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Abstract

This diploma thesis investigates the topic of intelligent optimisation of schedules for charging
and discharging of electric vehicles (EVs). At first, we carry out a research on related topics of
Smart Grids and vehicle-to-grid transactions, and then, we examine existing studies solving
the problem, including an application of a binary particle swarm optimisation (BPSO).
Subsequently, disadvantages and weaknesses of the investigated methods are identified.

We then reformulate the problem definition and its representation to dispose of the major
drawbacks identified before. The modified formulation emerges a continuous optimisation
problem, which for we propose a particle swarm optimisation (PSO) application. To eliminate
remaining drawbacks, the algorithm implements a penalty function for penalising inconsistent
solutions, and an alternative fitness function reflecting the battery degradation costs.

Finally, the implemented algorithm is confronted with the BPSO method, and it is verified
that the proposed PSO implementation significantly outperforms the other algorithm in
terms of quality of the best found solutions, and in terms of time efficiency as well.

Abstrakt

Tato diplomová práce zkoumá téma inteligentńı optimalizace rozvrh̊u pro nab́ıjeńı a vyb́ıjeńı
elektromobil̊u (EV). Nejprve je proveden pr̊uzkum v souvisej́ıćıch oblastech inteligentńıch
śıt́ı a vehicle-to-grid transakćı, a posléze jsou prostudovány existuj́ıćı prace zabývaj́ıćı se
řešeńım daného problému, včetně aplikace metody binárńı optimalizace rojem částic (BPSO).
Následně jsou pak identifikovány nevýhody a slabiny dř́ıve zkoumaných metod.

Definice problému včetně jeho reprezentace je poté přeformulována za účelem odstraněńı
hlavńıch ze zmı́něných nedostatk̊u. Upravená formulace utvář́ı spojitý optimalizačńı problém,
pro který je následně navržena aplikace optimalizace rojem částic (PSO). Za účelem eliminace
zbývaj́ıćıch nedostatk̊u navržený algoritmus zahrnuje funkci pro penalizaci nekonzistentńıch
řešeńı a také alternativńı objektivńı funkci reflektuj́ıćı výdaje spojené s degradaćı baterie.

Na závěr je implementovaný algoritmus porovnán s metodou BPSO, výsledkem čehož je
ověřeno, že navržená implementace PSO výrazně překonává druhý algoritmus, a to jak ve
smyslu kvality nejlepš́ıch nalezených řešeńı, tak i z pohledu časové efektivity.
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Chapter 1

Introduction

Although transportation and electricity infrastructure have generally much in common, for a
long time the transportation industry has been dominated by a dependence on oil products,
leaving electric vehicles only a tight segment of use, such as public transport vehicles, airport
vehicles, or forklifts in industrial facilities. Historically there has only been a little chance of
the two industries converging when it comes to personal transportation [1].

However, extensive progress over the past decade in technology, design, and development
of a commercially viable electric vehicle has changed that, together with recent advances
in rechargeable battery materials, leading to an explosion of interest in electric vehicles.
Convergence of these two industries is now a foregone conclusion, and the automotive
industry is intensively investing in plug-in hybrid electric vehicles (PHEVs) and fully electric
vehicles (EVs), mainly in order to reduce the CO2 emissions and cut down the oil dependency
of the current automotive technology.

1.1 Electric Vehicle Adoption

Since electricity is an exclusive source of energy in EVs—and partially in PHEVs—the vehicle
electrification will have significant impact on the power grid due to the increase in electricity
consumption. The overall load profile of electric system will change due to the introduction
of electric vehicle charging, and electric utilities will have to reconsider the potential impact
related to a massive EV adoption.

On the other hand, besides charging, electric vehicles can produce an interesting new
potential to the operation of the electric system through providing energy to the power grid
by discharging the battery. This type of transaction is known as vehicle-to-grid (V2G) [2].
Considering the potential extensive EV adoption with all the obstructions and opportunities
it will give rise to at the same time, it is very important to provide the means of intelligent
scheduling for charging and discharging of electric vehicles.

1.2 Objectives

The study documented in this thesis, sets up a target of making a survey on existing methods
for optimisation of charging and discharging schedules for electric vehicles, identifying their

1



CHAPTER 1. INTRODUCTION 2

drawbacks and weaknesses, and addressing the most crucial aspects that should be considered
in optimisation of the given problem.

Then, the goal is to propose and implement an algorithm utilising a selected metaheuristic
optimisation technique to solve the problem, while concurrently reflecting and resolving some
of the crucial issues suggested afore. Lastly, it is required to demonstrate and validate the
functionality of the proposed system, and match its performance with some of the other
previously discussed methods.

1.3 Navigation

This diploma thesis is divided into seven chapters. Chapter 1 provides introduction to the
study by discussing electric vehicles, their potential massive adoption, and by defining the
objectives of this study. A detailed insight to the closely related topics of Smart Grids
and vehicle-to-grid transactions is presented in Chapter 2 along with potential motivation
for charging and discharging of electric vehicles. Chapter 3 then finally introduces the
problem of schedule optimisation for charging and discharging of electric vehicles, which this
study is the most concerned with. Subsequently, the existing works attempting to solve the
given problem are introduced, and their drawbacks are identified and explained. Chapter 4
presents the proposal of reformulated problem definition and solution representation, which
is the main outcome of the study. Additional considered aspects like charging voltage and
battery degradation are introduced as well. In Chapter 5, this is followed by description
of the particle swarm optimisation (PSO) algorithm, which is implemented to solve the
optimisation problem. Initially, a general scheme for the PSO algorithm is introduced,
and then employed problem-related components are explained as well. In Chapter 6, the
implemented PSO algorithm is extensively tested against a BPSO implementation in order
to demonstrate and validate its functionality. Additional experiments are conducted to
further examine the performance of the algorithm, followed by analysis of effects of various
aspects concerning the problem. Finally, Chapter 7 concludes the thesis by summarising the
course of the study, evaluating its accomplishment, and discussing potential future work.



Chapter 2

Motivation

The current electric power grid in most countries is almost entirely a mechanical system,
with only limited use of sensors, minimal electronic communication and almost no electronic
control. It is based on and developed from a distribution grid established more than a
hundred years ago, when the energy demand was much smaller and straightforward than in
the modern day. The grid was designed for utilities to deliver electric power to consumers’
homes and bill them monthly. This limited one-way interaction makes it difficult for the grid
to react to the ever-changing and growing energy demands of the 21st century [3].

