and sensor utilization.

Keywords
radar, environment mapping, Bayes filter, occupancy grid

Abstrakt
Technologické pokroky umožňují výrobu radarových senzorů dostatečně malých k využití
na mobilním robotu. Jedním z takových senzorů je IGEP Radar Lambda španělské firmy
ISEE. Vyhodnotili jsme možnosti využití senzoru Lambda v mobilní robotice. Radar
Lambda využívá 24 GHz ISM frekvence a funguje v FMCW módu. Poskytuje měření
vzdáleností v rozsahu 0.9–25 m se šířkou paprsku 26◦ a standardní chybou 19 cm.

Navrhli jsme algoritmus k rekonstrukci mapy prostředí z radarových dat založený
na Bayesových filtrech. Algoritmus byl otestován na datech z vnitřního i venkovního
prostředí a poskytuje uspokojivé výsledky.

Výsledky senzoru jsou slibné. Senzor má v této chvíli za určitých podmínek poskytuje
chybná měření, ale věříme, že existuje možnost dalšího zlepšení ve zpracování dat a
využití senzoru.

Klíčová slova
radar, mapování prostředí, Bayesův filtr, mřížka obsazenosti
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1. Introduction
Robots have been around for quite a long time. Oxford dictionary defines a robot as

”A machine capable of carrying out a complex series of actions automatically, especially
one programmable by a computer“[1] At first however, robots were not robots at all. The
term ‘robot’ was invented in Karel Čapek’s play R.U.R. ’Rossum’s Universal Robots’
in 1920. Early robots were purely mechanical automata created to amuse rather than
to do actual work. There were automatic musicians like drummers and flute players,
automatic puppets for theater and so on. [2]

Later, as the electricity took over the industry and the society, electric robots were
built. Electricity made robot design much easier. The robots were controlled by remotely
switching their components on and off. But the complexity of controlling the robot’s
movement was immense and had to wait for electronics to develop. With electronic
circuits, scientist were able to simulate simple biological processes as phototaxis [2]
and first somewhat autonomous robots emerged. They were capable of perceiving the
environment they move in, analysing the measurements and taking action based on the
analysis results.

Then the digital era came, with its computers. Computers allowed us to simulate
complex processes and to give the robots true autonomy and “free will”. Computer-driven
robots can perform much deeper analysis of the measured data. Nearly all imaginable
sensors have been used, including tactile sensors (bumpers), sonars, laser range-finders,
cameras, … The collected data is then used either to take action based on the immediate
measurements, or to construct some sort of an internal environment model and decide
based on this model.

With today’s advancing technology, new opportunities open in the sensor field. Radar
systems have been extensively used since the World War II in the military and civilian
sector. They were massive devices using kilowatts of power to detect aircrafts and ships
hundreds of kilometers away. Today’s miniaturized technology allowed development
of small radar devices, operating at powers low enough to be powered by batteries and
capable of measuring ranges low enough to be applicable to local measurements. Radars,
or the radio waves they use, exhibit many properties desirable for a sensor used by a
robot. They are robust to the environment as fog, rain and dust don’t affect them.
They can penetrate some materials, mainly dielectrics, and are thus capable of imaging
objects behind for example a closed door.

An example of such miniature radar device is the IGEP Radar Lambda. It is a small
radar device operating on 24 GHz ISM band capable of both pulsed and CW operation,
combined with an embedded computer.

The aim of this thesis is to test and evaluate possibilities of IGEP Radar Lambda for
use in mobile robotics. We will thoroughly explain the principles behind the radar sensing
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1. Introduction

and the mapping techniques used. We will test the sensor properties by experiments and
deliver a comprehensive description of the results.

1.1. Related work
There have been several works regarding use of radar units in mobile robotics, but using
hardware very different to the Lambda radar.

Foessel [3] has successfully used FMCW radar in evidence grid framework. He used
77 GHz radar device with a pencil beam to construct 3D map of the environment. He
has later published a comprehensive study of radar sensor properties for mobile robotics
[4].

Reina [5] has used a FMCW radar device operating at 95 GHz for ground segmentation.
The radar had a pencil beam and used mechanical scanning.

Both the devices were physically larger than the Lambda radar, using antenna aper-
tures of about 20 cm while IGEP Lambda sensor is only 5 × 10 cm small. That allowed
the narrow beams and high angular resolution.

1.2. Outline of the thesis
• Chapter 1 — Introduction gives a mild introduction into the topic and states

the aims of this thesis
• Chapter 2 — Robotic mapping examines several algorithms used in mobile

robot mapping
• Chapter 3 — Radar theory introduces the reader into basics of radar technology
• Chapter 4 — IGEP Lambda sensor describes the radar sensor and its prop-

erties
• Chapter 5 — Mapping algorithm describes the algorithm designed to interpret

the radar measurements
• Chapter 6 — Experiments describes the experiments conducted and analyses

their results in detail
• Chapter 7 — Conclusions concludes the results of our work

2



2. Robotic mapping

To be able to move around the environment, the robot needs to know where it is and
what the environment looks like. This is trivial for humans, but rather complicated for
a robot.

When we know for sure where the robot is going to operate, we can provide it with a
map of the environment, a building floor for example. The plan can, over time, become
inaccurate as furniture gets moved around. Furthermore the robot is limited to operation
only on the particular floor of the particular building it has a plan of.

To make the robot more flexible, to allow it to operate on another floor or anywhere
else, the robot needs to create its own picture of its surroundings and act according to
them. This means the robot usually remembers the places it has visited and builds a
map. The map contains information important for the robot’s task. It may be a map
describing obstacles like a floor plan to navigate the environment, it may be a map
describing positions of certain objects in the environment.

Location (pose) estimation and environment mapping are deeply connected. You need
to know where you are to build a map, but you need a map to know where you are. This
chicken-egg problem is referred to as Simultaneous Localization And Mapping or SLAM.
In this thesis, we will focus on the mapping part and take the assumption that the robot
pose is known. The assumption can be easily fulfilled by trusting odometry or running
a SLAM algorithm with another sensor while collecting radar data.

2.1. Map representation

The robot needs to represent the environment map in such way that it can use it to
perform its task — usually navigate the environment. Several types of representation
emerged as the subject was studied in the 80’s and 90’s. The mapping field has namely
split into metric and topological maps [6, sec. 2].

2.1.1. Metric maps

Metric maps describe the environment in a metric framework, a position- and distance-
centric approach. Metric maps concentrate on describing the position and shape of
obstacles. There are two main methods used to represent the environment: occupancy
grids and geometric models.

3



2. Robotic mapping

Occupancy grids

As the name suggests, occupancy grid approach represents the map in a grid. The
environment is divided into equally sized cells. Each cell is represented in the robot’s
memory and carries information about the portion of the environment it represents.

Occupancy grids are nowadays usually used with probabilistic maps, where each cell
is represented as the probability that it is occupied — there is an obstacle [7, chap. 9].
Grid maps can however hold different quantities connected to the environment than the
occupancy probability, for example the robot’s confidence that the information it has
about this cell is correct.

The cell size needs to be chosen carefully, as large cells cannot hold enough details,
but small cells increase the memory requirements considerably. Map size grows with
square inverse cell size and large maps can grow out of memory1. Small cells also imply
higher computation cost of all operations, particularly of updating the map. As a mea-
surement is taken, the robot needs to update the map to reflect the measurement. The
measurement carries information about a portion of the environment, and the smaller
the cells, the more of them lie in the imaged region and need to be updated.

Geometric maps

The other popular approach to map representation are geometric maps. In a geometric
map, the environment is represented as a list of primitive objects, like lines, arcs and
other geometrical shapes, their placement and relations between them.

The geometric representation is generally more memory-efficient than occupancy grids.
A wall spanning the whole width of the map can be represented by a rectangle, that
means four numbers instead of the hundreds or thousands of cells in a grid map.

On the other hand, updating the geometric map based on a measurement is usually
not as straightforward as with occupancy grids. The new measurement needs to be fused
with the existing geometrical data, which may include complex computation.

2.1.2. Topological maps

Topological maps describe the environment in a topological framework, concentrating
on places and relationships between them. The map is a graph where nodes represent
different places and and the edges represent paths between them. The paths are de-
scribed by information like distance or navigation commands. This allows the robot to
navigate between the listed places.

Topological maps are generally a higher level of abstraction. They are harder to obtain
from crude sensor readings and dominate when mapping vast environments.

1Today, this is still an issue with 3D occupancy grids where memory requirements grow with third
power of resolution
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2.2. Probabilistic framework

2.2. Probabilistic framework
All sensors provide readings with a certain error. The robot therefore needs not only
to know what is around, but also how certain it is about this information. Probability
theory comes handy in this task as it provides us with formal apparatus to deal with
uncertainty.

