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Abstract

This diploma thesis deals with assessment of different heart rate analysis meth-

ods for distinguishing between atrial fibrilation and normal sinus rhythm. Many

linear and nonlinear methods, such as NN50, pNN50, RMSSD, SDNN, SDSD, short

term variability, long term irregularity, SDANN, SDNNind, delta, interval index,

coefficient of variation, mean of RR intervals, mean of heart rate, Poincaré plot,

detrended fluctuation analysis, approximate entropy, sample entropy, Shannon en-

tropy, box counting dimension and Sevcik estimate for fractal dimension were tested

and the reached results are presented. As the most promising features the following

were found: slow detrended fluctuation analysis and ratio of axes in the Poincaré

plot PcPSD12. Both features had high level of significance according to Mann-

Whitney test. In this work not only theoretical analysis of the methods is provided,

also practical implementation of the methods was done in form of program with

user-friendly graphical interface.

Finally, the simple classification of data was undertaken for evaluation of the

practical usability of the features. As a result classification using arbitrary decision

tree in WEKA brought us results of 92,1 % specificity and 92 % sensitivity in dis-

tinguishing between atrial fibrillation and normal sinus rhythm - results comparable

to those in recent articles.
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Abstrakt

Tato diplomová práce se zabývá zhodnoceńım r̊uzných metod analýzy srdečńıho

rytmu, které by mohly být použity pro rozpoznáńı fibrilace śıńı od sinusového

rytmu. Otestoval jsem mnoho lineárńıch a nelineárnich metod, konkrétně: NN50,

pNN50, RMSSD, SDNN, SDSD, krátkodobá variabilita , dlouhodobá nepravidel-

nost, SDANN, SDNNind, delta, interval index, koeficient variace, středńı hodnota

RR interval̊u, středńı hodnota srdečńıho rytmu, Poincaré plot, DFA, aproxima-

tivńı entropie, vzorová (sample) entropie, Shannonova entropie, box counting di-

menze a Sevcik̊uv odhad fraktálńı dimenze a prezentoval dosažené výsledky. Mezi

nejúspěšněǰśı př́ıznaky patř́ı pomalé DFA a poměr os Poincaré plotu PcPSD12.

Oba př́ıznaky měly vysokou významnost založenou na Mann-Whitneyho testu. V

této práci neńı provedena pouze teoretická analýza metod, ale také jejich praktické

použit́ı formou programu s grefickým rozhrańım.

Nakonec byla vyzkoušena jednoduchá klasifikace dat pro zhodnoceńı praktického

použit́ı př́ıznak̊u. Výsledná klasifikace na základě libovolného rozhodovaćıho stromu

nám přinesla výsledky se specifičnost́ı 92,1 % a citlivost́ı 92 % pro rozeznáńı mezi

śıňovou fibilaćı a normálńı srdečńı činnost́ı - výsledky srovnatelné s údaji v nedávno

publikovaných článćıch.
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Chapter 1

Introduction

The atrial fibrillation (AF) is very extended disease. About 0,5 % of whole adult

population, 4 % of persons over sixty years and more then 10 % of people over

seventy years old are afflicted with this disease. The treatment of AF is based on

the three methods. Rate control treatment is based on slow down the heart beats

by medicaments (beta-blocker drugs). Rhythm control treatment using electrical

impulse to reverting the erratic heart beats back to the normal regular rhythm also

called cardiversion. Peacemakers and defibrillators are implanted to the body for

that purpose. Anticoagulation is treatment with medicaments that reduce chance

of forming a blood clot. Untreated atrial fibrillation may leads to the sudden death,

therefore early diagnosis is very important to successful treatment.

The AF may be predicted with the help of heart rate analysis (HRV). Firstly

were used linear methods but the results weren’t satisfactory. Nowadays nonlinear

methods are very popular. Efficiency and complexity of these methods are used for

classification of AF and other diseases detectable on the HRV.

This thesis focuses generally on acquirement of knowledge from state of the art

papers about HRV analysis. From these papers are chosen features that may be

useful for distinguishing between atrial fibrillation (AF) and normal sinus rhythm

(NSR). The assessment of these features is in the chapter Results. They were im-

plemented by me into toolbox with graphical user interface for easier manipulation.

Real data were used from two Physionet database, first database containing subjects

1



CHAPTER 1. INTRODUCTION 2

with atrial fibrillation (AF) and second database containing subjects with normal

sinus rhythm (NSR). At the end of this work the results are compared.

• Medical Background: This chapter serves as an introduction to atrial fib-

rillation (AF), its classification, causes, symptoms and treatment.

• HRV analysis methods: This chapter describes all HRV features, such as

NN50, pNN50, RMSSD, standard deviation of normal-to-normal, SDSD,

short term variability, long term irregularity, SDANN , SDNNind, delta, in-

terval index, coefficient of variation, mean value of RR intervals, mean value of

heart rate, Poincaré plot, detrended fluctuation analysis, approximate entropy,

sample entropy, Shannon entropy, box counting dimension and Sevcik estimate

for fractal dimension, used for comparison their significance in recognition of

AF.

• Implementation of methods: This chapter describes input data, prepro-

cessing, implementation of all features and toolbox with GUI.

• Results: This chapter deals about reached results, what kind of segmentation

is the best choice, which features are useful and which not.

• Conclusion: Conclusion of this thesis.



Chapter 2

Medical background

This chapter extracts information from [10].

2.1 Atrial fibrillation

If you have atrial fibrillation (AF) then:

• Your heart rate is usually a lot faster than normal.

• Your heart beat is irregular. This is called an abnormal heart rhythm or an

arrhythmia.

• The force of each heart beat can vary in intensity.

What happens is that the normal controlling pacemaker in the heart is over-

ridden by lot of random electrical impulses that originate from the heart muscle in

the atria. This means that the atria only partially contract - but very rapidly (up

to 400 times per minute) - they fibrillate. Only some of these impulses pass through

to the ventricles. Therefore, the ventricles contract anywhere between 50 and 180

times a minute, but usually between 140 and 180 times a minute. However, the

ventricles contract in an irregular way and with varying force.

Therefore, if you have AF and feel your pulse, you may count up to 180 beats

per minute. Also, the force of each beat can vary, and the pulse feels erratic. Atrial

fibrillation shows the figure 2.1

3



CHAPTER 2. MEDICAL BACKGROUND 4

Figure 2.1: Normal sinus rhythm vs. atrial fibrillation.

2.1.1 Classification of AF

AF is commonly classified in the following 3 way.

Paroxysmal AF

The word paroxysmal means recurring sudden episodes of symptoms. If you

have paroxysmal AF it means that you have episodes of AF that come and go.

Each episode comes on suddenly, but will stop without any treatment within seven

days (usually within two days). Each episode stops just as suddenly as it starts

and the heart beat goes back to a normal rate and rhythm. The period of time

between each episode (each paroxysm) can vary greatly from case to case. Although

paroxysmal AF means that it will stop on its own, some people with paroxysmal

AF take treatment as soon as the AF develops to stop it as quickly as possible after

it starts.
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Persistent AF

This means AF that lasts longer than seven days and is unlikely to revert back

to normal without treatment. However, the heart beat can be reverted back to a

normal rhythm with cardioversion treatment (see later). Persistent AF tends to be

recurrent so it may come back again at some point after successful cardioversion

treatment.

Permanent AF

This means that the AF is present long-term and the heart beat has not been

reverted back to a normal rhythm. This may be because cardioversion treatment was

tried and was not successful, or because cardioversion has not been tried. People

with permanent AF are treated to bring their heart rate back down to normal,

but the rhythm remains irregular (see below). Permanent AF is sometimes called

established AF.

Most people with AF have permanent AF.

2.1.2 Causes of AF

High blood pressure is the most common cause. (High blood pressure puts a

strain on the heart muscle.)

AF is a common complication of various heart conditions. For example, AF is

a complication of ischaemic heart disease. This is the condition that causes angina

and heart attacks and is common in older people. Various other heart problems may

also trigger AF to develop. For example, AF occurs in some people with heart valve

problems, cardiomyopathy, and pericardial disease.

Other conditions and situations that may trigger AF to develop include: an

overactive thyroid gland (hyperthyroidism); pneumonia; pulmonary embolus; obe-

sity; lung cancer; drinking a lot of alcohol; drinking a lot of caffeine (tea, coffee,

etc).

In about 1 of 9 cases of AF there is no apparent cause. The heart is otherwise
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fine and there are no other diseases to account for it. This is called lone AF.

2.1.3 Symptoms of AF

Symptoms often develop quickly, soon after the AF develops. Possible symptoms

include:

• Palpitations. This means that you become aware of your heart. You may

feel it beating in a fast and irregular way.

• Dizziness.

• Angina (chest pains) may develop. In particular, the pains tend to occur

when you exert yourself, but they may occur even when you are resting.

• Breathlessness is often the first symptom that develops. It may occur all

the time, but you may become breathless just when you exert yourself such as

when you walk up stairs.