The insufficiency of the current electric grid will become increasingly apparent along
with the growing market penetration of electric vehicles. It has been estimated that the
total charging load of EVs can reach 18% of summer peak electricity demand in the United
States already at the electric vehicle penetration level of 30% [4]. The associated increase
in electricity demand will call for a radical change in electricity distribution. Especially if
intelligent scheduling for charging and discharging of EVs is required, the electric grid must
provide more flexibility and develop the ability to perform optimisation.

2.1 Smart Grid

As an evolutionary step towards improvement of the electric grid and its adaptation to the
increasing electric energy requirements significantly affected by the potential EV adoption,
a Smart Grid introduces a two-way communication dialogue, where both electricity and
information can be exchanged between utility and its customers.

Smart grid is a modernised electricity distribution grid that expands capabilities of
the electricity system by the use of information and communications technology to collect
information about behaviour of suppliers and consumers, and use it in an automated manner
to improve the efficiency, flexibility, reliability, economics, and the environmental impact of
the production and distribution of electric energy.

Research and development of the novelty smart grid concept is being taken by various
organisations and research groups simultaneously, and the actual practical application of
the smart grid is tested within so-called smart cities and smart villages. Since the research
proceeds independently and to a certain extent separately, a variety of broad definitions have
arisen, describing what the smart grid actually is and what characteristics should it have.

3
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Having various industrial, scientific, governmental, and academic subjects involved, each
focusing on different aspects of the smart grid, many studies relevant to the topic emerged.
The visions of the smart grid presented in the studies share many common aspects, yet to a
certain degree they are distinct from each other. This situation of having all the complement
studies around, initiated few attempts to summarise all these individual definitions and
provide a universal description of the smart grid concept.

One of such efforts, called “What is the Smart Grid?,” [5] managed to gather all the
available information and express the common shared characteristics by listing a set of the
ultimate goals that Smart Grid would have to accomplish:

• Enhance the electric power system infrastructure by employment of sensors, smart
meters, communication channels, computational facilities, and so forth;

• Improve reliability, availability, quality, efficiency and security of the power system;

• Enable various entities to share benefits of smart grid;

• Establish more competitive electricity market with open access;

• Create new business opportunities;

• Mitigate emissions and reduce the human footprint on the environment.

2.2 Consumer Participation

Additionally, there is a feature worth highlighting that has been frequently echoing through
a number of smart grid -related articles and books – the consumer participation.

For example, European Union stated it sees smart grid as an active network “to enable
demand-side participation” and “to engage consumers’ interest,” [6] while similarly, the
Department of Energy of the United States identified ability to “enable active participation
by consumers” as one of the defining traits of a smart grid [7]. This has as well been
supported by the ABB corporation, under which model of, the smart grid is supposed to be
“interactive between customers and markets” [8].

Hydro-Québec, a public electric utility of Canada, went slightly further with their vision
of smart grid “providing customer with the means to optimise consumption and reduce
electricity bills” [9]. In a similar way, Ofgem—the UK’s energy regulator—defined that a
smart grid employs technologies to “enable demand side to play a part in optimising the
operation of the system” [10].

All these statements go hand in hand with what has become more than apparent –
regardless of how will the actual Smart Grid turn up, it will be desirable for it to let
consumers participate on its operation, either by means of generating electric energy or
providing support in optimisation of its performance.

2.3 Vehicle-to-Grid

Assuming it is inevitable that a certain sort of Smart Grid is adopted in the foreseeable
future, many new opportunities would emerge, including the potential of technologies making
use of the large scale integration of electric vehicles.
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In the wake of statements emphasising the opportunity of consumer participation, the
aforementioned vehicle-to-grid scheme becomes a perfect example of such occasion.

Vehicle-to-grid (V2G) is a system which allows plug-in electric vehicles to communicate
with the power grid and deliver electricity into the grid by either discharging the car battery
in case of a pure electric vehicle (EV) or even by generating energy from fossil fuel, biofuel,
or hydrogen in case of a plug-in hybrid electric vehicle (PHEV).

2.3.1 Gridable Vehicles

Vehicle-to-grid transactions can be practised with so-called gridable vehicles, that is, plug-in
electric vehicles (either EVs or PHEVs) with grid capacity.

The original plans for electric vehicles only allowed for their battery storage to extract
power from the grid through charging, known as grid-to-vehicle (G2V). But, since EVs and
PHEVs already have the necessary electronics to drive their electric motors, programming
and wiring adjustments can be made to turn their power electronics into inverters suitable
for V2G transactions as well [11] [12].

In fact, this has already been put into practise as for example, the Californian PG&E
utility company has been taking V2G trials with a number of Toyota Prius converted into
V2G PHEVs, or another American utility Xcel Energy have converted several Ford Escape
Hybrids to V2G-capable PHEVs [13].

2.3.2 Motivation for V2G

Considering a V2G-capable EV plugged into the electric grid, there are various reasons to
perform a V2G transaction. The motivation may be a combination of the following:

• To discharge excess battery capacity to the grid when electricity demand is high in
order to gain profit;

• To provide power to the electric grid in response to peak load demands, resulting in
so-called peak load levelling ;

• To serve as a storage device capable of providing electric power to homes during
black-outs and other emergency situations.

2.3.3 New Opportunities

As consumer adoption of EVs progresses, the collective storage capacity of fleet vehicles will
grow as well, giving promise for a new clean-tech resource for peak load levelling.

Perhaps the most fascinating proposition regarding EVs is that they could be used to
store renewable energy production, particularly power from wind farms, which produce most
proficiently during off-peak hours—at the night—when both energy demand, and energy
prices are the lowest. Using EVs to store wind power during off-peak periods could provide
significant value arbitrage if that stored energy could be discharged to the grid during peak
periods, when both demand, and prices are far higher [1].

As the prices of batteries decrease and the amount of personal distributed generation
increases, consumers are likely to be interested in selling power obtained from either nightly
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charging at cheap prices, or their own electric power generation such as small wind turbines
or solar panels. And in such situation, EV batteries could provide the necessary storage to
accumulate the power charge in them and discharge it to the grid at peak price later.

Considering that EVs and PHEVs—like other personal vehicles—are parked most of the
time, the potential of using their batteries to perform optimisation could really create an
interesting new business opportunity. However, having a large population of electric vehicles
performing charging and discharging would require intelligent planning and a third party to
take control and arrange for it.

2.3.4 Scepticism

Since the battery is considered one of the most crucial components of an electric vehicle and
is very expensive at the same time, it appears to be the most limiting factor speaking against
the use of the V2G transactions.

Any excess transfer beyond the required charging to a desired state of charge and
discharging through driving reduces the battery life and might thus as a result appear to be
an additional hidden cost, which would have to be reflected in any research concerned with
V2G transactions and electric vehicle discharging.