The environment is represented as a set of probabilities. The probability of a piece
of information is called the robot’s belief in the information. In case of occupancy grids
these are probabilities that the cell is occupied in the environment.

A cell C can be either Occupied (O(C)) or Free (F (C)). As these states are comple-
mentary, p(O(C)) = 1 − p(F (C)) and the belief about the cell state can be represented
as only p(O(C)).

As new measurements come in, the robot updates the probability values in his world
model. A group of algorithms called filters is used to incorporate this new piece of
information into the environment model. Bayes filters are used in discrete cases like
occupancy grids. Kalman filters can accommodate continuous cases like continuous pose
estimation. Other techniques like particle filters use different tricks to represent the
uncertainty [7].

2.3. Bayes filter
Bayes filter is an algorithm to update the environment model based on the Bayes rule.
The Bayes rule (2.1) states that the probability of O when we know that M has occurred
is related to the probability of M occurring if O is known.

p(O|M) =p(M |O)p(O)
p(M)

(2.1)

When we write down the Bayes rule for occupied and free cells, we obtain equation
(2.3). The desired result is p(O(C)|M), that is probability of cell C being occupied when
we registered measurement M

p(O(C)|M) = p(M |O(C)p(O(C))
p(M |O(C))p(O(C)) + p(M |F (C))p(F (C))

(2.2)

= p(M |O(C)p(O(C))
p(M |O(C))p(O(C)) + p(M |F (C))(1 − p(O(C))

(2.3)

There are three terms in the equation. Term p(O(C)) represents the current belief
that cell C is occupied. Terms p(M |O(C)) and p(M |F (C)) are probabilistic models of
the sensor. They tell us what the probability of measurement M would be if cell C was
occupied or free respectively.

The probabilistic sensor model describes the sensor behavior, the probability of over-
looking an obstacle or of false detection.
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3. Radar theory

Radar, an acronym for RAdio Detection And Ranging, uses radio waves to detect objects
and measure their distance from the sensor. The radar device transmits radio waves and
waits for an echo created by reflection from an obstacle. Measuring the delay from
transmission to echo return yields distance from the transmitter to the target.

3.1. Radar basics
Since radar science has been around for a long time and has been an area of intensive
study and technological advances, there are numerous traditional terms and equations
used.

3.1.1. Range and round trip time
The signal travels to the target at a range R and back over time Tr. Tr is called round-
trip time (RTT). As the signal travels to the target and back, covering 2R meters at the
speed of light c ≈ 3 × 108 m/s, R can be calculated as

R = 1
2

cTr (3.1)

3.1.2. The radar equation
The transmitted signal deteriorates with the distance it travels and is reflected in different
ways from different objects. The signal behavior is described by the so-called radar
equation (3.3) [8]

Pr = PtGt
1

4πR2 σ
1

4πR2 Aeff = (3.2)

= PtGtAeff

16π2
σ

R4 (3.3)

In the slightly expanded form of the equation (3.2), it is clear what happens to the
signal. Pt [W] is the power transmitted by the antenna.

Radars use directional antennas to be able to determine the direction to the target.
The transmitted power is thus multiplied by the antenna gain Gt [dB] that specifies how
many times the output power would need to be higher if we were using an isotropic
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antenna instead of the directional one and we wanted to get the same output power at
the target.

The transmitted power that can now be considered as coming from an isotropic an-
tenna is distributed over the sphere created by the signal propagating isotropically. At
a distance R, the sphere has a surface of 4πR2 and so the power density at range R is
the transmitted isotropic power over the sphere surface.

Then the signal arrives to the target, which reflects a part of the power it absorbs.
The reflected power depends on the radar cross-section (or RCS) σ [m2] which specifies
the equivalent surface area of the target.

The dimension of the formula so far is Wm−2m2 = W , which gives the power reflected
from the target.

The reflected power is again distributed over the sphere resulting in lower power
density back at the receiver. The echo signal is picked up by a receiver antenna with an
effective area Aeff [m2]. The effective area of the antenna collects the signal with the
power density given by the previous terms and receives power Pr [W].

When we rearrange the equation (3.2) to separate hardware constants from variables,
we obtain equation (3.3). We can see that the received power is proportional to the RCS
of the target and inversely proportional to the fourth power of range.

3.2. Signal propagation

The signal is transmitted by an antenna, it propagates through the environment, reflects
from an obstacle and then propagates back. All the steps in signal path affect the
resulting signal received back at the radar device.

3.2.1. Antenna

The transmission antenna usually directs the signal to illuminate only a limited space.
The antenna usually directs the signal by a reflector. The waves reflected on the far end
of the antenna interfere with those reflected closer to the emitter. These inhomogeneities
in the antenna beam can cause variations of echo power, as the interference can dampen
the signal even for large targets.

This phenomenon occurs in small ranges called the near field. Its opposite, the far
field, is defined as the region where radiation intensity is identical throughout the beam
and decreases with square distance. The near field ends and the far field begins at range
Rnf = D2/λ [8, p.229] where D is the antenna aperture, that is the largest physical
dimension of the antenna, and λ is the signal wavelength. Return intensity of targets
closer than Rnf is largely dependent on target position in the cone and these targets are
thus not really characterised by the return. Radar units should operate for targets in
the far field region.

7



3. Radar theory

3.2.2. Environment propagation

The signal propagates through the environment at the speed of light. The environment
has major influence on signal damping. At 24 GHz, water molecules in the environment
resonate with the signal, absorbing considerable amount of its power. This is the rea-
son why large radar devices don’t operate at 24 GHz, as water vapor in the air makes
detection at large distances very difficult [8]. Short range operations don’t suffer from
this damping as severely.

3.2.3. Reflection

When the signal hits an obstacle, a part of the signal penetrates it and a second part
is reflected in all the directions. The reflected energy is divided between specular and
diffuse reflection. In case of specular reflection the signal moves according to Snell’s law,
it reflects at the angle equal to the incidence angle of the original beam. The rest of the
incoming energy is diffused and reflected in other directions.

The amount of diffusion is a material property. Some materials like metals reflect
virtually all of the energy in specular way, other exhibit certain amount of diffuse re-
flections.

Experiment 6.2.2 has shown that diffuse reflections are negligible.

3.3. Radar technologies

There are two major approaches to measuring the time interval from transmission to
echo registration.

First approach is the pulsed radar that transmits a short pulse of radio waves and
then measures the time until the echo or echoes arrive. There are many issues with the
measurement errors like range resolution problems originating from pulse duration, but
since radar has been a strategic military technology since the World War II, the issues
have been addressed successfully and pulsed radar is nowadays a very precise instrument.

However, some of the pulsed radar properties are rendering it hardly usable for small
range operation like mobile robotics. One of the limitations is time measurement preci-
sion. Since the transmitted waves travel at the speed of light, the delays are extremely
short at a small range (about 60 ns at 10 m range). This would make precise measure-
ments at a short range require very precise (and thus costly) equipment.

Second approach is the FMCW (Frequency Modulated Continuous Wave) radar which
transmits the signal continuously. The signal frequency is modulated over time and echo
range is determined by comparing the frequency of the received signal with the frequency
of the signal currently transmitted. With the knowledge of the modulation pattern, one
can then calculate the round-trip time and thus the target range.

This approach avoids any kind of time measurement making short-range measure-
ments at reasonable precision much easier. Longer transmission times also imply lower
necessary transmission power making the equipment smaller and more energy efficient.
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3.4. FMCW radar
A FMCW radar continuously transmits the modulated signal and simultaneously regis-
ters the return signal mixing it with the signal being transmitted. The result is a signal
with frequency equal to the difference between the frequencies received and transmitted.
This signal is called the intermediate frequency or IF signal. Knowing the modulation
shape, one can then infer the time elapsed from transmitting the signal which is the
RTT.

3.4.1. Modulation

The modulation pattern needs to allow calculation of time elapsed between transmitting
two frequencies. The most popular modulation patterns are linear based saw and triangle
patterns which are very easy to use, but others like sine modulation can be used too.

One linear modulation period is called a ramp or a sweep. One triangle period is
actually two sweeps, one increasing and one decreasing. A sweep has a duration T and
a bandwidth BW , that is the frequency range over which the transmission frequency is
changed.

An example of a modulation pattern is presented in Figure 3.1. The solid line repre-
sents the transmitted frequency, the dashed line is the received echo signal frequency.
The frequency difference ∆f corresponds to RTT ∆t.

time

frequency

∆f

∆t

Fig. 3.1. Frequency modulation principle

IF frequency meaning is illustrated in Figure 3.2. The solid and dashed grey lines
represent the transmitted and received signal respectively. The solid blue line represents
the IF signal, that is the difference between the frequencies transmitted and received.