The reason why breathlessness, dizziness, and angina may develop is because

when the heart beats too fast, it becomes less efficient. Small amounts of blood

pumped faster by the heart are not as good as larger amounts that are pumped at

the slower normal rate. This can lead to a pooling of blood in the veins of the lungs,

and a reduced output of blood from the heart which can lead to these symptoms.

However, many people with AF have no symptoms, particularly if their heart

rate is not very fast. The AF may then be diagnosed by chance when a doctor or

nurse feels your pulse.

2.2 Treatment options for atrial fibrillation

2.2.1 Rate control treatment

If the heart rate is brought down to normal the heart becomes efficient again,

and the symptoms usually improve. The pulse may still feel irregular, but not fast.
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Several drugs can slow the heart rate down. They include beta-blocker drugs

(such as atenolol, metoprolol and propranolol), diltiazem, verapamil, and digoxin.

These drugs work by interfering with the electrical impulses of the heart. The drug

chosen may depend on factors such as other heart problems that you may have.

In untreated AF, the heart rate may be as fast as 180 beats per minute, although

it is more commonly between 120 and 160 beats per minute. The aim of medication

is to bring the heart rate back down to normal (ideally, to less than 90 beats per

minute when resting). Treatment is usually successful, but the dose needed can vary

from case to case. Also, in some cases a combination of drugs may be needed if the

heart rate is not brought down low enough with a single drug.

2.2.2 Rhythm control treatment

Rhythm control means reverting the erratic heart beat back to a normal regular

rhythm. This is called cardioversion. This treatment is not tried in most cases as

treatment to control the rate of the heart (described above) usually works well to

control symptoms. However, cardioversion may be considered in certain situations.

For example, if drugs to control the fast heart rate do not work very well, or if the

irregular heart beat is causing unpleasant symptoms.

One method of cardioversion is to give your heart an electric shock. Another

method is to use drugs that may convert the heart rhythm back to a regular beat.

Both of these methods have only limited success. For example, after cardioversion,

within a year in about half of cases the heart has reverted back to AF.

Cardioversion is more likely to be considered in certain situations, for example:

• If your AF developed recently.

• If you are younger than 65. (Age is no bar to cardioversion, but it is less likely

to an option the older you become.)

• If an underlying cause of the AF has been successfully treated (and so AF is

unlikely to come back again once the normal heart rhythm has been restored).
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• If you have no other heart abnormality. (That is, if you have lone AF described

earlier.)

• If you have acute heart failure or unstable angina which is being made worse

by the irregular heart beat of AF.

Cardioversion is usually not an option in certain situations. For example:

• If you have certain heart diseases that include a structural problem to the

heart (for example, certain valve problems such as mitral stenosis).

• If you have had AF a long time (usually more than 12 months).

• If you have had several previous attempts at cardioversion which have not

worked, or only worked for a short time before the heart reverted back to AF.

A newer technique to restore the heart rhythm is called catheter ablation. In

this procedure a catheter (a long thin wire) is passed into the chambers of the heart

via an artery in a groin. The tip of the catheter can destroy tiny sections of heart

tissue that may be the source or trigger of the abnormal electrical impulses. This

treatment is only suitable in certain cases and is not a routine treatment. It does

not always work and there is a small risk of serious complications.

2.2.3 Anticoagulation

Anticoagulation means that you take a drug to reduce the chance of forming

a blood clot. Therefore, anticoagulation helps to prevent a stroke from occurring.

Some people call anticoagulation thinning the blood although the blood is not ac-

tually made any thinner. The most commonly used anticoagulant drug is called

warfarin. Warfarin interferes with certain chemicals in the blood to prevent blood

clots forming so easily.

Overall, warfarin reduces the risk of stroke by nearly two-thirds. In other words,

warfarin treatment can prevent about 6 of 10 strokes that would have occurred in
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people with AF. The greatest benefit is seen in those people who are in the high

risk category of having a stroke (described above).

As with all treatments, there is a small risk if you take warfarin. The main

risk is that a bleeding complication may develop as the blood will not coagulate so

well. Over a period of one year of treatment, about nine in a thousand people who

take warfarin for AF are likely to have a serious bleeding problem. For example,

some people may develop a serious bleeding ulcer in the gut. If you have a serious

bleed you are likely to need to be admitted to the hospital, often needing a blood

transfusion, and it can even result in death.

Most people with AF who have a high or medium risk of having a stroke are

advised to take warfarin. However, some people with a moderate risk may be treated

with aspirin rather than warfarin (see below), particularly if the risks of taking

warfarin are higher than average. People with a low risk of having a stroke are

not usually advised to take warfarin. This is because the benefit does not usually

outweigh the risk of serious bleeding problems with taking warfarin. In short, the

decision to take warfarin is a joint decision between you and your doctor. It involves

weighing up the risk of having a stroke against the small risk of a complication from

taking warfarin.

If you take warfarin you will need regular blood tests to check on how quickly

your blood coagulates. Blood tests may be needed quite often at first, but should

become less often quite quickly. The aim is to get the dose of warfarin just right so

your blood does not clot as easily as normal, but not so much as to cause bleeding

problems.

Aspirin is another drug that helps to prevent blood clots forming. It is not as

effective as warfarin, but is less likely to cause problems. It is usually advised if you

only have a low risk of stroke, or if you cannot take warfarin.

2.2.4 Other treatments

Other treatments may be advised, depending on the need to treat any underly-

ing problems such as angina, heart valve problems, high blood pressure, overactive
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thyroid, etc.



Chapter 3

HRV analysis methods

In this chapter I characterize methods used for extraction of heart rate variability

(HRV) features. The clinical relevance of heart rate variability was first appreciated

in 1965 when Hon and Lee [14] noted that fetal distress was preceded by alterations

in interbeat intervals before any appreciable change occurred in the heart rate it-

self. Twenty years ago, Sayers and others [27] focused attention on the existence of

physiological rhythms imbedded in the beat-to-beat heart rate signal. During the

1970s, Ewing et al. [11] devised a number of simple bedside tests of short-term RR

differences to detect autonomic neuropathy in diabetic patients. The association of

higher risk of post-infarction mortality with reduced HRV was first shown by Wolf

et al. in 1977 [31]. In 1981, Akselrod et al. [1] introduced power spectral analy-

sis of heart rate fluctuations to quantitatively evaluate beat-to-beat cardiovascular

control.

About the time when HRV was being increasingly discussed as a tool for risk

stratification after myocardial infarction [16], chaos theory was being propagated

in popular science publications. Striking about most of the later works was that,

although heart rate regulation was the focus of nonlinear dynamics and was seen

as a particularly lucid example of chaos in physiology, there were very few scien-

tific papers on which such claims could be based. In the following years increased

effort was put into determination the chaotic nature of cardiac activity by applying

analysis methods from nonlinear systems theory. For instance, on the presumption

11
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of an underlying chaotic attractor, scaling properties of the generating dynamics

were estimated on the basis of dimensional analysis. It was however soon realized

that there are fundamental difficulties involved which include the noisy nature of

biological signals, the restricted length of the data available and the problems with

non-stationarity. This has led to a shift of the notation from chaos to complex-

ity, irregularity, or randomness and has resulted in the development of measures

and analysis techniques which are deemed more appropriate and more practical in

application with respect to HRV [30].

Up to date, thousands of articles were written about linear and nonlinear meth-

ods for HRV analysis. In guidelines for HRV analysis [21] there are many linear

methods described (NN50, pNN50, SDNN , SDANN , RMSSD, frequency do-

main methods, etc.). In 1991 Steave Pincus was between founders who developed

nonlinear method for HRV analysis called approximate entropy (ApEn) [24]. In

the following years many nonlinear methods were developed. For example adjusted

ApEn called sample entropy is derived from approaches developed by Grassberger

and co-workers [26]. Poincaré plot was another nonlinear method developed by

Henry Poincaré for analyzing complex system. This method is used for quantifying

the HRV in many articles, for example [25, 18] . Calculation of fractal dimension was

explained by Hausdorff [9]. The derivation of Hausdorff dimension are Box count

dimension [3] and Sevcik estimate for fractal dimension [28]. These methods will be

described in detail further.

All these methods are used for prediction of many heart diseases. Examples are

predictors of atrial fibrillation [15, 7], characterization of fetal heart rate [8, 13].

3.1 Heart rate and heart rate variability

Heart beats or contractions are caused by electrical depolarization of the heart

muscles. Electrical depolarization of different parts of heart can be observed on an

electrocardiogram (ECG). We are interested in the depolarization of lower chambers,

known as ventricles, which creates the QRS complex (see Fig. 3.1 used from [25]).
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The interval between two consecutive successive heart beats is called RR interval.

It is the distance between two consecutive QRS complexes, usually measured as the

distance between the RR waves. Mathematically we can describe RR interval like

this:

RR = RRi+1 −RRi[ms;ms,ms] (3.1)

In healthy people the sinus node is the main rhythm generator or the primary

pacemaker, with its own intrinsic activity of about 90-100 beats per minute.