Chapter 3

Research and Analysis

In the wake of the motivation discussed in the previous parts of the thesis, from here onwards,
this study is concerned with developing an optimisation algorithm which would intelligently
schedule charging and discharging of EVs and PHEVs.

3.1 Problem Definition

The essential problem studied, analysed, and solved in this work assumes a situation of
a Smard Grid -connected parking lot capable of accommodating large number of gridable
vehicles (either EVs or PHEVs) with a target to perform intelligent scheduling for charging
and discharging of their batteries. An example of such situation is depicted in Figure 3.1.

Figure 3.1: Example of a parking lot diagram1

The parking lot system is a scalable set of vehicles, each with its own system parameters
like the battery capacity kWhMax in kilowatt-hours, the current battery state of charge
(SoC), battery charging and discharging efficiency, and the expected time of departure from
the parking lot n. In a real life situation, the target battery SoC at the departure time n
would be defined by the EV owner at the moment of arrival, however this is not considered
in this study to allow subsequent comparison with related research methods. Instead, the

1The parking lot image borrowed from [14].

7
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target state of charge SoC Target is fixed to 60%. Additionally, the arrival time m would be
detected automatically upon the vehicle arrival at the parking lot.

During charging, a vehicle buys electricity from the grid through grid-to-vehicle (G2V)
transactions, while when discharging, it sells power to the grid by performing vehicle-to-grid
(V2G) transactions. To help determine the optimal times of charging and discharging, a
price curve P ∈ R1×24 is obtained, defining electricity price in $/kWh for each hour of the
day. It is assumed that the electricity price always holds for the whole length of any hour
and gets changed always at the beginning of an hour. An example of price curve showing
electricity price fluctuation for 7 August 2008, is shown in Figure 3.2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
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Figure 3.2: Example of curve showing electricity price fluctuation over a day

For a given day and for each vehicle at the parking lot, the main task is to find a
sequence of 24 actions consisting of charging, hold, and discharging, such that the profit
made by difference in revenues from selling energy and costs from buying it is maximised.
The optimisation process is restricted by the required final SoC Target, which must hold at the
time of vehicle departure from the parking lot. By maximising the profit for every individual
vehicle, the total profit for the whole vehicle lot is maximised as well.

The entire parking lot is controlled by an operator, which performs the optimisation and
controls the individual EV charging slots based on the schedules produced by an optimisation
algorithm. The operator can be either the utility itself, or a third party organisation acting
as a mediator between the utility and the vehicle owners.

3.2 State of the Art

The idea of utilising an electric vehicle parking lot to generate profit through optimisation
has been researched by many, thus a number of articles and studies emerged, examining this
scheduling problem and solving it using various intelligent optimisation methods.

3.2.1 Binary Particle Swarm Optimisation

One of the most fundamental works dealing with the use of vehicle-to-grid transaction to
generate profit, called “Intelligent Scheduling of Hybrid and Electric Vehicle Storage Capacity
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in a Parking Lot for Profit Maximization in Grid Power Transactions,” was published by
C. Hutson, G. Venayagamoorthy, and K. Corzine in 2008 [14].

In the article, authors presented two case studies for charging and discharging of EVs
and PHEVs parked in a parking lot disposing of the ability to perform V2G transactions.
The goal to the optimisation problem was to maximise the overall profit obtained by selling
energy from vehicles at peak price and buying it back, or vice versa. To provide realistic price
fluctuations, price curves for 3 different days were obtained from the California Independent
System Operators (CAISO) database. For scheduling purposes, a given day is split up into
24 intervals to coincide with the hourly prices provided by CAISO. The electricity price is
considered to remain the same for any whole given hour.

As there are no constraints among the individual vehicles, the charging and discharging
schedule is determined for each vehicle separately. A solution to a single vehicle scheduling
problem is established as 24 pairs of bits, each pair representing an action scheduled for a
certain hour of the day. These actions include buying represented by ‘11’, selling by ‘00’, and
hold by either ‘01’ or ‘10’. The arrival and departure time together define a time window
where transactions are allowed, therefore, any information outside the defined time window
is ignored when evaluating the quality of a schedule.

Three different parking lot sizes, accommodating vehicle sets of 50, 500, and 5000, were
subject to testing. For each given vehicle, a set of parameters was randomly generated from
within the ranges given by minimum and maximum values in Table 3.1.

Parameter Minimum Maximum

Battery Capacity [kWh] 10 25
Available Capacity [%] 50 100

Arrive Time 1st hour 23rd hour

Departure Time 2nd hour 24th hour
Inverter Discharge Eff. [%] 80 95

Batter Charge Eff. [%] 80 95

Table 3.1: Vehicle parameters

As seen in the table, each vehicle has a defined maximum battery capacity in kilowatt-
hours, its arrival time and expected time of departure, as well as efficiency of inverter during
discharging, and the battery charging efficiency. Moreover, each vehicle has its own state of
charge (SoC) at the moment of arrival to the parking lot, while the desired departure state
of charge was set to 60% for all of them globally.

In Case Study 1, the algorithm to find a schedule for each vehicle is very simple. In
the given price curve, the best (maximum) selling price is found for each vehicle over the
desired departure SoC of 60%, and the best (minimum) buying price for each vehicle under
the desired departure SoC. As a result, only one transaction (either charging or discharging)
occurs for each vehicle in a given day. This leads to lower profit potential, but the schedule
for each vehicle is very easy to determine.

Opposed to this, in Case Study 2, multiple transactions are allowed to occur for each
vehicle throughout the day. Multiple transactions allow for higher profits but greatly increase
the problem complexity. The authors implemented a binary particle swarm optimisation
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algorithm (BPSO), which generates a population of random schedules and improves them
iteratively based on a profit-based fitness function.

To calculate the fitness function, first the revenues made by selling energy from the
vehicle, and costs of charging the vehicle battery from the grid must be determined. The
hourly revenues R(k) and costs C(k) for any time instant k are calculated as

R(k) = P (k) · (kWhAvailable − SoC · kWhMax) · Eff Discharge (3.1)

and

C(k) =
P (k) · (SoC · kWhMax − kWhAvailable)

Eff Charge

, (3.2)

respectively, where P (k) is electricity price at time k, SoC is the desired battery state of
charge, kWhAvailable is the current available energy stored in the battery (in kilowatt-hours),
kWhMax is the maximum battery capacity in kilowatt-hours, while Eff Charge and Eff Discharge

are charging and discharging efficiency, respectively.