As the modulation is periodic, there are periods of time when signals from a sweep are
being received when the next sweep is already being transmitted. These measurements
are invalid and need to be left out from the following processing. These periods are
apparent in Figure 3.2 as the periods when the IF frequency is not constant.

It can also happen that a target is so far that its returns will always end up in the
next sweep. This target will register as very close instead of very distant. The range
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3. Radar theory

time

frequency

Fig. 3.2. IF signal

Rmax at which this happens depends on the sweep duration T and is called maximum
unambiguous range. It can be calculated as

Rmax = 1
2

cT (3.4)

3.4.2. Frequency/range conversion
The linear patterns allow very simple frequency/range conversions. IF frequency of
BW Hz would mean RTT of T s, so 1 Hz of IF frequency corresponds to RTT T

BW s or
range cT

2BW m. Given the IF frequency f Hz, the corresponding range is

R = f
cT

2BW
[m] (3.5)

3.4.3. Doppler effect
Since the range measurement depends on the returned frequency, issues arise with the
Doppler effect. When the transmitted signal reflects from a moving target, the reflec-
tion’s frequency is altered by the Doppler effect.

Consider a target moving towards the sensor at a speed of vt
1. The sensor transmits at

frequency f0. Then the echo arrives. Meanwhile, the transmitted frequency has changed
to ft. The received echo frequency will be

fe =
(

1 + vt

c

)
f0 = f0 + f0vt

c
= f0 + fD (3.6)

The frequency shift, called the Doppler frequency, affects the range calculation. Instead
of the frequency difference f = ft − f0 that would yield the correct range R, frequency
difference of

1This means that a target moving towards the sensor has a positive speed, while a target moving in
the opposite direction has a negative speed
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3.5. IF signal processing

f ′ = ft − fe = ft − f0 − fD = f − fD (3.7)

is registered, resulting in a different range solution RD:

RD = (f − fD) cT

2BW
(3.8)

= R − fD
cT

2BW

When we consider a linear increasing sweep, a target moving towards the sensor in-
creases the return frequency making the target seem closer. However, if the sweep was
decreasing, lower return frequency would make the target seem farther.

This is the reason why triangle modulation is often used. The target is detected on
the increasing and decreasing sweeps independently. Then the actual range is the mean
of the two ranges and the Doppler frequency is half the difference between increasing
and decreasing sweeps.

3.5. IF signal processing

The IF signal carries the range information in its frequency. To isolate the frequency
components, or the targets at different ranges, so-called filter banks were used in the
early days of radar technology. The measurable range was divided into range bins, where
each bin was assigned an interval of ranges, and hence frequencies. There were banks of
parallel band-pass filters the IF signal was fed to. The frequency components belonging
to each bin were filtered out and responses for the range bins were isolated [8].

Fortunately, today is the era of digital signal processing. When we digitise the signal,
we can examine the frequency spectrum using the Fast Fourier transform.

3.5.1. FFT

There are some properties of the Fast Fourier transform (FFT) that are key to under-
standing the performance limits of the sensor.

Periodicity assumption

FFT assumes the processed signal is periodical. That means that the samples of the
signal are assumed to be periodically repeating themselves from minus infinity to infinity.
Breaking this assumption leads to artifacts in the FFT. Fortunately, due to the periodic
nature of the modulation, we can easily fulfill this assumption by taking FFT of whole
modulation periods.
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Nyquist frequency

According to the Nyquist theorem [9], the maximum frequency detectable by FFT is 1/2
of the sampling frequency called the Nyquist frequency. For example, with data sampled
at 500 ksps (500 kHz), the highest frequency that will be detected by FFT (the Nyquist
frequency) is fn = 250 kHz.

Frequency resolution

Since FFT is a discrete operation, it outputs discrete frequency components. Bin size
is the difference between frequencies represented by two consecutive bins (frequency
results). The frequency resolution of the FFT is inverse of the bin size. The smaller the
bin size, the finer the results and the higher the resolution.

Let us assume N real samples have been measured at a sampling rate of f ksps. FFT of
such data will be N − 1 real numbers and the output will be symmetrical. The first N/2
numbers are the sought result. They represent amplitudes of the frequency components
from 0 Hz (zeroeth bin, the DC component) to the Nyquist frequency of fn = f/2. The
N/2 frequency bins will be evenly distributed in this range, where i-th bin will represent
frequency

fi = fn/2
N/2

i (3.9)

= fn

N
i [kHz] (3.10)

Zero padding

FFT is an algorithm to compute the DFT, Discrete Fourier Transform. DFT allows
computation of more frequency domain results than there are time domain samples. FFT
can achieve this with zero padding. The signal is extended by a number of zeros. The
result of a FFT of such signal is the result of a DFT of the original signal with as many
frequency results added as zeros appended to the signal. Zero padding thus allows us to
increase the frequency resolution. It however doesn’t carry any new information and so
needs to be used carefully not to waste computation time on unnoticeable improvements.

3.5.2. FFT of the IF signal

The FFT result gives us amplitudes of the frequency components in the IF signal. Then
ranges are assigned to the isolated frequencies and the FFT result gives us response com-
ing from the corresponding range bin. Typical FFT outcome can be seen in Figure 3.3

Presence of an obstacle is indicated by a peak. This is a particularly sharp peak, many
times the target shows as a broad hill rather than a peak.
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Fig. 3.3. Typical FFT result. Note the target at 1.3 m

3.5.3. Processing parameters

The IF processing has several parameters that need to be set to define the process. It is
the sampling frequency for the ADC, the number of samples and the padding factor.

The sampling frequency needs to be chosen high enough to satisfy the Nyquist crite-
rion, that is twice the highest detectable frequency. There are no other constraints on
the sampling frequency.

The number of samples has major influence on the resulting resolution. If not enough
samples are used, the FFT results may miss the target frequency whatever the padding.
Too many samples mean low measurement rate as they will take more time to measure.

The padding can improve the results drastically, mainly in multi-target resolution [3,
sec. 3.2]. It can however also dramatically increase the computation time.

The effect of padding is illustrated in Figure 3.4. The original signal has 288 samples
(3 ramps). 3.4b and 3.4c are padded with 288 and 566 zeros respectively. We can see
the smoother character of the padded results, useless to computers. There is however an
interesting phenomenon called sidelobe. In 3.4b, immediately to the right of the main
peak, there is a new peak that was not present in the intrinsic results. It is an analogy
of a shadow of the main peak. Sidelobes appear in every FFT and are caused by using
finite time domain input, but the padded FFT has enough samples to actually show
them. Sidelobes could register as false targets and should be avoided.
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Fig. 3.4. Effects of zero padding on IF signal

3.5.4. Optimal processing parameters

To ensure optimum performance of the sensor, we need to set the parameters carefully.
Frequency resolution should be as high as possible, because frequency resolution means

range resolution with FMCW radar. According to formula (3.10), bin size is N/fn and
thus frequency resolution is fn/N . Therefore two things can be done to increase the
resolution: use a lower sampling frequency, or use more samples.

There is a lower bound on the sampling frequency. We want to detect frequencies
up to a certain frequency that represents the maximum measurable distance. Thus we
cannot use a sampling frequency of less than twice this maximum frequency. But we
want to use as low sampling rate as possible.

The upper bound on number of samples is a soft one. Arbitrarily long measurements
can be taken (apart from hardware limitations, of course), but there is a tradeoff between
measurement quality and quantity. This tradeoff needs to be found empirically as num-
ber of sweeps that should be processed. Moreover, if too many sweeps are processed, the
results become interleaved with zero or nearly zero responses, making the zeroed range
bins obsolete and decreasing the actual resolution. This effect can be seen in Figure 6.4
as the empty columns.
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Padding adds frequency results, increasing sample count and thus the resolution. Side-
lobes can appear in the results and the computation cost grows, so employing padding
should be carefully considered.
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4. IGEP Lambda sensor
The Lambda radar sensor is a radar sensor module from a Spanish company ISEE.
It is presented as an evaluation kit to test ISEE radar technology and ISEE provides
possibilities to manufacture custom designs.

Fig. 4.1. The Lambda radar module. This sensor orientation will be referred to as vertical.

The sensor module consists of the radar sensor itself, equipped with a SPI interface,
and an IGEPv2 embedded computer.