Figure 3.1: A strip of ECG presenting heart’s electrical activity recorded

in a healthy person. The P wave shows the depolarization

of cardiac atria. The QRS complex characterizes depolariza-

tion of cardiac ventricles. R waves of the QRS complex are

always directed upward and therefore are usually used for the

identification of each heart beat and its duration called the

RR interval (from one R to the consecutive R wave). In this

sample there are 4 heart beats and 3 RR intervals between

them.

The momentary heart rate and the duration of the RR interval is a consequence

of constant interaction between the intrinsic activity of the sinus node and the influ-

ence of the autonomic nervous system, various substances circulating in the blood

and present in the heart tissues. Breathing appears to be most important factor
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modulating heart rate. This rhythmic phenomenon is known as respiratory sinus

arrhythmia (RSA). It causes heart rate acceleration during inspiratory and its decel-

eration during expiratory. The changes in blood pressure modulated by baroreflex

are another example of a separate system regulating the heart rate. The control

of heart rate is modulated by both sympathetic and parasympathetic branches of

autonomic nervous system as well as many other autonomic reflexes (e.g.: chemore-

flexes). All these systems and reflexes are responsible for changing of the duration

of RR interval from one beat to another and this phenomenon is called heart rate

variability (HRV).

HR = 60 · 1000 · 1

RRi

[1/min;−,ms] (3.2)

The RR intervals characteristic for incorrect beats are usually shorter (eg.:

RRi < 300ms) or longer (RRi > 2000ms) than physiologically acceptable for

healthy people. Another characteristics of incorrect beats may be a change of more

than 20 % from RRi to RRi+1.

In the following text I describe 22 methods for HRV analysis, 15 linear and 7

nonlinear methods. From these methods I got 26 features and I compare them.

3.2 Linear methods for HRV analysis

Linear methods for HRV analysis are created by features in time and frequency

domain. They describe the characteristics of the signals but they don’t say anything

about manners of the signals. The main problem is the non-stationarity and the

noisy nature.

3.2.1 NN50

This method is based on computing count of adjacent RR intervals differing by

more than 50 ms in the entire analysis interval. It’s used for classification of the

segment longer or at least 5 minutes. This feature is introduced in article [7] and

we can describe it as:
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NN50 =
N∑
i=1

{|RRi+1 −RRi| > 50ms}[count;−] (3.3)

where N is total number of all RR intervals in segment

3.2.2 pNN50

This analysis rests in the NN50 count divided by total number of all RR intervals

in selected segment [7]. It means NN50 in heart rate (HR) (%).

pNN50 =
NN50

N
· 100[%;−] (3.4)

where N is total number of all RR intervals in segment

3.2.3 Standard deviation NN (SDNN)

SDNN means standard deviation of all RR intervals in selected segment. In

statistics, standard deviation is a simple measure of the variability or dispersion of

a data set. A low standard deviation indicates that the data points tend to be very

close to the same value (the mean) - lower is HRV, while high standard deviation

indicates that the data are ”spread out” over a large range of values - higher is HRV.

This function is also used in article [7].

The standard deviation of a discrete random variable is the root-mean-square

(RMS) deviation of its values from the mean.

This calculation is described by the following formula:

SDNN =

√√√√ 1

N

N∑
i=1

(RRi −RR)[ms;−,ms,ms] (3.5)

where RR is the arithmetic mean of the values RRi, defined as:

RR =
RR1 +RR2...RN

N
=

1

N

N∑
i=1

RRi[ms;−,ms] (3.6)

where N is total number of all RR intervals in segment
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3.2.4 RMSSD

RMSSD is the square root mean of successive RR intervals. It can be found in

article [7] and it is described by following equation:

RMSSD =

√√√√ 1

N − 1

N−1∑
i=1

(RRi+1 −RRi)
2[ms;−,ms,ms] (3.7)

where N is total number of all RR intervals in segment

3.2.5 SDNNind

The SDNN index is the mean of the standard deviation (see Eq. 3.5) of all RR

intervals for all 1 minute sections in selected segments of long term signal. Standard

deviation was explained in text before. This feature says us variation of signal in

short intervals.

SDNNind =
1

N

N∑
i=1

SDNNi[ms;−,ms] (3.8)

where N is total number of all 1 minute sections RR intervals in selected segment

3.2.6 SDANN

SDANN is the standard deviation (see Eq. 3.5) of the averages of RR intervals

in all 1 minute section which they divide selected segments of long term signal.

SDANN =

√√√√ 1

N

N∑
i=1

(RRi −RR)
2
[ms;−,ms,ms] (3.9)

where N is total number of 1 minute sections RR intervals in selected segment,

RRi is mean of RR intervals in 1 minute section,

RR is mean of all means of RR intervals in all 1 minute sections.
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3.2.7 SDSD

SDSD is counted like standard deviation of the temporal differences of consecu-

tive RR intervals. We can formalize it with following formula:

SDSD =

√√√√ 1

N − 1

N−1∑
i=1

(|RRi −RRi+1| −RRdif)
2
[ms;−,ms,ms,ms] (3.10)

where N is total number of all RR intervals and

RRdif is described by following equation:

RRdif =
|RR1 −RR2|+ ...+ |RRN−1 −RRN |

N − 1

=
1

N − 1

N−1∑
i=1

(|RRi −RRi+1|)[ms;−,ms,ms] (3.11)

3.2.8 RR mean

This feature is the standard statistical indicator. Mean is a parameter of dis-

tribution random variable, which is defined as a weighted average this distribution.

The mean of all RR intervals is denumerable by following equation:

RR =
RR1 +RR2...RN

N
=

1

N

N∑
i=1

RRi[ms;−,ms] (3.12)

where N is total number of all RR intervals.

3.2.9 HR mean

It is mean of heart rate. Enumeration of heart rate was mentioned above with

equation 3.2. Mean of heart rate is similar like RR mean described in subsection

3.2.8:

HR =
1

N

N∑
i=1

HRi[ms;−,ms] (3.13)

where N is total number of all RR intervals.
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3.2.10 Coefficient of Variation

CV is a normalized measure of dispersion of a probability distribution. It is

defined as the ratio of the standard deviation SDNN (see Eq. 3.5) to the mean RR

(see Eq. 3.12).

CV =
SDNN

RR
[−;ms,ms] (3.14)

3.2.11 Short-term Variability

The Short-term Variability is described in article [12]. It’s used for new born

babies but I tried it also on adults. In first step we must resample the heart rate

signal with interpolation to four Hertz sampled signal. Then we can use the following

formula to compute STV:

STV =

∑24M
i=1 |sRRi+1 − sRRi|

24 ·M
[ms;ms,ms,−] (3.15)

where sRRi is the value of the signal RRi taken every 2.5 s (i.e. once every ten

samples).

sRRi = RR(10 · (i− 1) + 1)[ms;ms] (3.16)

and M is count of all minutes in selected segment. The number 24 means count

of sRRi in one minute.

3.2.12 Long Time Irregularity

Long term irregularity (LTI) [12], defined as interquartile range [1/4, 3/4] (be-

tween 25 % and 75 %) of the distribution values m with:

m =
√
RR2

i +RR2
i+1[ms;ms,ms] (3.17)

This feature represents long term variability.
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3.2.13 Interval Index

Interval index is the value denumerable like quotient of STV to standard devia-

tion of all sRR in selected segment.

II =
STV

std(sRRi)
[−;ms,ms] (3.18)

where std(sRRi) is standard deviation described in subsection 3.2.3.

3.2.14 Delta

The Delta index shows the mean of differences between maximal and minimal

values in one-minute long segments [12]. It is described by following equation:

Delta =

∑m
k=1 (maxiε[(k−1)·240+1,k·240](RRi)−miniε[(k−1)·240+1,k·240](RR : i))

m
[ms;ms,ms,−]

(3.19)

where m is the time of duration of the recording in minutes, the number 240

means 240 samples, it is one-minute of the signal by four Hertz sampled.

3.2.15 Delta total

The Delta total is difference between maximal and minimal value in selected

segment [12].

Delta total = ( max
iε[1,N ]

(RRi)− min
iε[1,N ]

(RRi)[ms;ms,ms] (3.20)

where N is total number of all RR intervals in selected segment

3.3 Nonlinear methods for HRV analysis

3.3.1 Poincaré plot

The Poincaré plot, a nonlinear method is created by plotting by all RR intervals

in two dimensional system. Method is described by following formula: Two adjacent
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RR intervals represent one point in the plot. The first RR interval (RRi) represents

the x-coordinate, the second interval (RRi+1) represents y-coordinate [15, 7, 18].

The Fig. 3.2 shows a Poincaré plot of a healthy patient.

Figure 3.2: Poincaré plot of a healthy patient.

The Poincaré plot is characterized by a number of descriptors, some of which are

presented in Fig 3.3 [25].