Having the hourly revenues and costs defined, the fitness function f to be maximised for
each separate vehicle is described as a difference between the revenues and costs summed
over the whole day, i.e.

f =
Hours∑
k=1

(
R(k)− C(k)

)
. (3.3)

In the process, the two case studies were compared against each other using randomly
generated sets of 50, 500, and 5000 vehicles. The results shown in Table 3.2 indicate that the
BPSO algorithm described in Case Study 2 easily outperformed the simpler algorithm from
Case Study 1 in terms of profit. As the table suggests, the amount of energy discharged from
vehicles (power out of lot), and especially the amount of energy charged back (power into
lot), are significantly increased in Case Study 2 scenario compared to Case Study 1. This is
not surprising as the schedules produced by the BPSO algorithm contain more charge and
discharge actions leading to greater amounts of energy transferred within the vehicle set.

Number of
Vehicles

Case
Study

Power
into Lot
[MWh]

Power out
of Lot
[MWh]

Net Power
Out [MW]

Total
Profit

50 CS1 0.0089 0.1131 0.1042 $11.41
CS2 0.3492 0.3421 -0.0072 $19.09

500 CS1 0.0984 1.2533 1.1549 $128.42
CS2 3.5167 3.8271 0.3104 $234.22

5000 CS1 1.0359 12.1769 11.1401 $1223.49
CS2 31.9632 35.2408 3.2777 $2200.40

Table 3.2: Results of three different sized sets of vehicles on August 7, 2008

Every time a vehicle buys power from the grid and sells later, there are two efficiency
drops, one for the charger and one for the inverter. However, even considering these not
insignificant efficiency drops, the increased amount of charging and discharging actions in
Case Study 2 proves to be beneficial, leading to almost twice as much profit compared to
the simple and straightforward approach from the Case Study 1.



CHAPTER 3. RESEARCH AND ANALYSIS 11

3.2.2 Social Impact Theory Based Optimisation

In 2013, I contributed to a paper by M. Macaš and L. Lhotská entitled “Scheduling of
Hybrid and Electric Vehicle Storage Capacity using Social Impact Theory based Optimization”
[15]. In this study, we applied Simplified Social Impact Theory based Optimisation (SSITO)
proposed by Macaš [16] to the problem of intelligent optimisation of charging and discharging
schedules for electric vehicles, utilising the exact same problem definition, vehicle parameters,
and the fitness function to be maximised as in the paper published by Hutson and collective
[14]. The study shows experimentally, that the novel SSITO method, although being simple
and parameter-less, reasonably outperforms the BPSO algorithm in profit maximisation.

Number of
Vehicles

Optimisation
Method

Power
into Lot
[MWh]

Power out
of Lot
[MWh]

Net Power
Out [MW]

Total
Profit

5000 Simple 0.694 10.468 9.501 $1243
BPSO 23.356 29.012 4.933 $2061
SSITO 23.592 29.283 5.030 $2129

Table 3.3: Results for 5000 vehicles averaged over 30 independent runs

As seen in the Table 3.3, the SSITO method provided better results on the same set
of 5000 vehicles, but it outperformed the BPSO algorithm by only a little more than 3%
of the total profit. This observation of two completely different algorithms providing a
relatively close best solution seems to indicate limitation of the problem definition and
solution representation, leading to infeasibility of improving the best solution regardless
of the used algorithm.

3.2.3 Convex Optimisation

Another notable work, one of the more recent ones, called “Optimal Scheduling for Charging
and Discharging of Electric Vehicles” was presented by Y. He, B. Venkatesh, and L. Guan
in 2012 [17]. In the article, the problem of charging and discharging electric vehicles is
formulated using a convex objective function and a set of linear constraints, which together
form a convex optimisation problem allowing to be solved efficiently using the method of
interior points.

In the paper, a globally optimal scheduling scheme is proposed at first, but then, its
several drawbacks are identified. The globally optimal scheduling scheme requires information
on future base loads and future arrival times of EVs. To overcome this, a local scheduling
optimisation problem is formulated instead, which aims to optimise schedules only for
short intervals of a day belonging to the current sliding time window, and the base load
is approximated using regression of historic data from similar days, in the same way this was
done in another study concerning optimisation in electric power systems [18].

Additionally, the global network of all EVs connected to charging stations is separated
into smaller groups clustering EVs in one location or multiple nearby locations. Each group
is then operated by a local controller which communicates with the individual charging
stations and with a central controller. The local controller then performs the optimisation
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of schedules for the assigned group of EVs. This approach, compared to the global scheme is
significantly more practical, and it is demonstrated through simulations that it can achieve
a close performance to the globally optimal scheduling scheme.

3.3 Drawbacks and Weaknesses

As this thesis is primarily inspired by the study of Hutson et al. [14], the following section
is mainly oriented towards drawbacks found in the BPSO study. Disadvantages of the other
implementations are subsequently discussed as well.

3.3.1 Binary Particle Swarm Optimisation

The article of Hutson documented one of the pioneering works regarding the problem of
charging and discharging of EVs. Although the implemented BPSO algorithm provided
fairly good results, it relaxed on many topics:

• Battery degradation – One of the most significant drawbacks of the vehicle-to-grid
transmissions is that they accelerate battery degradation. Each electric vehicle battery
has a limited number of life cycles which it can be put through, and if additional
charging and discharging occurs beyond the regular usage of the vehicle, the battery
degradation accelerates and its lifetime gets reduced.

Thus, even though this aspect was not considered in the study, a more practical-
oriented implementation should reflect the battery degradation to help reduce the
number of operations per vehicle to a reasonable amount.

• Instant operations – The implementation considers infinitely fast charging and
discharging operations. Basically, whatever is the battery state of charge at the start
of any hour of the day, it can be charged or discharged to an arbitrary SoC percentage
in just an hour, no matter how many kilowatt-hours of energy does that include.

Moreover, as the authors allow charging and discharging at the beginning of any hour
between arrival and departure, any operation can be performed even at the moment
of the vehicle departure, which indicates instant charging and discharging. Such
approach, of course, would be certainly unrealistic in a real-life application and an
adequate amount of time spent on each operation should be considered.

• Algorithm overkill – Using a relatively complicated BPSO algorithm seems to be
a slight overkill considering the given problem definition and solution representation.
For example, if the schedule representation was converted from binary to integer values
where selling would be represented by ‘1’, buying by ‘2’, and hold by ‘3’, we would end
up with a vector of n numbers, where n is the amount of hours the car is parked for,
connected to the grid. Given the arrival and departure times for each vehicle being
uniformly distributed within the intervals given in Table 3.1, an average n is roughly
equal to 8, leading to total number of possible scheduling solutions for an average
vehicle being only 38 = 6561. Problem of such complexity could be easily solved by an
exhaustive search or a simple heuristic.
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Naturally, finding the best schedule for vehicles staying at the parking lot for more than
10 hours would become increasingly more difficult eliminating the potential of using
the exhaustive search, but still the problem definition as it is seems overly simplified
for the PSO algorithm to be used.