A block schematic of the Lambda module hardware is presented in Figure 4.2

DDSPLL

ADC

SPI

AGC

b

Tx

Rx

IGEPv2

ORION radar

Fig. 4.2. Block diagram of the sensor hardware
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4.1. Orion radar
The radar sensor itself is called the Orion sensor. It is a compact radar unit operating at
24 GHz. The 24–24.25 GHz band is public worldwide, rendering the sensor fit for usage
anywhere. The sensor contains all the signal processing components and provides SPI
interface to configure the sensor and read out the measurements.

4.1.1. Signal synthesis
The signal to be transmitted is generated by a direct digital synthesizer (DDS) and a
phase locked loop (PLL). The DDS generates a low frequency signal with the desired
modulation. The signal is then multiplied and amplified in the PLL.

The DDS can generate both saw and triangle modulation patterns. It is configured
by a SPI interface. The configuration is expressed by several parameters:
FSTART sets the base frequency
STEP sets frequency increment
NINCR sets the number of frequency increments in one sweep
SLOPE sets the increment duration

The parameters are not the physical values, but rather an internal representation
convertible to real values by simple formulae:

Fstart = 50 × 106FSTART
213 = 6103.5156 FSTART [Hz] (4.1)

∆F = 50 × 106STEP
213 = 6103.5156 STEP [Hz] (4.2)

Nincr = NINCR (4.3)
Tbase = 20 SLOPE [ns] (4.4)

The resulting sweep will have duration T = NincrTbase and bandwidth of BW =
Nincr∆F .

Once the modulated signal is generated, it is fed to the PLL where it is multiplied by
a fixed ratio of 2048.

4.1.2. Received signal processing
The signal being received is mixed with the transmitted signal resulting in IF signal.
The IF is amplified first.

A bandpass filter with cutoff frequencies 11 – 32 kHz is applied to the IF signal.
This affects the range of measurable distances, as targets at ranges corresponding to IF
frequencies outside this frequency range will be registered as much smaller or will not
be registered at all.

1The value is ambiguous in the datasheet, values 1 kHz or 3 kHz appear [10, p. 27, 31]. The true value
has been confirmed by experiment described in 6.1.2.
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The IF signal is then passed through an automatic gain control (AGC) module. It
corrects the IF signal amplitude. The AGC has an adjustable gain of 40dB, so it can
adjust the signal intensity by factor of 104. The compensation results in for example
targets at different ranges returning equal intensities.

Finally the IF signal is sampled by a 12bit AD converter (ADC) with an SPI interface.
The sampling is timed by the SPI clock, so the sampling frequency can be adjusted. The
converter supports sampling frequencies 500 – 1021 ksps [11].

4.2. IGEPv2 computer
The IGEPv2 computer is an embedded computer system based on a TI ARM processor.
The ARM core supports NEON SIMD instructions and has access to an external DSP
also present on the board.

The computer runs a Linux distribution for embedded systems.

4.3. Lambda radar module
When combined, the Orion sensor and IGEPv2 computer are called Lambda module.
The SPI interface to the DDS and ADC on the ORION sensor are connected to HW
SPI interface of the IGEPv2 board, which enables fast communication.

4.3.1. Module control
The module is controlled by a program called server. The server drives the Orion HW
directly through the SPI interface, performs the necessary basic signal processing and
provides a TCP API to allow other computers (clients) to control and use the sensor
over LAN.

Clients can set modulation parameters, read out single measurements or run contin-
uous measurement.

4.3.2. Setting DDS parameters
The modulation parameters can be set via the TCP interface. Parameters that can be
programmed are modulation pattern, FSTART, SLOPE, NINCR and BW. STEP will
be calculated from BW and NINCR by the server as BW is a much more important and
relevant number than STEP.

The configuration changes are applied immediately. Changing configuration while in
continuous measurement mode can have undefined results.

4.3.3. Setting ADC parameters
The ADC parameters can also be programmed through the TCP interface. The pro-
grammable parameters are sampling frequency and number of samples to be captured
in a single measurement.
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The ADC sampling frequencies are limited to frequencies supported by the processor
SPI module. Configurable frequencies are 1021, 590, 324, 171 and 85 ksps. The ADC,
however, supports only 500 ksps or more [11]. A software solution has been devised. The
data are sampled at 590 ksps and then decimated by a user-set integer divisor. Maximum
divisor value is 512.

The number of samples to capture is limited to 16384 at full speed. Since the decima-
tion is carried out post-hoc, the number of samples captured is the requested number of
samples times the divisor. So with divisor set to 8, the sensor can capture at most 2048
samples. It means at most about 20ms of data can be acquired whatever the sampling
rate.

4.3.4. Taking measurement

The server is capable of providing clients with either raw IF signal or processed range
data. The client can request a number of measurements or enter continuous measurement
mode.

Each measurement starts its own modulation cycle. The previous transmission is
canceled and a fresh cycle is started. This allows for precise synchronization of the
sampling with the modulation, allowing users to sample for example precisely one ramp.

The measurements ignore the Doppler shift. The frequency shift results in range shift
of about 12 cm per m/s of relative speed. As robots usually drive at low speeds and static
environment is assumed by the mapping algorithm, the Doppler shift can be neglected.

Continuous measurements will be sent as fast as they can be acquired by the module.
That usually means as fast as possible, because the optional processing typically takes
less time than raw data acquisition.

4.3.5. Measurement algorithm

The server runs in three threads: data acquisition (DAQ) thread, processing thread and
API thread.

The API thread is responsible for performing the operations requested by the client.
That is for example altering the DDS/ADC settings or initiating measurements.

The measurements themselves operate on a two-stage pipeline. The pipeline works
with two buffers used to store raw data that are operated as a degenerated round buffer.

Stage one gets raw data as acquired by the ADC. The data are read and stored in the
buffer by the DAQ thread.

In stage two, the raw data are processed by FFT routine and sent to the client in the
processing thread.

A batch of data can be processed while the next batch is being measured. This ensures
the best measurement performance possible, because the processing and data transfer
take typically much less time than it took to acquire the data.

19



4. IGEP Lambda sensor

4.4. Sensor properties
Since the sensor datasheet is unclear about basic sensor properties as radiation char-
acteristics, we have performed a series of experiments to determine the actual values
and effects of the following properties. The experiments are thoroughly described in the
Experiments chapter in section 6.1.

4.4.1. Transciever pattern
The sensor detects targets in a cone-like area of the environment. The shape of this area
is defined by the transciever characteristic (described in 6.1.1).

As we focus on 2D mapping, the important dimension of the cone is the beam width.
We want the beam to be as narrow as possible to obtain maximum angular resolution.
Beam width is defined as angle between directions in which the registered intensity is
half the maximum registered intensity.

The Lambda sensor has beam width of 26◦

The beam height is also important as it tells us how low/high placed targets will be
registered. As opposed to the beam width, we want the height to be relatively high to
register low targets close to the robot like rocks. The Lambda sensor has a high beam,
as the main beam is accompanied by two so-called sidelobes. The combined beam height
of the beam and the sidelobes is about 60◦. There are however blind spots between the
main lobe and the sidelobes (plotted in Figure 6.3a in detail).

The near-field limit for the sensor is 28.8 cm. That is comfortably within the non-
measurable range and will not cause any trouble.

4.4.2. Range accuracy
The sensor returns a list of range-response pairs. This is different than common sensors
like laser range-finders or sonars that return only one distance reading meaning the
distance to the obstacle. The interpretation of the values is left to the user here. To
measure distance to a target, one needs to know which response corresponds to a target.

Different target detection schemes are possible, the easiest of which are thresholding
and maximization. In a single target scenario, when only one target is present in the
field of view of the sensor, the target can be identified as the maximum echo value. If
we allow multiple targets, we can mark a range bin as occupied when the echo exceeds
some threshold intensity.

With the maximum-response target detector employed and with parameter settings
as in Table 4.1 in a single-target scenario, the sensor shows error distribution in Fig-
ure 6.6 with mean +0.03 m and standard deviation 0.19 m. These values were obtained
in experiment 6.1.2.

More complex detection schemes can be based on noise distribution estimation [3, sec.
3.3] or fitting response shapes to the range readings [12]. These techniques can largely
improve the sensor performance in both single- and multi-target scenarios.

There is also the possibility of better performance with different module parameters.
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4.4.3. Environment responses
The radio waves emitted by the sensor interact differently with different materials. All
the materials reflect the signal predominantly in specular way, diffuse reflection being
very weak (6.2.2). This results in the sensor ignoring surfaces viewed from high angles.

Common wall building materials like bricks and porous concrete (YTONG and others)
produce strong reflections and occlude the rest of the signal so that obstacles behind the
wall cannot be registered. Glass has the interesting property that it both returns a well
detectable echo and permits enough of the signal through to let obstacles behind it to
be detected.

Multipath reflections and false reflections have been registered during the experiments
(6.3). These can bring problems into sensor applications and need to be taken into
account.