Figure 3.3: Some Poincaré plot descriptors and the PP ellipse.

SD1 and SD2 are two standard Poincaré plot descriptors [25, 7]. SD2 is defined
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as the standard deviation of the projection of the Poincaré plot on the line of identity

(y = x), and SD1 is the standard deviation of projection of the PcP on the line

perpendicular to the line of identity (y = −x) [25]. Both parameters we may define

as:

SD1 =
√
V ar(x1)[ms;ms], SD2 =

√
V ar(x2) [ms;ms] (3.21)

where V ar(x) is the variance of x, and

x1 =

−−→
RRi −

−−−−→
RRi+1√
2

, x2 =

−−→
RRi +

−−−−→
RRi+1√
2

[ms;ms,ms] (3.22)

−−→
RRi and

−−−−→
RRi+1 are vectors defined as:

−−→
RRi = (RR1, R2, ..., RRN−1),

−−−−→
RRi+1 = (RR2, RR3, ..., RRN) (3.23)

In the other words it means, that x1 and x2 correspond to the rotation of
−−→
RRi

and
−−−−→
RRi+1 by angle π

4
.

 x1

x2

 =

 cos π
4
− sin π

4

sin π
4

cos π
4

 ·
 RRi

RRi+1

 (3.24)

Another parameter which we may obtain from Poincaré plot is S. This parameter

reflects the total variability:

S = π · SD1 · SD2 [ms2;−,ms,ms] (3.25)

which is the area of the ellipse.

This parameter seems to be a better measure of total variability than SDNN ,

as in the case of bigeminy, when our data vector would be similar to x = (a, b, a, b,

a, b ...) SDNN would measure a substantial variability, whereas S would be equal

to 0, which agrees with the intuitive understanding of ”variability” [25].

In many articles, for example [18, 7], we can find another one parameter obtained

from Poincaré plot. It is the SD1/SD2 ratio.
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SD12 =
SD1

SD2
[−;ms,ms] (3.26)

3.3.2 Detrended Fluctuation Analysis (DFA)

This method was first proposed in [5]. A detailed description of the algorithm and

its application to physiologic signals can be found in [4]. The method of detrended

fluctuation analysis [17] has proven useful in revealing the extent of long-range cor-

relations in time series. Briefly, the time series to be analyzed (with N samples)

is first integrated. Next, the integrated time series is divided into boxes of equal

length n. In each box of length n, a least squares line is fit to the data (representing

the trend in that box). The y coordinate of the straight line segments is denoted by

yn(k). Next, we detrend the integrated time series, y(k), by subtracting the local

trend, yn(k), in each box. The root-mean-square fluctuation of this integrated and

detrended time series is calculated by:

F (n) =

√√√√ 1

N

N∑
k=1

[y(k)− yn(k)]2 (3.27)

This computation is repeated over all time scales (box sizes) to characterize the

relationship between F (n), the average fluctuation, and the box size n. Typically,

F (n) will increase with box size.

I used box size 4 beats for fast time scale and 64 beats for slow time scale.

3.3.3 Shannon entropy

In information theory, entropy is a measure of the uncertainty associated with

a random variable. The term by itself in this context usually refers to the Shan-

non entropy, which quantifies, in the sense of an expected value, the information

contained in a message, usually in units such as bits. Equivalently, the Shannon

entropy is a measure of the average information content one is missing when one

does not know the value of the random variable. The concept was introduced by



CHAPTER 3. HRV ANALYSIS METHODS 23

Claude E. Shannon in his 1948 paper ”A Mathematical Theory of Communication”

[29].

Shannon entropy represents an absolute limit of the best possible lossless com-

pression of any communication, under certain constraints: treating messages to be

encoded as a sequence of independent and identically-distributed random variables,

Shannon’s source coding theorem shows that, in the limit, the average length of the

shortest possible representation to encode the messages in a given alphabet is their

entropy divided by the logarithm of the number of symbols in the target alphabet.

Definition

The entropy H of a discrete random variable X with possible values x1, ..., xn is:

H(X) = E(I(X)) (3.28)

Where E is the expected value function, and I(X) is the information content or

self-information of X. I(X) is itself a random variable. If p denotes the probability

mass function of X then the entropy can explicitly be written as:

H(X) =
n∑
i=1

p(xi) · I(xi) = −
n∑
i=1

p(xi) · logb p(xi) (3.29)

where b is the base of the logarithm used. Common values of b are 2, Euler’s

number e, and 10, and the unit of entropy is bit for b = 2, nat for b = e, and dit (or

digit) for b = 10.

In the case of pi = 0 for some i, the value of the corresponding summand 0 logb 0

is taken to be 0, which is consistent with the limit:

lim
p→0+

p log p = 0 (3.30)

Characterization

Shannon entropy is characterized by a small number of criteria, listed below. It

can be shown that any definition of entropy satisfying these assumptions has the
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form:

−K ·
n∑
i=1

p(xi) · logb p(xi) (3.31)

where K is a constant corresponding to a choice of measurement units.

In the following, pi = Pr(X = xi) and Hn(p1, ..., pn) = H(X).

Continuity

The measure should be continuous, so that changing the values of the probabil-

ities by a very small amount should only change the entropy by a small amount.

Symmetry

The measure should be unchanged if the outcomes xi are re-ordered.

Hn(p1, p2, ...) = Hn(p2, p1, ...) etc. (3.32)

Maximum

The measure should be maximal if all the outcomes are equally likely (uncertainty

is highest when all possible events are equiprobable).

Hn(p1, ..., pn) ≤ Hn(
1

n
, ...,

1

n
) (3.33)

For equiprobable events the entropy should increase with the number of out-

comes.

Hn(
1

n
, ...,

1

n︸ ︷︷ ︸
n

) < Hn+1(
1

n+ 1
, ...,

1

n+ 1︸ ︷︷ ︸
n+1

) (3.34)

Additivity

The amount of entropy should be independent of how the process is regarded as

being divided into parts.



CHAPTER 3. HRV ANALYSIS METHODS 25

This last functional relationship characterizes the entropy of a system with sub-

systems. It demands that the entropy of a system can be calculated from the

entropies of its sub-systems if the interactions between the sub-systems are known.

Given an ensemble of n uniformly distributed elements that are divided into

k boxes (sub-systems) with b1, b2, ..., bk elements each, the entropy of the whole

ensemble should be equal to the sum of the entropy of the system of boxes and the

individual entropies of the boxes, each weighted with the probability of being in that

particular box. For positive integers bi where b1 + ...+ bk = n:

Hn(
1

n
, ...,

1

n
) = Hk(

b1
n
, ...,

bk
n

) +
k∑
i=1

bi
n
Hbi(

1

bi
, ...,

1

bi
) (3.35)

Choosing k = n, b1 = ... = bn = 1 this implies that the entropy of a certain

outcome is zero:

H1(1) = 0 (3.36)

3.3.4 Approximate entropy (ApEn)

An interesting measure to assess the degree of randomness of sequences of num-

bers was proposed by Steave Pincus [24] and described in many works (i.e. [8, 13]) .

ApEn is related to the probability that segments of m data samples which are sim-

ilar (i.e., closer each other then given distance r) remain similar when the segment

length increase to m + 1 [6]. Input parameter m is the value of size of vectors for

comparison in selected segment of RR intervals. I set m = 2. It creates N −m+ 1

vectors of m components from input data:

Rm(i) = [RR(i), RR(i+ 1), ..., RR(i+m)]. (3.37)

The vector Rm(i) represents the sequence of m consecutive RRi values starting

at the beat i. Two vectors Rm(i) and Rm(j) are similar if the absolute differences

between each couple of corresponding scalar components are less then distance r ·

SDNN .
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The second input parameter r, mentioned above, designates the threshold for

comparison differences between Rm vectors. This parameter is usually chosen from

values between 0.1 and 0.25, the recommended range in many articles. ApEn is

calculated for input parameters m = 2 and r = 0.2 in almost all HRV studies. I

used these values also. The article [6], conversant about the right choice of threshold

r, deals with the relation between ApEn and values of r. It is shown in Fig. 3.4

used from [6].

Figure 3.4: Individual ApEn(r) functions in 10 healthy volunteers during

supine rest; the two dotted vertical lines delimitate the recom-

mended r range.

If we call nmi (r) the number of N − m + 1 vectors Rm(j) which are similar to

Rm(i), then:

Cm
i (r) =

nmi (r)

N −m+ 1
[−;−,−] (3.38)

is the probability to find a sequence of m beats similar to the sequence repre-

sented by Rm(i). Cm(r), defined as the mean of all Cm
i (r), quantifies the prevalence

of similar strings of m beats. ApEn(r) is calculated as:

ApEn(r,m) = ln[
Cm(r)

Cm+1(r)
] [−;−,−] (3.39)
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A high degree of regularity means that sequences which are similar for m points

are likely to be similar also for the next m+ 1 point, while this is unlikely to occur

for irregular time series. Thus low values of ApEn reflect high regularity.