• Discharging restriction – Once a vehicle reaches the desired departure state of
charge of 60%, it can never be discharged below this level again. Such regulation
eliminates the opportunity of accumulating more profit by discharging at a peak price,
charging after the price drops, and then repeating the same cycle again if another price
peak occurs within the day. On one hand, this restriction is said to prevent from low
charge levels occurring in case of unexpected early departure from the parking lot,
but on the other hand, it reduces the profit potential which the whole optimisation is
driven by.

• Desired SoC verification – According to the information the article provides, there
is no check at the end of a vehicle schedule optimisation process to verify if the desired
final state of charge is actually achieved by the given schedule or not. In a situation
when a vehicle arrives at the parking lot with its battery SoC less than 60%, there is a
great chance that a schedule consisting only of hold actions would survive throughout
the whole run of the algorithm and will be returned as the best solution from the profit
point of view.

Due to the restriction forbidding discharging below 60% of the battery capacity, any
other solution would necessarily contain at least one charge action to achieve the desired
departure SoC target of 60%, while the remaining 40% of manipulable battery capacity
might not allow producing enough profit to overcome the loss caused by charging in the
first place. As a result of this, the only solution ensuring a non-negative outcome would
be the empty schedule, which would end up being accepted as the best solution despite
the fact the desired departure state of charge is not accomplished. Though driven by
maximisation of profit, the optimisation algorithm should not produce invalid solutions
on its output, providing results which violate given constraints.

3.3.2 Social Impact Theory Based Optimisation

Given the fact that our application of the SSITO algorithm to the vehicle charging and
discharging problem [15] shared the exact same problem definition and solution representation
with the above analysed BPSO implementation, the list of drawbacks would be more or less
the same as in the previous section. This is due to the fact that the majority of the drawbacks
is induced by the problem representation itself.

On the other hand, the SSITO method, being parameter-less, did not require any extensive
empirical parameter settings optimisation, and still provided better solutions to the problem.

3.3.3 Convex Optimisation

The study presented by He [17], same as those mentioned above, splits each day into 24 hourly
intervals. If a charging or discharging action takes place within a given interval, it persists
for the whole hour as well. But, in order to allow achieving a given target SoC precisely,
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the nominal value of charging voltage alternates through the course of the hour. Although
this resolves the problem associated with the fixed hourly length of actions, employing this
approach in a real life application could not only be complicated in terms of equipment and
technology, but the frequent voltage alterations could also cause harm to the battery.

On the contrary, it is favourable that the authors of the study incorporated a model of
battery degradation into the fitness function of their locally optimal scheduling scheme.



Chapter 4

Solution Proposal

Inspired by the BPSO application to the EV charging and discharging scheduling problem
with all its pros and cons, the work described in this thesis sets a target of implementing an
optimisation algorithm to solve the problem more efficiently, while at the same time putting
emphasis on a more realistic approach reducing the amount of relaxations and reflecting a
number of additional important aspects to push the boundaries closer towards a practical
implementation viable for use in a real smart grid -powered parking lot application.

4.1 Problem Definition

To accomplish the established goals, the problem definition has to be altered in the first place.
Same as in the aforementioned BPSO implementation, in this work each day is split into
24 one-hour intervals to correspond with the hourly electricity prices provided by CAISO.
Each interval allows only for one type of action to occur within, however, the instancy of
actions is not assumed anymore, and only a definite reasonable amount of kilowatt-hours of
battery capacity can be charged to or discharged from a battery within 1 hour. Given this
assumption, it is very likely that charging a half-empty vehicle battery up to the state of full
charge would take up few hours to accomplish.

Additionally, this reworked problem definition assumes a constant charging voltage, thus
reflecting a real-life situation. However, with constant voltage it becomes difficult to achieve
a specific given battery charge percentage precisely, because charging or discharging a battery
in hourly steps can lead only to a limited amount of SoC states. In a drastic majority of
cases, the final actual battery SoC would end up being either below or above the target SoC
which leads to either not accomplishing a user-defined target SoC (when finishing below), or
not utilising the excess energy to maximise the profit (when finishing above).

To overcome this obstacle, a certain amount of granularity of battery charging and
discharging needs to be achieved. As described in the article researched above [17], the
granularity can be obtained by altering the charging/discharging voltage during the course
of a given hour to secure a precise SoC percentage at the end of the hour. The problem is that
such approach can be cost-inefficient and harmful to the battery as stated above. Instead,
this work suggests a much more straightforward solution, where the charging/discharging
voltage remains the same throughout the process, but each action can last an arbitrary

15
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fragment of an hour. This way, a charging or discharging action still has to start at the
beginning of a given hour, but it can be terminated at any time before the hour ends which
allows for an arbitrary final state of charge to be achieved.

As an additional restriction, if an action starting at the beginning of the i-th hour ends
before the hour does, no other action can start earlier than at the beginning of the (i+ 1)-th
hour. Simply put, each hour of a day can still see only a single action.

4.2 Solution Representation

Allowing for an action to take an arbitrary portion of an hour requires an essential change
in the solution representation as the binary matrix used in BPSO algorithm cannot be used
to formulate such information easily.

Therefore, for the algorithm implemented in this work, we propose a different approach
with a schedule represented by a vector x ∈ R1×(n−m) consisting of (n −m) real numbers,
where m is time of arrival and n is departure time of a certain vehicle. Then, each real value
xi, ∀i ∈ {m,m + 1, . . . , n − 2, n − 1} of the schedule vector x = (xm, xm+1, . . . , xn−1, xn−1)
describes, which operation will take place at i-th hour of the day and how long will the
action take. Naturally, the last action has to be completed before the vehicle departs from
the parking lot at hour n and thus, the last action can start at (n− 1)-th hour.

A lower bound LB and an upper bound UB such that 0 < LB < UB are then defined
for all xi, while ∀i : xi ∈ [−UB ,+UB ]. Subsequently, for each hour i, a corresponding type
of action OP(i) is specified as

OP (i) =


discharge if xi ∈ [−UB ,−LB)

hold if xi ∈ [−LB ,+LB ]

charge if xi ∈ (+LB ,+UB ].

(4.1)

This way, each real number xi in the solution vector x represents both the action type,
and its duration at the same time. The distribution of all available actions (discharge, hold,
charge) within xi is depicted in Figure 4.1.