4.4.4. Empirically optimal parameters
After experimenting with the settings, we have settled on a sub-optimal set of parame-
ters.

parameter value
SLOPE 128
NINCR 512
BW 250 MHz
sampling frequency divider 8
number of samples 288 (3 ramps)
padding 1×

Tab. 4.1. Best parameter combination found
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We will be reconstructing the map using occupancy grids with Bayes filter employed to
incorporate the new measurement into the map.

Occupancy grids give us a way to represent the map in computer memory. Bayes
filter provides the framework in to fill in the map. The sensor however still has some
properties that need to be taken into account.

First is the sensor directionality. When a cell seems empty from one direction, it
might be because of viewing angle with low RCS, like a wall viewed at large incident
angle. The algorithm needs to compensate that a cell scanned from one direction may
well return very different reading when measured from another angle.

Second is the low range and azimuth resolution. The range resolution of the exper-
imental data is 30 cm. That is much compared to for example LIDARs. The azimuth
resolution can make a small strong target fill the entire corridor in the map.

We have devised a modification to the Bayesian mapping algorithm to suppress these
effects.

5.1. New approaches
5.1.1. Normals estimation
The problem with directionality is that the sensor looking along a wall sees empty space,
even if it has seen a wall there before. Enough of these false measurements can override
the previous obstacle registered and persuade the robot that the space is obstacle-free.
We eliminate this behavior by estimating the surface normal in each cell. If we take the
assumption of polygonal environment, not that far from the truth in urban and indoor
environments, the assumption that every obstacle has a clearly defined normal is correct.

The normal is estimated as the direction of maximum registered return. The normal
estimates are updated as the robot moves through the environment. The deviation
from estimated normal is then used to weight the updates so that measurements along
the normal have maximum weight, while measurements perpendicular to the estimated
normal have no effect at all.

5.1.2. Confidence limiting
Another problem is that pure Bayesian algorithm was getting overconfident about free
space. Too many measurements taken along a wall made the robot confident nothing is
there. Then, when the wall was scanned perpendicularly, the new measurements were
ignored. We have solved this by introducing an upper bound on the robot’s confidence
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in free space. A cell can be considered truly free only if it has been scanned from all
directions and no obstacle has been registered.

The algorithm therefore keeps track of the directions in which each cell has been
scanned. The directions are divided into discrete bins matching the wall registration
angle as determined in experiment 6.2.2. Each cell has an upper bound on the confidence
in free space (that is a lower bound on the occupancy probability) dependent on from
how many of the direction bins the cell has been scanned.

5.1.3. Range attenuation

The measurements degrade with distance. The beam energy drops with range and noise
is more likely to bias the measurement.

The beam is also wide at far ranges and a point target can seem much larger. The
measurement contribution is thus weighted proportionally to the measurement range as
to distribute the weight over the width of the beam. The erroneous wide target can then
be corrected more easily due to lower weight of the wrong measurements.

5.2. Algorithm overview
The mapping algorithm reads a measurement consisting of pose information (x, y, z,
θ) and a range-response vector ri : ai. The range-response vector is interpreted into
Bayesian sensor quantities p(M |O(ri)) and p(M |F (ri)) for each range bin ri. A linear
interpolation step is then employed to improve the resolution. Then, for each interpo-
lated range bin, the corresponding cells are iterated and their occupancy values updated.
The update is weighted to eliminate the problems with directionality and range degra-
dation. Finally the confidence bound is applied to eliminate false confidence in empty
space (5.1.2).

5.3. Map representation
The map is represented as a set of two-dimensional arrays of variable size. The physical
dimensions of the represented environment are independent on the array size. Six arrays
are used to accommodate the map and metadata used by the algorithm.

One array contains the occupancy grid itself. The cells contain p(O(C)) at the given
time. The probabilities are represented directly. Numerical stability is not an issue
thanks to confidence limiting (5.1.2).

Two arrays contain the x and y components of the estimated normal for each cell C.
The normal vector is represented as a unit vector nC. One array contains the maximum
return associated with the estimate aC

max.
One array is used to keep track of the directions a cell has been scanned from. The

integers in the array are used as bit arrays where each bit is associated with one scanning
direction.
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5. Mapping algorithm

The last array holds the lower bounds for the empty space confidence pC
min. This

array is used to avoid computing cell Hamming weights every time and increase the
computational efficiency.

5.4. Range-response vector interpretation
Foessel has developed radar sensor model for Bayesian framework in [3]. We have
adopted a simplified version of the model.

First the vector ai is sharpened by subtracting local mean from each ai.

a′
i = 1/N

i+N/2∑
j=i−N/2

aj (5.1)

The border conditions are resolved by clipping the window and taking average only
from valid values. N being a small number, the bordering N/2 measurements are always
invalid due to the band-pass filter anyway. This step reduces peak width, making the
obstacles in the signal better defined.

The vector ri : a′
i is then interpreted according to heuristic rules. Obstacles occlude

the signal and what lies behind them, even though some allow the signal through and
let obstacles behind them to show. The more obstacles lie between a response value and
the sensor, the less likely the value is to be correct. If another target is not registered
through an obstacle, the low return behind the obstacle does not necessarily mean empty
space. Low return between two targets however means high confidence for empty space.

Obstacles are identified by a simple threshold T . This is a rather weak classifier, so
the p(M |O(r)) and p(M |F (r)) are only slightly offset from 1/2. As a cell is measured
repeatedly, the weak values integrate into a strong classification of the cell.

Let us have N targets in the measured vector. Let n obstacles be present between the
sensor and the interpreted range bin rt. Then the update values are

p(M |O(rt)) =
{

1/2 + 0.3N−n
N if a′

t > T
1/2 − 0.1N−n

N if a′
t < T

(5.2)

p(M |F (rt)) =
{

1/2 − 0.15N−n
N if a′

t > T
1/2 + 0.05N−n

N if a′
t < T

(5.3)

The constants for offset from 1/2 have been chosen empirically based on the heuristic
that if a target is detected, something must have caused the reflection. When a target is
not detected, on the other hand, it could mean it has only been scanned from a wrong
direction.

Formulae (5.2) and (5.3) have the desired properties. Behind the last obstacle, n = N
and both the terms are equal to 1/2 meaning no information. The less obstacles in front
of processed bin, the more influence the classification has.

24



5.5. Map update

The range, amplitude and measurement probability values are then linearly interpo-
lated to improve the resolution of the generated map. The measurements, spaced at
20 cm or more, are sparse and can be used to build very low-resolution maps. As the
range measurement standard error is about one range bin, the interpolation does not
improve the map resolution for machine interpretation. The interpolated map is however
more comfortable to view for humans.

5.5. Map update
The map update step receives robot pose and the interpreted range-response vector, that
is (x, y, z, θ) and tuples (ri, ai, p(M |O(ri)), p(M |F (ri))) for interpolated range bins i.
All these data, when put together, form the measurement M referred in (2.3).

5.5.1. Cell iteration
The algorithm needs to update all cells that lie in the measured area. The sensor has a
fan beam with horizontal beamwidth of 26 ◦. When projected to the ground plane, the
beam has a circular sector shape, with points equidistant from the sensor forming arcs.
In each step, we need to iterate cells in the arc that corresponds to range ri and update
them.

To simplify the algorithm and reduce computational cost, the arcs are approximated
by straight lines with least square distance from the arc. This line is iterated for each
interpolated range bin. At maximum measurable range, the maximum error of this
approximation is 21 cm.

The algorithm uses Bayes update rule to incorporate new measurement into the current
grid map. The Bayesian update is however weighted with two factors characteristic for
radar. One is the directionality, the other is range signal attenuation.

5.5.2. Update weighting
When incorporating a single measurement into the grid, the grid contains the priors
p(O(C)). The update as in (2.3) therefore consists of multiplying the prior p(O(C) by
update factor

upd(C) = p(M |O(C))
p(M |O(C))p(O(C)) + p(M |F (C))(1 − p(O(C))

(5.4)

The update weight is calculated as

w = | cos(ϕ)|10
(

rmax − r

rmax

rfallof − 1
rfallof

+ 1
rfallof

)
(5.5)

where ϕ is the deviation of measurement vector from the estimated normal nC, rmax

is the maximum measurable range and rfallof is range falloff parameter.
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5. Mapping algorithm

The first term takes the estimated normal into account. The exponent 10 was deter-
mined to reduce weight to approximately 1/3 at 26 ◦, the beamwidth. Cosine has been
chosen for being the simplest form of computing angle between two unit vectors as a
simple dot product.