3.3.5 Sample entropy (SampEn)

Sample entropy is function very similar to ApEn. The major difference between

ApEn and SampEn that SampEn does not count self-matches, having reduced bias

when compared to ApEn.

3.3.6 Fractal dimension

Studying living systems as nonlinear dynamic systems (chaotic systems as they

are commonly called) is of increasing interest to medicine and biology. The fractal

dimension is one possible parameter that characterizes chaotic systems, and the

analysis of time series is one of the most common means to find the fractal dimension

from observables [28].

In fractal geometry, the fractal dimension, D, is a statistical quantity that gives

an indication of how completely a fractal appears to fill space, as one zooms down

to finer and finer scales. There are many specific definitions of fractal dimension

and none of them should be treated as the universal one. From the theoretical point

of view the most important are the Hausdorff dimension, the packing dimension

and, more generally, the Rényi dimensions. On the other hand the box-counting

dimension and correlation dimension are widely used in practice, partly due to their

ease of implementation.

3.3.6.1 Box counting dimension

Box counting dimension is method very similar to Hausdorff dimension [9]. In-

stead open balls of a radius ε needed to cover the set, there are used boxes of

edge length ε needed to cover the set. To calculate this dimension for a fractal S,

imagine this fractal lying on an evenly-spaced grid, and count how many boxes are
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required to cover the set. The box-counting dimension is calculated by seeing how

this number changes as we make the grid finer.

Suppose that N(ε) is the number of boxes of side length ε required to cover the

set. Then the box-counting dimension is defined as:

D(S) = lim
ε→0

lnN(ε)

ln(ε)
[−;−,−] (3.40)

Box count dimension can be explained on the describe of Matlab code 1. First

input data are prepared. Data are normalized in the x coordinate (see Eq. 3.43)

and y coordinate (see Eq. 3.44). Then we compute the count of iterations. In every

iteration is reduced the size of box edge. It starts with two boxes with size of box edge

equal to the length of data divided the count of boxes. In each iteration number

of boxes is increased quadratically and the size of box is reduced proportionally

with number of boxes. Also number of boxes that cover the data is counted in each

iteration.

Finally the box count dimension is computed as the direction of straight line

that approximates curve created from the logarithms of box sizes and box count.

for numBox = 1:p-1

NumberOfBoxes = 2^numBox;

sizeBox = floor(length(c)/2^numBox);

addBox = 0;

for i = 1:NumberOfBoxes

boxStart = (i-1)*sizeBox + 1;

boxEnd = i*sizeBox;

sizeBoxNormalized = xStar(boxEnd) - xStar(boxStart);

% peak to peak of signal in the current box

PPinBox = max(c(boxStart:boxEnd)) - min(c(boxStart:boxEnd));

% none integer part of box leave for another box

numberOfBoxesTemp(i) = fix(PPinBox/sizeBoxNormalized);

addBox = addBox + mod(PPinBox,sizeBoxNormalized); %correction of halfBoxes

end

boxCount(numBox) = sum(numberOfBoxesTemp) + floor(addBox);

numberOfBoxesTemp = [];

end

Source code 1: Calculation of Box counting dimension



CHAPTER 3. HRV ANALYSIS METHODS 29

Figure 3.5: Adaptation of box counting: First three steps.
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Demonstration of algorithm is shown on Fig. 3.5 used from [3].

3.3.6.2 Sevcik estimate for fractal dimension

This method go out from the Hausdorff dimension [9] but it computes only the

approximate fractal dimension. The Hausdorff dimension of a set in a matric space

may be expressed as:

Dh = lim
ε→0

ln[N(ε)]

ln(ε)
[−;−,−] (3.41)

where N(ε) is the number of open balls of a radius ε needed to cover the set.

In a metric space, given any point P , an open ball of center P and radius ε is a

set of all points x for which dist(P, x) < e. A line of length L may be divided into

N(ε) = L/(2× ε) segments of length 2× ε, and may be covered by N(ε) open balls

of radius ε. Thus, equation 3.41 may be rewritten as:

Dh = lim
ε→0

[
ln(L) + ln(2 · ε)

ln(ε)
] = lim

ε→0
[1− ln(L)− ln(2)

ln(ε)
] = lim

ε→0
[1− ln(L)

ln(ε)
] (3.42)

Waveforms are planar curves in a space with coordinates usually having different

units. Since the topology of a metric space does not change under linear transforma-

tion, it is convenient linearly to transform a waveform into another in a normalized

space, where all axes are equal. I propose to use two linear transformations that

map the original waveform into another embedded in an equivalent metric space.

The first transformation, normalizes every point in the abscissa as:

x∗i =
xi
xmax

(3.43)

Where xi are the original values of the abscissa, and xmax is the maximum xi.

The second transformation normalizes the ordinate as follows:

y∗i =
yi − ymin
ymax − ymin

(3.44)

where yi are the original values of the ordinate, and ymin and ymax are the

minimum and maximum yi, respectively. These two linear transformations map the
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N points of the waveform into another that belongs to a unit square. This unit

square may be visualized as covered by a grid of N ×N cells. N of them containing

one point of the transformed waveform. Calculating L of the transformed waveform

and taking ε = 1/(2×N ′) equation 3.45 becomes:

Dh ≈ D = lim
N ′→∝

1 +
ln(L)− ln(2)

ln(2 ·N ′)
] = 1 +

ln(L)

ln(2 ·N ′)
(3.45)

where L is the length of the curve in the unit square and N ′ = N − 1 [28].



Chapter 4

Implementation of methods

In this chapter I describe the algorithms for preprocessing, implementation of

methods for HRV analysis which I theoretically explained in the chapter 3 and the

graphical user interface (GUI) for easier usage of the toolbox. I also made batch

computation for easier computation of a large number of data. The section 4.1

describes data, the section 4.2 describes data preprocessing necessary before starting

HRV analysis, the section 4.3 describes implementation of all HRV analysis methods,

the section 4.4 describes GUI and its functions and the section 4.5 describes batch

computation. All source codes and applications were made in Matlab version 2007b

[19].

4.1 Data

As input I used time series of RR intervals extracted from the data from two

Physionet ECG database [23]. The MIT-BIH Atrial Fibrillation Database (MIT-

BIH AF DB) includes 25 long-term ECG recordings of human subjects with atrial

fibrillation (mostly paroxysmal). The individual recordings are each 10 hours in

duration, and contain two ECG signals each sampled at 250 samples per second

with 12-bit resolution over a range of ±10 millivolts. The original analog recordings

were made at Boston’s Beth Israel Hospital (now the Beth Israel Deaconess Medi-

cal Center) using ambulatory ECG recorders with a typical recording bandwidth of

32
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approximately 0.1 Hz to 40 Hz. The rhythm annotation files (with the suffix .atr)

were prepared manually; these contain rhythm annotations of types (AFIB (atrial

fibrillation), (AFL (atrial flutter), (J (AV junctional rhythm), and (N (used to indi-

cate all other rhythms). Beat annotation files (with the suffix .qrs) were prepared

using an automated detector and have not been corrected manually. The MIT-BIH

Normal Sinus Rhythm Database (MIT-BIH NSR DB) includes 18 long-term ECG

recordings of subjects referred to the Arrhythmia Laboratory at Boston’s Beth Israel

Hospital (now the Beth Israel Deaconess Medical Center). Subjects included in this

database were found to have had no significant arrhythmias; they include 5 men,

aged 26 to 45, and 13 women, aged 20 to 50. Each record contain two ECG signals

sampled at 128 samples per second and is long about 24 hours.

4.2 Data preprocessing

For my purpose I selected ten subjects from each database as the adequate sam-

ple for extraction features from two case, AF and NSR. Names of files are: 04015.dat,

04043.dat, 04048.dat, 04126.dat, 04746.dat, 04908.dat, 04936.dat, 05091.dat, 05121.dat

and 05261.dat from MIT-AF database and from MIT-NSR database names of files

are: 16265.dat, 16272.dat, 16273.dat, 16420.dat, 16483.dat, 16539.dat, 16773.dat,

16786.dat, 16795.dat and 17052.dat. For computation of HRV analysis features it

was necessary to compute RR intervals.

Firstly, I detected R peaks by using Pan Tompkins QRS detector [22] because an-

notation contains only position of QRS complexes but not R peaks. QRS complexes

in annotation are marked on the basis second ECG signals in data files where are sig-

nificant S peaks. The detector of R peak was processed by me in data blocks of length

120 minutes. The R peak detector is implemented in function pan tompkins qrs.m

by Xaviert Aubert [20]. This algorithm resample input data to 200 Hz for prepro-

cessing, where noise is removed. Then data are normalized and R peak detection is

based on the adaptive threshold. Returned train of R peaks is corrected to the right

position of input signal. Obtained R peaks were almost mutually correlated with
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annotation of data. Exceptions were created by artefacts in the first ECG signal of

selected subjects where R peaks couldn’t be detected (see Fig. 4.1).