ChargeHoldDischarge

+UB+LB0−LB−UB

Figure 4.1: Distribution of available actions within a value of xi

Now that the action type is identified, it is important to determine its length as well. This
step is not required for hold actions, but for a charge or a discharge actions, the duration
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is determined by scaling the xi value to the range of (0, 1]. For the xi lying between −UB
and −LB (discharging), or between LB and UB (charging), the action length timeOP (i) is
calculated as

timeOP (i) =
xi − LB

UB − LB
. (4.2)

This calculation returns a value timeOP (i) ∈ (0, 1] defining what fraction off the i-th
hour of the day will the action OP(i) take. For example, if timeOP (i) = 1, the action OP(i)
will last for the entire hour, whilst timeOP (i) = 0.5 defines an action spanning only half an
hour, and finally, if the value timeOP (i) = 0.33, the given action will be terminated after the
first 20 minutes of the i-th hour.

4.3 Charging Voltage

The speed of EV charging is measured by the voltage used over time by an EV charging
station. Since the discussed concept of instant charging operations suggesting unlimited
connection to the source of electric current is unrealistic, in this study we utilise a constant
electric voltage level of a rational nominal value to perform charging and discharging.

As described in The Advanced Smart Grid book, there are three different levels of EV
charging, varying in the charging voltage. Level I charging occurs at the standard voltage of
a typical electrical outlet in the United States: 110 to 120 volts, which can result in a charge
period of between 8 and 16 hours. Level II charging is more suited to overnight charging,
taking 4 to 6 hours at 220 to 240 volts. In case of need for a more rapid charge, Level III
charging uses 440 volts, providing an 80% charge in as little as 30 minutes. [1]

Inspired by the system of charging voltage Levels I, II, and III, this work as well examines
three different charging voltage UCHG levels of 110 V, 220 V, and 440 V. The charging voltage
UCHG determines the value kWhHourly, which specifies how much electric energy in kilowatt-
hours can be transmitted from the grid to vehicle battery, or vice versa, in just 1 hour.

Based on the information from The Advanced Smart Grid book on charging voltage and
corresponding charge periods, we define an adequate mapping of UCHG to kWhHourly as

kWhHourly =


1.5 kWh/hour if UCHG = 110 V

4.0 kWh/hour if UCHG = 220 V

12.0 kWh/hour if UCHG = 440 V.

(4.3)

The charging voltage remains the same for any run of the optimisation process, and
since the charging and discharging voltage are assumed to be of the same potential, only
the charging voltage UCHG will be discussed henceforward. Furthermore, since the selection
of kWhHourly value based on the charging voltage UCHG is done upon initialisation of the
algorithm, all further calculations are done based only on the kWhHourly value.

4.4 Battery Degradation

There is an important aspect to the idea of charging and discharging vehicle batteries to make
a profit which notably affects the whole concept and might actually prove it unfavourable
on the whole despite the seeming impression of profitability.
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As each battery can be put through only a limited number of life cycles, each consisting
of completely discharging down and charging back up, any additional battery charge transfer
beyond necessary charging, and discharging through driving, exploits the battery and reduces
its life time. The battery life time depends on the used technology, but in most batteries these
days, it spans a few thousands of cycles. The standard lithium-ion batteries, for example,
can withstand around 3,000 cycles before the loss of capacity starts to occur.

To take the battery degradation caused by its excessive use into account, we propose a
simple battery degradation model adding an additional cost to the problem, representing
the drop that the extra transactions cause to the battery life time. In the algorithm, it is
assumed that all vehicles have the same battery type, only varying in its size kWhMax in
kilowatt-hours. Thereby, identical for all the cars in the parking lot is the battery price PBat

in $/kWh, and the battery life time LTBat expressed in the maximum number of cycles.

For each vehicle schedule i and the k-th hour of a day, a degradation coefficient DG′i(k)
defining a battery size proportion charged or discharged during the hour k is calculated as

DG ′i(k) =
loadOPi(k)

kWhMax
, (4.4)

where loadOPi(k) is the amount of charge in kWh transferred from or into the vehicle during
the hour k, calculated according to equation 5.3, as described later.

Then, for the given vehicle, the amount of charge necessarily required to transfer in order
to accomplish the vehicle’s final SoC Target, depicted as NDG i, is expressed by

NDG i = |SoC Init − SoC Target|, (4.5)

where SoC Init is the initial state of charge at the time of vehicle arrival. Since SoC Init and
SoC Target are both expressed as a fraction of the EV’s total battery capacity kWhMax, the
value NDG i belongs to interval [0, 1].

Now having the required components explained, the final degradation cost DG i for a
vehicle schedule i can be determined using

DG i =
1

2

(
n−1∑
k=m

DG ′i(k)−NDG i

)
· kWhMax · PBat

LTBat
, (4.6)

which expresses the price of additional charging and discharging beyond necessity, scaled to
the price of battery PBat and its life time LTBat.

By subtracting the necessary charge transfer NDG i from the sum of all charge transfers
DG′i(k) between the vehicle arrival m and its departure n, and finally dividing the difference
by 2, we get a number of cycles that the battery has been put through in excess of the
necessary charging or discharging. The division by 2 is related to the fact that a single cycle
indicates transferring the whole battery capacity twice – once by charging it all up, and then
discharging it all down. Then, the fraction on the far right of the equation 4.6 indicates the
price of 1 cycle in relationship to the total battery price and its life time.

Finally, to allow reflecting the influence of the battery degradation in the porposed
optimisation algorithm, the calculated degradation cost DG i value can be used to reformulate
a fitness function f . This will be explained later in the following chapter.
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Implementation

Although the reformulation of the problem together with the redefined solution representation
are promising steps towards a more realistic model of the charging and discharging scheduling
problem, they significantly increase the problem complexity, as the binary solution space of
finite number of solutions, as used in the BPSO implementation, is this way replaced by a
continuous space of indefinite number of solutions.

5.1 Particle Swarm Optimisation

Continuous optimisation problems of such complexity are difficult to be solved within a
reasonable amount of computational time using conventional mathematical optimisation
methods, giving a way to alternative metaheuristic optimisation techniques which do not
guarantee a globally optimal solution to be found, but provide a sufficiently good solution
within a reasonable calculation time. Artificial intelligence, as a sub-field of computer science,
gave birth to many metaheuristic optimisation methods inspired by nature, one of such being
the aforementioned particle swarm optimisation (PSO) technique utilising a population of
candidate solutions known as particles to explore the search-space of a given problem.