The second term represents linear weight falloff with range. The function yields 1 at
zero range, 1/rfalloff

at range rmax and decreases linearly with range.
Alltogether, w assumes values [0, 1], zero meaning no confidence in the measurement,

one total confidence.
The update factor is then weighted by w and merged into the grid

p(O|M) = p(O)(upd(C))w (5.6)

By exponentiating upd(C)w, zero weight results in multiplication by one and no up-
date, while unit weight doesn’t change the update value at all.
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6. Experiments

6.1. Sensor properties
The datasheet [10] provides a very poor specification of the sensor’s properties. We have
conducted a number of experiments to determine the properties of the sensor in order
to assess the possible applications.

6.1.1. Radiation and receiving characteristic
Radiation characteristic of an antenna specifies the intensity of signal emitted in a given
direction. It allows us to specify for example the direction (angle) at which the target
receives enough power for the reflection to return. Another property closely related to
the radiation characteristic is the receiving characteristic, which specifies what intensity
will be registered for signal coming from a particular direction.

Fig. 6.1. Radiation characteristic as presented in the datasheet [10]

A combination of these two is of particular interest for application of the sensor as a
monostatic radar. Since the transmitting and receiving antennas are identically oriented,
the transmission angle to a target is equal to the reception angle for the echo. The result
is the transciever characteristic specifying registered intensity for a target illuminated
by the sensor itself.
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If the radiation and receiving characteristics are known, the transciever characteristic
is a simple product of the two. Since antenna gain is given in dB traditionally, the
product becomes a sum.

The datasheet [10] specifies the radiation characteristic with a poor-resolution image
of two cross-sections of the characteristic 6.1. One is supposedly a vertical cross-section
while the other should be a horizontal one — but which is which is not stated.

We have set up an experiment to determine the transciever characteristic of the sensor.
The sensor has been mounted on a pan-tilt actuator unit on a tripod. A reference corner
reflector was placed 4m from the sensor in the same height of 1.3 m. The sensor and
reflector were aligned using a laser pointer to ensure precise orientation.

The experiment has been conducted on a narrow roof to ensure as low clutter as
possible. Therefore all the measured positions were unobstructed, i.e. no objects other
than the reflector were present in the main lobe.

The radar configuration was as follows: BW=250 MHz, SLOPE=128, NINCR=512,
480 samples (5 ramps).

The pan-tilt unit was then used to scan the different angles of radiation of the sensor.
The scanning mesh used spacing of 1 ◦. 10 measurements were taken at each mesh node.
An average was taken from measured values for each node.

The pan-tilt unit operation range is limited in the tilt axis. To accommodate for this
and to avoid pointing the radar to the ground, we have changed the sensor orientation
and scanned the target four times alltogether. That allowed us to always point the radar
to the free space to eliminate ground reflections.

Figure 6.2 shows cartehsian plot of the combined results. There are surprisingly
intensive sidelobes in the vertical plane, their intensity is nearly the same as of the main
lobe. Second sidelobes are also present in this plane. In the horizontal plane, on the
other hand, the beam is relatively narrow and no sidelobes appear. The interference
lines come from local traffic on the 24 GHz band used for Internet connection.

Vertical and horizontal cross-sections of the characteristic are presented in Figure 6.3.
In the vertical cross-section 6.3a, the side lobes are clearly visible. The intensity of the
first side lobes is at about −1 dB relative to the main lobe, the second side lobes are at
−4 − −5 dB.

The horizontal cross-section shows a single lobe. The single narrow lobe implies that
optimal placement of the sensor is vertical to ensure maximum angular resolution. The
beam width, defined as the angle between half-power (≈ −3 dB) intensity, is 26◦.

6.1.2. Range measurement accuracy
The discrete nature of FFT used to calculate distance data from the received signal
implies some sort of binning. Only certain frequencies are recognised by the FFT. What
if the target is directly between two range bins?

The datasheet [10] simply states that measurement accuracy is ±1 mm|100 mm|300 mm
(minimum | typical | maximum) with ”Data considering 200MHz Modulation Bandwidth,
single point target scenario, 75dBsm RCS target placed at 5m distance and adequate
modulation and IF signal processing is applied.“[10] — that is under optimal conditions.
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6.1. Sensor properties

Fig. 6.2. Measured transciever characteristic in a carthesian plot. The associated sensor orien-
tation is shown on the right.

(a) Vertical cross-section (b) Horizontal cross-section

Fig. 6.3. Measured transciever characteristics in polar plots. The associated sensor orientations
are depicted above the plot.
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We have performed an experiment to determine the range accuracy of the sensor. A
strong target (a 1mm aluminum sheet) was placed in front of the sensor. High place-
ment precision was necessary because of extremely high reflectivity and low diffusion of
aluminum, even the slightest deviations caused the sheet to “disappear” for the radar as
all the transmitted signal was reflected away from the receiver.

Then the sensor was moved away along a line, taking 10 measurements every 1 cm.
The actuation was performed by hand, precise alignment was again achieved by a laser
pointer.

The sensor configuration was BW=250 MHz, SLOPE=128, NINCR=512, 384 samples
(4 ramps), no padding.

Fig. 6.4. Responses measured for target at known distance (384 samples per measurement)

The raw results are shown in Figure 6.4. Every horizontal line represents mean of the
10 measurements taken at the particular distance from the target. The color represents
the echo intensity in the particular range bin normalized by the highest registered echo.
The black line shows the true range.

Based on the data we can confidently state that the bandpass filter of the sensor has
low cutoff frequency of 1 kHz. 1 kHz IF signal corresponds to 0.9 m range, which is where
the data start to appear correct.

We can note the “stripey” nature of the data. Some range bins are never used, or
always have a very low return. This is caused by the effect of processing too many
modulation ramps effectively repeating the signal as described in 3.5.4. The empty bins
are useless, so we have reduced the sample number for the following measurements to
288 (3 ramps). These results are plotted in Figure 6.5.

Because the experiment contains a single target, we have chosen a simple target de-
tection scheme of maximum return. The measured target distance, as referred to in the
following analysis, is the range corresponding to the range bin containing the highest
response.
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6.1. Sensor properties

Fig. 6.5. Responses measured for target at known distance (288 samples per measurement)

Figure 6.6 shows the distribution of measurement error, the difference between the
measured target range and the known true range. Only measurements with true range
in the measurable range, i.e. farther than the range corresponding to low cutoff frequency
of 1 kHZ (which is 0.9 m with the radar configuration used), are considered.

The error distribution has practically zero mean (+0.035 m) and standard devia-
tion 0.194 m.

In Figure 6.7 the estimated ranges are plotted against the known values. The grid
shows the range bins on both axes, the line shows the true relation. Some bins are
skipped as in Figure 6.4, but this is caused by the simple distance estimator. A more
advanced technique of target identification could improve the results drastically.

With the configuration used in this experiment, the radar has range resolution of
20 cm. The resolution can be improved by FFT padding as described in 3.5.4. The
resolution improvement however doesn’t improve the accuracy.
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6. Experiments

Fig. 6.6. Measurement errors over the whole experiment

Fig. 6.7. Estimated range vs. true range. The grid represents the range bins on both axes
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6.2. Material properties

6.2. Material properties
Radio signal interacts differently with different materials. Materials show different echo
amplitudes and amounts of diffuse return, some materials even let the signal through,
allowing the radar to “see through” them. We have performed an experiment to charas-
terise some materials commonly found around.

6.2.1. Reflectivity and transmittance
The sensor was aimed straight at a reference corner reflector 5 m away. Material samples
large enough to fill the whole beam width and effective height (the angle of view of the
reflector) were inserted into the path of the beam 3 m from the sensor. The walls were
measured separately by placing the reflector behind the wall. With each sample obstacle
in place, 10 measurements were taken.

Average of the 10 measurements is shown in figs. 6.9a to 6.9j.
An intuitive look on the results divides the materials into three classes: transparent,

semi-transparent and opaque materials. Transparent materials like paper and polystyrene
barely show in the results, allowing nearly all the signal power through. Semi-transparent
materials as glass show up in the results, but let some of the signal through (and back).
Opaque materials like aluminum reflect all the power back and don’t let nearly anything
through.

obstacle material transmittance [dB] reflectivity [dB]
Air (reference) 0.000 -5.963
Paper (250 g/m2) -0.139 -5.742
Extruded PS (6 mm) -0.124 -5.993
Cotton cloth -1.001 -4.331
Cardboard (2 mm) -2.779 -2.875
Window glass (1 mm) -2.688 -2.768
Spruce (18 mm) -3.893 -5.073
Al sheet (1 mm) -6.370 -1.703
YTONG wall (10cm) -6.530 -0.371
Brick wall (60cm) -8.347 -0.558

Tab. 6.1. Material reflectivity and transmittance. Transmittance is in dB relative to air (back-
ground noise). Reflectivity is in dB relative to the reference reflector.