Figure 4.1: Example of artefact from input data.

In next step I computed RR intervals as differences between two adjacent R

peaks which are explained in section 3.1 by mathematical definition 3.1. This way

gained RR intervals could contain some outliers. These outliers were created by

artefact in input ECG signals. It means that RR interval was too long, because on

passage with artefact couldn’t be detected R peaks. It is shown on Fig. 4.2.

Figure 4.2: RR intervals without removing of outliers.
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Figure 4.3: RR intervals with removing of outliers.

I created function called removeOutlier.m for removing of these outliers. This

function was initialized with mean of first one hundred of samples. In each iteration

I took five RR intervals. I calculated mean from first two and last two samples

called meanNN . If the middle one was out of bounds (from 0, 75 · meanNN to

1, 25 ·meanNN) I replaced it by mean of previous successful pass (see source code

2). It means that the value of middle sample lay inside of bounds. The result of

this procedure is shown on Fig. 4.3.

meanLast = mean(data(1:100));

for i = N_samp+1:N_RR-N_samp-1

meanNN(i) = sum([data(i-N_samp:i-1) data(i+1:i+N_samp)])/(N_INT-1);

if ~((1-Perc)*meanNN(i)<data(i) && data(i)<(1+Perc)*meanNN(i))

rr_interval_all_s_outlier(i) = 1;

rr_interval_all_s_outlier_Remove(i) = meanLast;

else

meanLast = meanNN(i);

end;

end;

Source code 2: Removing of outliers and creation of signal smoother

Final preprocess procedure was resampling RR intervals obtained by previous

described operations. I used function called hrtach.m which using Berger tachome-
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ter [2] for constructing evenly sampled RR intervals. I sampled the signal by four

Hertz. The algorithm is very simply. In order to produce the evenly sampled signal,

it is to anti-alias filter the hypothetical analog signal. It is done by integrating the

hypothetical analog signal over a boxcar.

After that I stored computed data in appropriate named Matlab file (RRint xxx.mat,

the xxx means the original name of input file) for faster computation by next using.

4.3 HRV analysis

In order to make the work with HRV analysis easier, I designed two instances

GUI (see section 4.4), and batch computation (see section 4.5). Linear methods

are generally designed for stationary signals. Biological signals do not fulfil this

condition. For this purpose I decided to divide the input signal into segments. I set

to five, ten, twenty and thirty minute length of segments. This is the way how to

get length of data of the same size, therefore it is necessary to calculate right results.

Comparison of results between selected segmentation is summarized in the chapter

5.

4.3.1 Linear methods

All linear methods explained in section 3.2 was implemented to Matlab by their

mathematical definition in relevant subsections. I used combination of standard

Matlab function for computation these methods, example is std - standard devi-

ation, mean - mean of row of data, min - find minimum in a row of data and

max - find maximum in a row of data. I chose only few functions to demonstrate

implementation.

STV and II

The STV mentioned in subsection 3.2.11 defined by 3.15, and II mentioned in

subsection 3.2.13 defined by 3.18 were implemented in the function stv and ii.m,

see source code 3.
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number_of_sHR = floor(length(data)/10);

STV_temp = zeros(1,number_of_sHR);

sHR = zeros(1,number_of_sHR);

for i = 1:number_of_sHR-1

STV_temp(i) = abs(data(10*i+1)-data(10*(i-1)+1));

sHR(i) = data(10*(i-1)+1);

end

STV = mean(STV_temp);

II = STV/std(sHR);

Source code 3: Calculation of STV and II

4.3.2 Nonlinear methods

When processing nonlinear methods, I concentrated to basic entropies and fractal

dimensions. For their calculation I had to implement some methods and others I

used from Matlab.

Approximate entropy

ApEn is computed with the help of function apen.m. This method is described in

subsection 3.3.4, see Eq. 3.38 and 3.39. Inputs of this method are two parameters: r

- the threshold, m - the size of vectors for comparison. I chose the parameter r = 0.2

and parameter m = 2. The reasons for choosing these values are also described in

section 3.3.4.

Sample entropy

SampEn is method very similar to ApEn. The differences between these methods

are explained in subsection 3.3.5. To calculation SampEn I used function sampen.m

with the same initialization as ApEn. This function was downloaded from Physionet

[23].
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Shannon entropy

I calculated this feature with help of the function entropy. The description of

this function is in subsection 3.3.3.

Box counting dimension

Box counting dimension is fractal dimension which is described in subsection

3.3.6.1. I programmed this algorithm according to article [3] and I called this func-

tion boxcount.m (see source code 1).

Sevcik estimate of fractal dimension

Here, I briefly describe the algorithm for the Sevcik estimate of fractal dimension.

Description of this method is in subsection 3.3.6.2. Sevcik is done by using function

sevcik.m which I wrote with help of article [28]. The input data are normalized. The

array xi is normalized by dividing of its maximum. Array of xi is created by values

from 1 to length of data. yi contain all values of input data which it is normalized

too. Maximum of yi is discounted from yi and then resulting values are divided by

difference between maximum of yi and minimum of yi (see source code 4). The final

estimation of fractal dimension (see source code 5).

xStar = x/max(x);

yStar = (y - min(y))./(max(y)-min(y));

Source code 4: Normalization of input for computing of Sevcik estimate

of fractal dimension

for i = 2:N

L(i) = sqrt((xStar(i) - xStar(i-1))^2 + (yStar(i)-yStar(i-1))^2);

end

Source code 5: Sevcik estimate of fractal dimension
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4.4 Graphical User Interface (GUI)

GUI was made with help of the toolbox designed by Daniel Novák [20] from the

department of cybernetics, CTU in Prague. GUI main file is called HRV gui.m.

After startup of this file the main window shows on the screen (Fig. 4.4). The

biggest area of window is filled in three plot windows. The first one shows all RR

intervals, the second one shows RR intervals of selected segment and the third one

shows HR of selected segment.

On the right side from these plots there are three buttons, two popup menus,

two input fields and checkbox. The first button LoadData is given for read the

data, the second button HRV Analysis is given for computing HRV analysis. The

first popup menu shows length of segments and the second popup menu shows the

starts and the ends of segments. They are placed in area called Preparedsegments.

Under this there is area called Manualselection. It contains two input fields, the

start of segment and the end of segment in minutes, and the third button which

executes the selection of segment. The last element is check box. If it’s checked,

outliers are removed.

HRV analysis starts after clicking on the button HRV Analysis. After few sec-

onds, it depends on the computers speed, appears the new window with result of

analysis for selected segment (Fig. 4.5).

4.5 Batch computation

This version of program is assigned for easier computation of a large number of

data files. RR intervals and HRV analysis are computed from all data files placed in

the folder which is specified at the beginning of file named ExtractFeatures batch.m.

This file is the main file which can be run for computation all analysis.

The results are saved in file HRV an res xxx all yy min segs.mat which it is

placed in the folder called results in the folder of input data. The name of file

contains the name of original file (xxx means the name) and the length of segments

(yy).
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Figure 4.4: Starting window of GUI.

Figure 4.5: GUI with results of HRV analysis.
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Results

The task was to assess the features for distinguishing between subject with AF

and subject with NSR. Real data were used from Physinet databases. Description

of databases is in chapter 4. Total number of 10 ten-hour samples with AF and

10 twentyfour-hour samples with NSR were collected (see Fig. 5.1), and spanned

into segments (see Fig. 5.2). The data were divided into segments of four lengths

for reasons explained in section 4.3. The aim was to find significant features for

recognition of AF.

All methods explained in chapter 3 were used as a features for characterization

of heart rate. Features were computed for all segments. Total number of five-minute

segments was 3529 from that 1139 for AF and 2390 for NSR, total number of ten-

minute segments was 1757 from that 567 for AF and 1190 for NSR, total number of

twenty-minute segments was 871 from that 281 for AF and 590 for NSR and total

number of thirty-minute segments was 578 from that 186 for AF and 390 for NSR.

Mean values and standard deviations were computed from extracted features for

each segmentation and each feature.

For signification of results was used Wilcoxon rank sum test also known as Mann-

Whitney U-test. This test is implemented in Matlab by function runksum. It

performs a two-sided rank sum test of the null hypothesis that data in the vectors x

(group of features from AF subjects) and y (group of features from NSR subjects)

are independent samples from identical continuous distributions with equal medians,

41



CHAPTER 5. RESULTS 42

(a) Subject with NSR (b) Subject with AF

Figure 5.1: All RR intervals.

(a) Subject with NSR (b) Subject with AF

Figure 5.2: Ten-minute segment of RR intervals.
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against the alternative that they do not have equal medians. x and y can have

different lengths. The result of the test is P-value. If P-value is p < 0, 05, it

means the null hypothesis is rejected at the 5% significance level thus the feature is

significant. In other case the feature isn’t significant.