This study implements the original particle swarm optimisation algorithm, which the
BPSO is derived from through reduction from continuous to binary domain. The PSO
algorithm, first introduced by Eberhart and Kennedy [19], is inspired by social behaviour of
animals seen in bird flocks, fish schools or swarms of insects. It maintains a population of
particles called swarm, where each particle represents a potential problem solution, and these
particles move around in a search-space driven by experience of their own and experience of
their neighbours.

Each particle i is characterised by position vector xi and velocity vector vi, and moves
around the search space in discrete time steps. The position of the particle is updated by
adding a velocity vi(t) to its current position, i.e.

xi(t + 1) = xi(t) + vi(t + 1). (5.1)

The velocity drives the optimisation process, and reflects both personal experience of
the particle (called cognitive component), and global experience of the whole swarm (called

19
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social component). The velocity vector vi is updated according to the equation

vi(t + 1) = ωvi(t) + C1ϕ1

(
Pbesti(t)− xi(t)

)
+ C2ϕ2

(
Gbest(t)− xi(t)

)
, (5.2)

where ω is inertia weight defining how much is the particle resistant to change of velocity,
Pbesti is a position with the best fitness reached by the particle i itself starting from the
algorithm initialisation up until the current iteration, and Gbest is the best global position
reached so far by any particle of the swarm. Furthermore, C1 and C2 are a cognitive and
a social constant, used to scale and prioritise significance of the best personal and global
solution, respectively. Finally, ϕ1 and ϕ2 are diagonal matrices of uniformly distributed
random values ∼ U(0, 1), that as well regulate contribution of the Pbesti and Gbest solutions.
These random values introduce a stochastic element to the algorithm [20].

Having the most fundamental formulae defined, and considering a fitness function f to
be maximised, where f : Rn → R is a projection which returns a real number for a vector
of particle position, a basic particle swarm optimisation algorithm follows the pseudocode
procedure described in Figure 5.1.

Particle swarm optimisation scheme

1: create and initialise an n-dimensional swarm S;
2: repeat
3: for each particle i = 1 . . . |S| do
4: if f(xi) > f(Pbesti) then
5: Pbesti := xi

6: end if
7: if f(xi) > f(Gbest) then
8: Gbest := xi

9: end if
10: end for
11: for each particle i = 1 . . . |S| do
12: update the particle velocity according to equation (5.2);
13: update the particle position according to equation (5.1);
14: end for
15: until stopping condition is true;

Figure 5.1: Particle swarm optimisation algorithm pseudocode

In the PSO scheme above, the stopping condition can be either a number of iterations
performed, or a target objective function value. In the PSO algorithm implemented in this
work, the number of iterations was used as the stopping criterion.

5.2 Fitness Function

The crucial component of the PSO algorithm is the fitness function, which models the
solution space that is being searched by the optimisation algorithm. In each iteration of
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the algorithm, all particles in the swarm need to be evaluated in order to determine quality
of individual solutions and allow for their comparison with each other.

The quality of each solution in this case where a solution represents a schedule for given
vehicle, is determined as a profit that the given schedule leads to, i.e., the amount of money
that can be achieved by performing a set of charging and discharging actions with the
vehicle battery. The higher the profit for a given schedule, the better fitness the particle
that represents it has.

To determine the fitness value f(xi) of any particle xi of the swarm S, each value xi,k ∈ xi

must be first mapped to a corresponding action it represents. Given that k ∈ [m,n − 1] is
the k-th hour of a day between the vehicle arrival time m, and its departure n, the action
length timeOP i(k) is calculated according to the equation 4.2, assuming that in the given
equation, xi := xi,k.

Having the value timeOP i(k) established, the next step is to calculate the amount of
charge load in kilowatt-hours transferred within the hour k by the action OP i(k) as

loadOPi(k) = timeOPi(k) · kWhHourly, (5.3)

where kWhHourly is the maximum amount of charge that can be transferred within an hour,
defined in equation 4.3.

The next step in calculation of the fitness value is then retrieving the amount of costs
and revenues, expressed in dollars. For a particle i, the costs Ci(k) arisen by charging, and
revenues Ri(k) acquired by discharging, are for any hour k computed as

Ci(k) =
P (k) · loadOPi(k)

Eff Charge

, (5.4)

and
Ri(k) = P (k) · loadOPi(k) · Eff Discharge, (5.5)

where P (k) is electricity price at time k, while Eff Charge, and Eff Discharge are charging, and
discharging efficiency, respectively.

Finally, as the costs and revenues are known for all actions occurring during the vehicle’s
stay at the parking lot, the fitness value f(xi) for the particle xi can be simply calculated
by summing the difference of these values over interval of the whole stay k ∈ [m,n− 1] as

f(xi) =
n−1∑
k=m

(Ri(k)− Ci(k)). (5.6)

Additionally, to reflect the influence of the battery degradation explained earlier, the
degradation cost DG i, calculated according to equation 4.6, can be used to reformulate the
original fitness function as

f ′(xi) =

n−1∑
k=m

(
Ri(k)− Ci(k)

)
−DG i (5.7)

by simply subtracting the DG i value as an additional cost from the total profit for a particle
i representing the schedule for the given vehicle.

It should be noted that by default, throughout the whole work, the simpler fitness
function f is used instead of f ′, unless stated otherwise.
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5.3 Fitness Penalisation

In the problem of profit maximisation where profit is produced by revenues generated through
discharging, securing the final desired state of charge SoC Target to be met is very important.
Considering that the SoC Target is the problem constraint, the optimisation algorithm must
ensure that this target is met by any solution returned upon its output. To achieve this in
the implemented PSO algorithm, we propose a penalty function that penalises any potential
solutions not meeting SoC Target by an adequate reduction of their fitness value.

In each iteration, after having all particles in the swarm evaluated using the fitness
function f , a SoCFinal value can be determined for each particle. The SoCFinal expresses
the actual SoC at the time of departure, which in a generative algorithm like PSO does not
necessarily need to be equal to the SoC Target. Thus, each particle not meeting the desired
SoC Target is penalised.

For each particle, for which SoCFinal < SoC Target, the amount of charge lacking to meet
the SoC Target, indicated by Diff Charge, is expressed as

Diff Charge =
∣∣SoCFinal − SoC Target

∣∣ · kWhMax. (5.8)

Then, for interval between the vehicle arrival m, and its departure n, the maximum
electricity price PMax is found as

PMax = max
m≤k≤n−1

P (k). (5.9)

Finally, a new penalised value g(xi) for each particle xi not meeting the target is
calculated according to equation

g(xi) = f(xi)−
Diff Charge · (PMax + 0.001)

Eff Charge

. (5.10)

The function g subtracts from the actual particle fitness value f(xi) a value that is
supposed to represent a financial penalty only slightly higher than the alleged cost of charging
the battery up to the SoC Target at the highest electricity price within the interval of the
vehicles’s stay at the parking lot.