Table 6.1 summarizes the results for material reflectivity and transmittance. The most
surprising result is for glass. We expected glass to be highly transmissive, it however
also reflects a considerable amount of the signal.

6.2.2. Diffuse and specular reflections
Initial experiments showed that flat surfaces as walls are ignored by the sensor when
viewed from higher angles. We have preformed an experiment to verify and study this
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6. Experiments

Fig. 6.8. Reflection and transmittance measurements of common materials. The graphs are
equally scaled. The orange lines show the position of the targets.

(a) No obstacle (b) 250 g/m2 paper

(c) 2mm cardboard (d) 18 mm spruce board

(e) 1 mm window glass sheet (f) 6 mm extruded polystyrene

(g) 1 mm aluminum sheet (h) Cotton cloth
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6.2. Material properties

(i) 60 cm full brick wall (j) 10cm YTONG wall

phenomenon on common materials used for walls in indoor and urban environment.
The sensor was aimed at a brick wall, an ytong wall and a sheet of window glass 2 m

away from angles −50◦–50◦. The angle was changed by 1 degree in the interval −30◦–
30◦ and by 5 degrees elsewhere. The sensor was always aimed to the same spot, this
alignment was ensured by a laser pointer. 10 measurements were taken at each angle,
the mean of these measurements is used.

(a) Brick wall (b) Ytong wall

(c) Glass

Fig. 6.10. Reflection characteristics for common building materials. The value is in dB relative
to the maximum return.

The measured values are shown in Figure 6.10. We can see certain amount of diffuse
reflection from the walls. The walls have a rough surface and thus some diffusion occurs.
The diffuse reflections are however very weak at −4 dB. The visibility angle for both the
walls, if defined the same way as beamwidth as the angle of half-power return (−3 dB)
is identical to the beamwidth of the sensor, 26◦.

With glass, the visibility angle is 18◦, even smaller than the beamwidth. Diffuse
reflections from glass ale virtually non-existent. Glass has a very smooth surface that
reflects all the signal in a specular way.
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6.3. Sensor behavior in the environment
6.3.1. “Chaotic” measurements
When manipulating the radar by hand, we noticed that even the slightest shifts have a
dramatic impact on the registered signal. We have carried out an experiment hoping to
explain this phenomenon.

The setup was identical to the experiment described in the above section 6.1.2. We
moved the radar between the 1.3 m and 1.4 m marks in 1 mm increments, taking 10
measurement in each step. The results are plotted in Figure 6.11.

(a) Responses in environment 1 (b) responses in environment 2

Fig. 6.11. Responses measured for target at known distance with very fine range resolution

The periodic nature of the measurements is evident. The period of the measurements is
6-7 mm, which is 1/2 the wavelength of the radar signal. We have repeated the experiment
in the same environment with identical results, which rules out random noise.

Further experiments in different location show very similar results. However, when
compared carefully, the images are distinct.

We believe that the changes are caused by interference of signals bouncing around
the environment. As of now, this phenomenon can cause trouble changing the response
completely after just a milimetric shift. However, it also presents an opportunity to find
something more about the environment.

6.3.2. Multipath reflections
We have confirmed occurrence of multipath and false measurements with the sensor.
A scenario as in Figure 6.12 occurred, when two returns came from a reference corner
reflector.

False reflections also occurred. The sensor was aimed on reinforced concrete ceiling.
A corner reflector placed next to the sensor was registered as path sensor – ceiling –
reflector – ceiling – sensor. The respective measurements can be found in Figure 6.13.
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Fig. 6.12. Example of multipath reflection of radar waves in the environment. The floor appears
as an obstacle behind the front wall.

Fig. 6.13. Measurement containing a true target (a reinforced concrete ceiling) and a false target
(a reference corner reflector placed next to the sensor)

The primary and the secondary reflector need to be highly reflective for the false
reflection to occur. Multipath measurements and false reflections can cause trouble
when building a map.

6.4. Mapping experiments

We have performed a series of experiments with the sensor mounted on a mobile robotic
platform. The platform for indoor experiments was driven by two stepper motors. The
steppers enabled precise steering and thus collection of high-precision odometry data.
This allowed us to rely solely on odometry data on shorter distances. For longer drives,
the robot has been equipped with a SICK PLS laser rangefinder to correct the odometry
with a SLAM localization algorithm.

The outdoor platform moved on tracks, making usage of SLAM algorithm for local-
ization. It was also equipped with SICK PLS laser rangefinder for this task.

The SLAM algorithm used in both cases is a particle-filter based algorithm from the
GMapping library [13].

The Lambda sensor assembly was identical in both cases. The Lambda sensor was
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mounted in vertical orientation on a sweeper platform driven by a stepper motor. The
sweeper platform enabled us to scan the environment by a sweeping motion when nec-
essary. Under the radar there was a small Hokuyo laser rangefinder. The rangefinder
remained stationary even when the radar sensor was swept. Data from the rangefinder
helped with orientation in the map and provided “ground truth” for interpreting the
map. In case of laser-unfriendly materials like glass, the laser data weren’t that true.
The whole assembly was mounted side-facing on the robot.

The reconstructed maps are overlaid with laser scans. Large images are included
in appendix A. All the experiments were performed in the CTU complex on Karlovo
náměstí.

6.4.1. Building A entrance hall
The robot was driven around in the entrance hall in building A. The floorplan and
the trajectory are depicted in Figure 6.14b. The robot started on the upper end and
continued downward. On the lower end of the trajectory, the robot performed a 540◦

turn and returned back. The trajectory was short enough to allow us to rely solely on
odometry for robot localization.

(a) Reconstructed map
(b) Robot trajec-

tory

Fig. 6.14. Experiment conducted in the building A entrance hall. The floor plan sketch (b) is
built from laser data by hand. The vacancies in the left and upper wall are glass-filled doors.
The dashed line represents the tourniquets.

The reconstructed map 6.14a resembles the environment to human eye. The walls
registered as strong and wide returns. This is however due to the fact that the robot
was driven on a optimal trajectory parallel to the walls. The points of the walls that
have been scanned only during rotations at higher incidence angles, e.g. point G, appear
empty. This behavior is expected and has been confirmed by experiment 6.2.2.

Large metallic targets as the steam generator A and the tourniquets B exhibit the
expected strong returns. The glass-filled door C are registered as well as the brick walls.
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As glass is quite transmissive for the radar signal, the echo F showed through the door.
The distance to the echo does not offer any false echo explanation, but corresponds well
to a tram driving past the building.

Another distant echo D is registered partly through the glass door, partly through
the thick outer wall. The low transmittance of the wall together with the echo strength
indicate D being a false reflection. It is indeed perfectly symmetrical to the upper right
corner of the room.

Echo E should correspond to the lower left corner of the room, but is about 2 m
further than the actual corner. That suggests multipath reflections occurring in the
narrow space between the wall and the doorkeeper’s booth.

The effect of confidence limiting is clearly visible in the map. Deeper orange areas have
been scanned from more directions, allowing the algorithm to become more confident
about their emptiness. The area in the upper right corner is considerably better scanned
than the rest of the room, resulting in lower occupancy values.

6.4.2. Building A atrium

The robot was driven around the glass atrium between building A and the inner yard.
The trajectory is depicted in Figure 6.15b. The robot started in front of the door on the
right side and then drove around the room clockwise. The localization relied solely on
odometry again.

In the first round, the sensor was stationary. In a second and third run, the sensor
was scanning the environment by rotating ±70◦ from the position perpendicular to the
driving direction.

Stationary sensor

(a) Reconstructed map (b) Robot trajectory

Fig. 6.15. Experiment performed in the glass atrium, first pass. The sensor was stationary. The
floor plan sketch (b) is built on top of laser data by hand.
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Map reconstructed from the first run is presented in Figure 6.15a. Both the glass (A)
and the concrete (B) walls return a strong echo. Even a low concrete railing of the same
height as the sensor placement (C) is well visible.

A glass exhibition box containing a massive steel generator D shows returns from
both the front and the rear face. The signal must have traveled around the generator,
as signal penetration is impossible.

Echos E and F are well outside the glass walls and could be attributed to the other
buildings around. Echo G is however registered behind a thick outer building wall and
is thus probably a false target. Echo H registered as a third wall between railing C and
wall B is most curious. We have no explanation as to why it occurred.

The door I point out the poor cross-range resolution of the sensor. The door opening
is 1.3 m wide and yet it seems filled to the sensor. The next door further on the right
show through however.