The results for five-minute segmentation shows table 5.1. They are in the form

mean± SD. From all features only two features, coefficient of variation (CV ) with

P-value 0,1941 and Delta with P-value 0, 1323 weren’t significant. The best results

were achieved by DFAslow and PcPSD12. DFAslow with values 1, 46± 0, 18 for

atrial fibrilation and 1, 61 ± 0, 14 for sinus rhythm could be used for identification

of atrial fibrilation based on setting the threshold of mean value. P-value for this

parameter is 8,53e-144. Analogous to the second best parameter PcPSD12 with

values 0, 17 ± 0, 07 for AF and 0, 12 ± 0, 04 for NSR. Also very good results had

features: NN50, pNN50, LTI and ShaEn. All other features had also good results

but the significance level was less.

For ten-minute segmentation was majority of features also significant (see table

5.2), but this segmentation had worse results. The only exception makes features:

SDNN with P-value 0,2096, CV with P-value 0,1112, Delta with P-value 0,1570,

PcPSD2 with P-value 0,1564 and SevcikD with P-value 0,6870. DFAslow appears

the best parameter again with P-value 1,87e-73.

The results for twenty-minute segmentation shows the table 5.3. As you can see

the results for twenty-minute segmentation are worse than in both previous segmen-

tations. Of 11 designed nonlinear methods are 6 significant. Designed features from

fractal analysis completely fail, P-values are greater than 0,3. Linear methods have

slightly better results. Of 15 designed linear methods are 9 significant. The best

feature was DFAslow again with P-value 2,14e-36.

Results for thirty-minute segments turned out to be the worst. Comparison of

results is presented in table 5.4. Of all twenty-six features that they’ve passed the

test were only fifteen with P-value smaller then 0, 05.

Achieved results indicates the five-minute segmentation to be the best choice.

The reason could be greater stationarity stability of signal for shorter segments.
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Table 5.1: The results for five-minute segmentation

Features Atrial fibrillation Normal sinus rhythm P-value

Linear methods

NN50 (-) 82,53 ± 87,46 41,43 ± 51,88 5,39e-31

pNN50 (%) 6,88 ± 7,29 3,46 ± 4,33 5,39e-31

RMSSD (ms) 31,84 ± 39,37 20,88 ± 17,44 5,06e-17

SDNN (ms) 207,26 ± 653,90 104,70 ± 188,77 8,56e-03

SDSD (ms) 31,85 ± 39,37 20,89 ± 17,45 5,06e-17

SDANN (ms) 121,89 ± 549,61 47,40 ± 126,26 5,54e-06

SDNNind (ms) 119,29 ± 264,01 78,66 ± 99,69 9,08e-04

RRmean (ms) 894,76 ± 642,80 885,88 ± 232,47 1,12e-13

HRmean (bpm) 78,44 ± 18,95 71,61 ± 12,67 5,01e-17

CV (-) 0,15 ± 0,22 0,11 ± 0,11 1,94e-01

II (-) 0,39 ± 0,22 0,43 ± 0,18 1,30e-18

STV (ms) 56,09 ± 46,82 55,78 ± 35,43 3,22e-05

LTI (ms) 282,46 ± 1424,61 155,37 ± 416,64 3,33e-31

Delta (ms) 451,11 ± 653,72 331,07 ± 289,71 1,32e-01

Delta total (ms) 918,43 ± 1857,99 569,67 ± 670,99 5,26e-05

Nonlinear methods

PcPSD1 (ms) 22,52 ± 27,84 14,77 ± 12,34 5,06e-17

PcPSD2 (ms) 291,59 ± 924,22 147,18 ± 266,69 3,82e-03

PcPSD12 (-) 0,17 ± 0,07 0,12 ± 0,04 1,15e-101

PcPS (ms2) 93932,64 ± 590227,78 16030,57 ± 134365,32 1,07e-02

DFAslow (-) 1,46 ± 0,18 1,61 ± 0,14 8,53e-144

DFAfast (-) 1,02 ± 0,35 1,16 ± 0,24 5,22e-08

ShaEn (-) 5,16 ± 0,90 5,47 ± 0,53 3,36e-20

ApEn (-) 0,65 ± 0,32 0,61 ± 0,22 5,22e-08

SampEn (-) 0,64 ± 0,40 0,57 ± 0,27 2,85e-06

BoxCountD (-) 1,57 ± 0,14 1,56 ± 0,09 1,57e-13

SevcikD (-) 1,42 ± 0,10 1,42 ± 0,06 1,97e-02
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Table 5.2: The results for ten-minute segmentation

Features Atrial fibrillation Normal sinus rhythm P-value

Linear methods

NN50 (-) 165,17 ± 171,41 82,72 ± 100,25 9,50e-18

pNN50 (%) 6,88 ± 7,15 3,45 ± 4,18 9,50e-18

RMSSD (ms) 33,35 ± 38,21 21,47 ± 16,74 6,94e-12

SDNN (ms) 245,52 ± 700,13 116,59 ± 204,59 2,10e-01

SDSD (ms) 33,35 ± 38,21 21,47 ± 16,74 6,95e-12

SDANN (ms) 159,05 ± 570,14 59,92 ± 147,77 9,27e-04

SDNNind (ms) 122,26 ± 231,48 79,38 ± 90,45 3,49e-02

RRmean (ms) 895,59 ± 580,88 885,64 ± 213,20 2,77e-06

HRmean (bpm) 78,39 ± 18,54 71,64 ± 12,43 4,42e-09

CV (-) 0,18 ± 0,28 0,12 ± 0,12 1,11e-01

II (-) 0,42 ± 0,23 0,49 ± 0,20 1,04e-10

STV (ms) 56,36 ± 43,25 55,99 ± 34,02 8,66e-03

LTI (ms) 208,04 ± 676,08 165,60 ± 421,28 1,06e-15

Delta (ms) 451,84 ± 573,24 331,21 ± 257,33 1,57e-01

Deltatotal (ms) 1230,34 ± 2275,07 729,24 ± 856,81 8,83e-05

Nonlinear methods

PcPSD1 (ms) 23,58 ± 27,02 15,18 ± 11,84 6,95e-12

PcPSD2 (ms) 345,80 ± 989,80 164,03 ± 289,07 1,56e-01

PcPSD12 (-) 0,16 ± 0,06 0,11 ± 0,04 3,33e-44

PcPS (ms2) 102554,44 ± 556775,30 17314,52 ± 120073,74 1,10e-02

DFAslow (-) 1,47 ± 0,18 1,61 ± 0,13 1,87e-73

DFAfast (-) 1,06 ± 0,32 1,18 ± 0,23 9,17e-20

ShaEn (-) 5,28 ± 0,87 5,56 ± 0,51 3,87e-10

ApEn (-) 0,63 ± 0,33 0,58 ± 0,22 6,37e-04

SampEn (-) 0,58 ± 0,38 0,52 ± 0,26 3,23e-02

BoxCountD (-) 1,58 ± 0,13 1,58 ± 0,08 2,3e-02

SevcikD (-) 1,43 ± 0,10 1,44 ± 0,07 6,87e-01
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Table 5.3: The results for twenty-minute segmentation

Features Atrial fibrillation Normal sinus rhythm P-value

Linear methods

NN50 (-) 331,80 ± 337,23 164,32 ± 193,12 1,10e-10

pNN50 (%) 6,91 ± 7,03 3,42 ± 4,02 1,10e-10

RMSSD (ms) 35,24 ± 36,71 22,02 ± 16,09 4,55e-08

SDNN (ms) 305,77 ± 775,69 130,43 ± 214,77 7,46e-01

SDSD (ms) 35,25 ± 36,71 22,03 ± 16,09 4,55e-08

SDANN (ms) 217,04 ± 661,48 73,74 ± 159,24 9,43e-02

SDNNind (ms) 121,10 ± 188,48 79,09 ± 77,62 4,04e-01

RRmean (ms) 896,07 ± 448,79 885,02 ± 195,40 3,54e-03

HRmean (bpm) 78,42 ± 18,17 71,68 ± 12,08 5,90e-05

CV (-) 0,23 ± 0,35 0,14 ± 0,14 5,43e-02

II (-) 0,44 ± 0,24 0,51 ± 0,22 4,67e-05

STV (ms) 56,69 ± 40,26 55,98 ± 33,82 1,44e-01

LTI (ms) 244,97 ± 977,57 163,71 ± 210,40 3,90e-08

Delta (ms) 452,94 ± 499,54 330,70 ± 232,76 2,03e-01

Deltatotal (ms) 1714,06 ± 2982,12 948,34 ± 1110,66 1,28e-03

Nonlinear methods

PcPSD1 (ms) 24,92 ± 25,96 15,57 ± 11,38 4,55e-08

PcPSD2 (ms) 431,06 ± 1096,74 183,64 ± 303,48 6,78e-01

PcPSD12 (-) 0,14 ± 0,06 0,11 ± 0,03 7,07e-19

PcPS (ms2) 114027,25 ± 462114,85 18608,52 ± 99019,14 1,18e-02

DFAslow (-) 1,48 ± 0,17 1,61 ± 0,12 2,14e-36

DFAfast (-) 1,11 ± 0,29 1,20 ± 0,22 1,75e-07

ShaEn (-) 5,39 ± 0,84 5,64 ± 0,50 3,56e-05

ApEn (-) 0,59 ± 0,34 0,55 ± 0,22 6,38e-02

SampEn (-) 0,52 ± 0,37 0,48 ± 0,24 6,60e-01

BoxCountD (-) 1,58 ± 0,13 1,60 ± 0,08 9,27e-01

SevcikD (-) 1,44 ± 0,10 1,45 ± 0,07 3,75e-01
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Table 5.4: The results for thirty-minute segmentation