Scanning sensor

Fig. 6.16. Experiment performed in the glass atrium, second pass. The sensor was scanning the
left side as the robot was driving. The floor plan and the trajectory are identical to 6.15b

Figure 6.16 presents the map reconstructed from the second pass. The robot trajectory
was identical to the first run.

The important features like walls appear on both maps. In the scanned run, the
corners as A could be reconstructed more precisely due to more view angles. Small
features like the generator B have however been suppressed by the algorithm.

The features in the map generally appear thicker than they are. It is caused by
integrating measurements of the wide beam from multiple angles.

Around the generator

We have driven the robot around the exhibited generator in the third drive. The exper-
iment was meant to test the algorithm in conditions where scans from many directions
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need to be fused. The reconstructed map in Figure 6.17a exceeds the expectations.
The upper wall A is registered strongly. The side wall B appears to be 2 m further

than in reality. It is probably caused by a multipath reflection. The returns around the
room C are caused by spectators and people moving around the room.

The generator itself D is well defined with front, rear and left walls registered. The
right wall was only scanned at an angle and so was not registered.

(a) Reconstructed map (b) Robot trajectory

Fig. 6.17. Experiment performed around the exhibited generator. The sensor was scanning as
the robot drove. The floor plan sketch (b) is built on top of laser data by hand.

6.4.3. Building E first floor

The robot was driven around the first floor of building E. The trajectory is depicted
in Figure 6.18b. The robot drove along the walls with the sensor assembly facing left.
The trajectory is long enough for the odometry error to take effect, so it was necessary
to correct the localization by SLAM. Even with the correction, the localization was
imperfect mainly in the bottom part.

The reconstructed map is presented in Figure 6.18a. The walls show well when scanned
perpendicularly. When scanned from a higher angle as in A where the robot was driven
at an angle to the wall, the wall is registered weakly or not at all.

The range resolution is good enough to recognize the inset door B along the corridor.
The door inset is 30 cm deep, only 1 range bin, but the sensor still picks up the change.

There are typical false reflections C in the map. Reflections D are more interesting.
These are reflections coming from corners in front of false columns in the room facade.
The false columns are only about 15 cm thick and yet return such distinguishable echos.

Echos E may look like false reflections, but are in fact detections through closed door.
Echos around E1 come from a narrow stairwell. The strongest echos behind the door
come from a metal elevator shaft, a very strong target. Echo E2 however comes from a
common wall.
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(a) Reconstructed map

(b) Robot trajectory

Fig. 6.18. Experiment performed on the first floor of building E on Karlovo náměstí.
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The long echo G that seems to block the entire hallway is caused by long-range returns
from a wall in the hall to the right and from a metal-plated fridge on the left side of the
hallway. There haven’t been enough other scans to correct the map despite the range
weighting.

6.4.4. The inner yard
An outdoor test was performed in the inner yard. The robot carrying the sensor followed
the trajectory as presented in Figure 6.19b. The robot was driven around one of the
buildings in the yard, following the walls counter-clockwise with the sensor assembly
facing left. In this case it was necessary to use the Gmapping library to localize the
robot based on the SICK PLS data.

(a) Reconstructed map (b) Robot trajectory

Fig. 6.19. Outdoor experiment conducted in the yard of the CTU complex on Karlovo náměstí

The reconstructed map is presented in Figure 6.19a. The building is clearly visible
in the map. The irregularities A on the left wall are cars parked along the wall. The
building has stairs in the lower right corner. The stair in the same height as the sensor
is already indented into the building outline and produces the inner corner B.

The strong echo C inside the building is necessarily a false reflection. We however
have no explanation for its source.
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7.1. Sensor properties

The properties of the IGEP Lambda sensor, as tested in the experiments we have con-
ducted, speak in favor of its usage for mobile robotics.

The sensor detects walls made of common materials like brick and porous concrete.
Other materials like glass and wood are also detected, although as weaker targets. The
walls are however detected only when scanned near perpendicularly. At bigger angles
they are not detected at all.

The signal produces false reflections under certain conditions. Highly reflective surface
can redirect the beam and an echo originating from the redirected beam can be registered.
Multipath reflections also occur when scanning environment with multiple obstacles
oriented at different angles. These effects cause errors in the reconstructed maps.

The range measurement precision of the sensor with the particular parameter settings
used is approximately ±19 cm or 1 range bin at ranges up to 5 m. The accuracy of the
sensor could be improved by employing different target detection techniques.

The angular resolution of the sensor is rather poor at beam width 26◦. The angular
resolution might be improved by employing SAR processing techniques [8, sec. 14.1]
that combine measurements taken from different places to improve angular resolution.
We have however not tested the techniques.

7.2. Map reconstruction

We have designed an algorithm to reconstruct a map based on data from the IGEP
Lambda module. The algorithm based on Bayes filter uses knowledge of the sensor
properties to compensate for its shortcomings as the directionality.

The algorithm has reconstructed maps that represented the environment well to a
human eye. False reflections and clutter were a minor issue and generally did not spoil
the whole map. A bigger issue were the walls the radar failed to detect due to high
viewing angle. A human with prior knowledge of the environment can guess the wall is
continuous, a path planning robot cannot.

The virtual holes in the walls could prove fatal to a robot navigating the environment.
It is necessary to scan a point from as many directions as possible before classifying it as
empty. The best way to ensure as many scanning angles as possible is to continuously
change the sensor orientation as in experiment 6.4.2.
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7.3. Application possibilities
The sensor could prove useful in robotic applications. Its robustness would be desirable
in outdoor applications and the ability to penetrate materials like wood and glass could
be exploited even in indoor environments. The target detection and mapping algorithms
would need to be improved for the radar to provide absolutely reliable data.

7.4. Future work
The key to improve the wall detection would be scanning the environment with the
sensor instead of manipulating it only by movement of the whole robot. The algorithm
would need to be further improved by implementing the techniques mentioned in 7.1.
The improved target detection schemes and a SAR-like algorithm could both increase
the map resolution and suppress the side effects of a scanning sensor.

The directionality of the sensor also suggests possibilities of building geometric maps
from the data. The surface normal estimate inherent to the sensor could be exploited
when constructing a geometric map.

If reasonable precision data can be obtained from the sensor, it might be possible
to employ a SLAM algorithm to localize the robot. A localization method with the
robustness radar offers would mean a huge advantage for robots operating in harsh
environments with fog or dust.

45



Appendix A.

Maps reconstructed from the experiments

Fig. A.1. Reconstructed map from experiment 6.4.1

46



Fig. A.2. Robot trajectory from experiment 6.4.1
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Appendix A. Maps reconstructed from the experiments

Fig. A.3. Reconstructed map from experiment 6.4.2
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Fig. A.4. Robot trajectory from experiment 6.4.2
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Appendix A. Maps reconstructed from the experiments

Fig. A.5. Reconstructed map from experiment 6.4.2
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Appendix A. Maps reconstructed from the experiments

Fig. A.6. Reconstructed map from experiment 6.4.2
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Fig. A.7. Robot trajectory from experiment 6.4.2
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Appendix A. Maps reconstructed from the experiments

Fig. A.8. Reconstructed map from experiment 6.4.3
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Fig. A.9. Robot trajectory from experiment 6.4.3
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Appendix A. Maps reconstructed from the experiments

Fig. A.10. Reconstructed map from experiment 6.4.4
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Fig. A.11. Robot trajectory from experiment 6.4.4
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Appendix B.

CD contents
The CD contains the data collected and software created over the course of writing this
thesis. It also contains a digital copy of this thesis.

data directory contains the raw radar and laser data logs used to reconstruct the
maps. Raw map images are also included.

software directory contains the software created or modified. It contains the sensor
driver (server), a client library and a GUI frontend, and a map reconstruction applica-
tion.

documents directory contains a digital copy of this text.
The file listing follows.

/
data
software
documents
README

data
entrance.log
laser-entrance.log
map-entrance.png
atrium.log
laser-atrium.log
map-atrium.png
atrium_sweep.log
laser-atrium_sweep.log
map-atrium_sweep.png
generator.log
laser-generator.log
map-generator.png
first_floor.log
laser-first_floor.log
map-first_floor.png
yard.log
map-yard.png
README
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software
README
radar_server

radar_server.pro
radar_server
radar_dds.c
status.h
radar_config.c
server.h
main.c
radar_fft.h
radar.c
radar_dds.h
protocol.txt
local.mk
config.h
server.c
radar_server.pro.user
radar_config.h
radar_adc.h
Makefile
radar_adc.c
radar_fft.c
status.c
radar.h
README

pyradar
viewer.py
mapper.py
radar.py
params.py
pantilt.py
client.py
laser.py
utils.py
README

documents
thesis.pdf
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