Features Atrial fibrillation Normal sinus rhythm P-value

Linear methods

NN50 (-) 499,16 ± 500,50 244,86 ± 279,39 4,46e-08

pNN50 (%) 6,93 ± 6,95 3,40 ± 3,88 4,46e-08

RMSSD (ms) 35,38 ± 35,59 22,29 ± 15,75 5,97e-06

SDNN (ms) 323,16 ± 783,78 136,62 ± 215,03 8,43e-01

SDSD (ms) 35,38 ± 35,59 22,29 ± 15,75 5,97e-06

SDANN (ms) 234,31 ± 670,56 80,40 ± 158,72 2,25e-01

SDNNind (ms) 119,97 ± 184,34 79,36 ± 75,98 3,10e-01

RRmean (ms) 894,59 ± 407,85 884,28 ± 192,32 1,50e-02

HRmean (bpm) 78,44 ± 17,87 71,75 ± 11,93 1,19e-03

CV (-) 0,24 ± 0,36 0,14 ± 0,14 1,03e-01

II (-) 0,44 ± 0,24 0,50 ± 0,22 2,49e-03

STV (ms) 56,57 ± 39,55 55,92 ± 32,16 1,97e-01

LTI (ms) 241,92 ± 870,35 168,00 ± 227,80 4,89e-07

Delta (ms) 448,90 ± 482,51 330,74 ± 227,83 3,52e-01

Deltatotal (ms) 1996,10 ± 3380,70 1100,85 ± 1239,92 5,36e-03

Nonlinear methods

PcPSD1 (ms) 25,02 ± 25,17 15,76 ± 11,14 5,97e-06

PcPSD2 (ms) 455,72 ± 1108,27 192,44 ± 303,90 7,73e-01

PcPSD12 (-) 0,13 ± 0,06 0,10 ± 0,03 1,04e-11

PcPS (ms2) 114036,63 ± 414317,77 18978,64 ± 90801,49 3,05e-02

DFAslow (-) 1,49 ± 0,16 1,62 ± 0,11 2,02e-27

DFAfast (-) 1,13 ± 0,27 1,22 ± 0,21 3,94e-06

ShaEn (-) 5,45 ± 0,81 5,69 ± 0,49 4,03e-04

ApEn (-) 0,57 ± 0,33 0,53 ± 0,21 1,28e-01

SampEn (-) 0,48 ± 0,35 0,45 ± 0,23 9,20e-01

BoxCountD (-) 1,60 ± 0,13 1,63 ± 0,08 1,19e-01

SevcikD (-) 1,45 ± 0,10 1,46 ± 0,07 4,21e-01
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The best feature from all is DFAslow for all segmentation. It could be used for

automated detection of AF, based on the choice of right threshold of mean value.

In comparison with the results from the article [7] I have reached better results. At

least suitable methods for detection AF are CV , Delta and SevcikD.

Finally, the simple classification of data was undertaken for evaluation of the

practical usability of the features. As a result classification using arbitrary decision

tree in WEKA brought us results of 92,1 % specificity and 92 % sensitivity in

distinguishing between atrial fibrillation and normal sinus rhythm. In comparison

with results from article [15] was reached similar results.



Chapter 6

Conclusion

After familiarizing with the state of the art papers different linear and nonlinear

methods for heart rate variability analysis were implemented. From large group of

linear methods fifteen most used features were selected and from nonlinear methods

eleven most used features were computed. They are described in a chapter 3. The

aim of this work was not only theoretical analysis of the features but also part of the

goal was to create tool for HRV analysis and to apply it for assessment of features

which could be used for recognition of atrial fibrilation.

Before extraction of features preprocessing of the data was necessary such as

detection of R peaks, RR intervals computation, removing outliar and resampling,

the details can be found in section 4.2. Graphical user interface was created for

easier operating with data and computing features of HRV analysis. The GUI

was supplemented with the batch computation for large amount of data. Both

programmed application are available on the enclosed CD. CD also contains HTML-

based manual.

The main aim of this work was to assess features for recognition atrial fibrilation

from normal sinus rhythm. The features were extracted from real data downloaded

from website of Physionet. Before execution of HRV analysis the data was segmented

into five, ten, twenty and thirty minute segments. The features were calculated for

all types of segmentation. After execution of Mann-Whitney statistical test we got

very interesting results. The five-minute segmentation shows to be the best. For

49
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that segmentation the significance of the features was the biggest. From all features

the best were slow detrended fluctuation with P-value 8, 53e−144 and ratio of SD1

to SD2 of Poincaré plot called PcPSD12 with P-value 1, 15e− 101. Other features

had also good results of significance. For example NN50 wit P-value 5, 39e − 31,

pNN50 with the same P-value, LTI with P-value 3, 33e− 31 and Shannon entropy

with P-value 3, 36e−20. The exceptions were created by nonsignificant features CV

with P-value 0, 194 and delta with P-value 0, 132. Better results were reached then

in article [7].

Finally the classification of data was undertaken for evaluation of the practical

usability of the features. The classification using arbitrary decision tree in WEKA

brought us results of atrial fibrilation correct classification with the specificity 92,1

% and the sensitivity 92 % which is very similar with results reached in e.g. article

[15].

Future work

In the future there is possibility to upgrade the application with addition of

another features to create more complex tool. To reach better results it might be

possible to try the adaptive segmentation approach or better preprocessing.



Bibliography

[1] S. Akselrod, D. Gordon, F. A. Ubel, D. C. Shannon, A. C. Barger, and R. J.

Cohen. Power spectrum analysis of heart rate fluctuation: a quantitative probe

of beat to beat cardiovascular control. Science, 213:220–222, 1981.

[2] R. Berger, S. Akselrod, D. Gordon, and R. Cohen. An efficient algorithm for

spectral analysis of heart rate variability. IEEE Trans Biomed Eng., 33:900–904,

1986.

[3] H.F.V. Boshoff. A fast box counting algorithm for determining the fractal

dimension of sampled continuous functions. IEEE, 92:43–48, 1992.

[4] Peng C-K., Havlin S., Stanley H. E., and Goldberger A. L. Quantification of

scaling exponents and crossover phenomena in nonstationary heartbeat time

series. Chaos, 5:82–87, 1995.

[5] Peng C-K., Buldyrev S. V., Havlin S., Simons M., Stanley H. E., and Gold-

berger A. L. Mosaic organization of dna nucleotides. Phys Rev E, 49:1685–1689,

1994.

[6] S. Castiglioni and M. Di Rienzo. How the threshold ”r” influences approximate

entropy analysis of heart-rate variability. Computers in Cardiology, 35:561–564,

2008.

[7] D. Chamchad, G. Djaiani, H. J. Jung, L. Nakhamchik, J. Carroll, and J. C.

Horrow. Nonlinear heart rate variability analysis may predict atrial fibrilla-

tion after coronary artery bypass grafting. International Anesthesia Research

Society, 103(5):1109–1112, November 2006.

51



BIBLIOGRAPHY 52
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Science and Technology, 11(1):39–48, June 2005.

[26] J. S. Richman and J. R. Moorman. Physiological time-series analysis using

approximate entropy and sample entropy. American Physiological Society and

Heart and Circulatory Physiology, 278:H2039–H2049, 2000.

[27] B. M. Sayers. Analysis of heart rate variability. Ergonomics, 16:17–32, 1973.



BIBLIOGRAPHY 54

[28] C. Sevcik. A procedure to estimate the fractal dimension of waveforms. Com-

plexity International, 5:1–16, 1998.

[29] C. E. Shannon. Prediction and entropy of printed english. The Bell System

Technical Journal, 30, January 1951.

[30] P. van Leeuwen and H. Bettermann. The status of nonlinear dynamics in the

analysis of heart rate variability. Herzschr Elektrophys, 10:127–130, 1999.

[31] M. M. Wolf, G. A. Varigos, D. Hunt, and J. G. Sloman. Sinus arrhythmia in

acute myocardial infarction. Med J Australia, 2:52–53, 1978.



Appendix A

Contents of enclosed CD

To this work is available on enclosed CD, which contains source codes and elec-

tronic appearance of this work.

• Diploma Thesis: Diploma thesis in electronic appearance

• Documentation: Documentation of application

• HRVanalysis: The main application
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