Chapter 6

Experiments

This chapter describes a set of various experiments performed to verify the performance
of the implemented PSO algorithm to solve the optimisation problem of EV charging and
discharging.

Due to the stochastic nature of the PSO algorithm leading to instability of the output
values which differ in each run of the algorithm, it is important to re-run the algorithm
few times to provide stable results. To retrieve steady results allowing further comparison
and analysis, upon each experiment the presented values are averaged from either 30, or 10
independent runs of the algorithm, depending on the situation.

6.1 Comparison of PSO with BPSO

The main goal for this work was to demonstrate and validate functionality of the proposed
PSO algorithm. Since the problem definition, although modified, is based upon the definition
as described in the BPSO-concerned study including the vehicle parameters and used price
curves, it is this exact BPSO algorithm, the PSO is confronted with in the following section.

6.1.1 Verification of Reference Algorithm

To demonstrate functionality of the PSO algorithm, a comparison of its performance against
the original BPSO, as described by Hutson [14], is performed. At first, an identical copy of
the BPSO algorithm is programmed according to all the information available in the original
article. Additionally, to extend the opportunity for further comparison, the simple heuristic
approach described in Case Study 1 of the article is implemented as well.

Both algorithms were tested using the same input data consisting of 10 different sets of
500 vehicles, and an electricity price curve from August 7, 2008 was used to establish equal
conditions for comparison with the corresponding numbers extracted from the Hutson’s
article. All these results are then put together in Table 6.1.

As seen in the table showing average values of all runs, despite the effort to reproduce
the identical implementation of BPSO method, output of the two versions slightly differ in
the maximum profit as well as in the amount of power into and out of the EV lot. This has
been rather expected because the original vehicle data, retrieved through random generation,

23
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Optimisation
Method

Power into Lot
[MWh]

Power out of Lot
[MWh]

Total
Profit

Simple (Hutson) 0.0984 1.2533 $128.42
Simple (Körner) 0.1067 1.2372 $125.06

BPSO (Hutson) 3.5164 3.8271 $234.22
BPSO (Körner) 3.6831 4.0274 $233.74

Table 6.1: Comparison of two different implementations of identical algorithms

could not be reproduced precisely. The deviation in results thus might be partly the work of
non-identical input data, and partially induced by possible minor differences in the algorithm
implementation and its settings. The latter one is relatively likely, considering that a BPSO,
in general, employs several settings and parameters, of those only the number of iterations,
being 100, was revealed in the original article.

The simple heuristic scheduling algorithm shall provide some clarification to the situation
thanks to its straightforwardness. By examining results of the simple heuristic scheduling
algorithm, a very similar trend in difference of the values can be observed between the two
implementations as well. However, considering explicitness of the method description and
the simplicity of the method itself, it is almost impossible for it to be implemented differently
on any occasion, therefore this suggest that the deviation in results is a consequence of the
usage of non-identical input data rather than anything else.

Finally, as the Table 6.1 above suggests, difference between the results is merely subtle,
indicating that we have established a matching BPSO implementation ready to be compared
with the PSO algorithm proposed in this study.

6.1.2 Comparison of Performance

Having a reference BPSO algorithm prepared, the PSO can be tested against it in terms of
performance. The main part of testing consisted of maximising total profit for 10 diverse sets
of 500 vehicles parked in a parking lot in various intervals over a single day, again utilising
the price curve of August 7, 2008. Both the BPSO and the PSO algorithm shared the same
parameters, values of which were determined experimentally and based on experience to
ensure the best performance. The actual parameter values are documented in Table 6.2.

Parameter Value

Number of iterations 200
Number of particles |S| 75
Initial inertia weight ω 0.9

Cognitive acceleration constant C1 2
Social acceleration constant C2 2

Maximum velocity vmax 7

Table 6.2: Parameter settings used in BPSO and PSO
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Due to the increased complexity of the redefined problem definition proposed in this
study, the maximum number of iterations was increased to 200 in order to discover the point
of fitness saturation even in the PSO algorithm, and to find the best feasible solutions. The
resultant curves showing the best fitness growth over the run of both algorithms are shown
in the graph in Figure 6.1. Note that each pictured fitness curve is a sum of optimised fitness
development for all 500 vehicles in a given vehicle set, thus denoting the total profit for the
whole vehicle set.
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Figure 6.1: Comparison of BPSO and PSO on 10 different sets of 500 vehicles

The graph clearly shows how significantly the proposed PSO algorithm outperforms the
BPSO as it finds a fitter solution already after approximately 10 iterations of its run. The
fitness curves demonstrate that although BPSO saturates sharply and rapidly, after only
roughly 25 iterations, it is unable to improve the best found solution anymore, which is very
likely the effect of the limiting binary representation of the problem. The PSO, as opposed to
that, converges gradually and slowly—which is due to its continuous nature—but it shortly
achieves better solutions and manages to keep improving the best fitness until approximately
150th iteration when it more or less reaches saturation.

The Table 6.3 summarises the same results seen in the figure above, showing amounts of
power into and out of vehicle lot, and total profit for all 500 vehicles together. The data is
averaged over all 10 runs with different vehicle sets.

This summary shows that the PSO algorithm outperformed its binary version by more
than 25%. To achieve such profit increase with the identical vehicle sets, much more power
had to be transferred out of EV batteries and back in – specifically, 65% more power in
discharging, and over 93% more in charging. The radical disproportional increase of power
charged into the electric vehicle lot in the PSO algorithm is a result of the strict requirement
to meet the target SoC at the time of vehicle departure, which—on the contrary—is not
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Optimisation
Method

Power into Lot
[MWh]

Power out of Lot
[MWh]

Total
Profit

BPSO 3.6706 4.0185 $233.75
PSO 7.1012 6.6332 $293.44

Difference 3.4306 2.6147 $59.69
(93.46%) (65.07%) (25.54%)

Table 6.3: Comparsion of BPSO and PSO on 10 different sets of 500 vehicles

handled in the binary algorithm. If the BPSO implementation incorporated this restriction
as well, more power would have to be charged back into vehicle batteries, which would have
led to lower total profit and even larger gap in its performance compared to the PSO.

6.1.3 Impact of Initialisation

It is not without significance that the initial best fitness in the 1st iteration, as pictured
in zoomed-in graph in Figure 6.2, is fairly lower in the PSO algorithm than it is in the
BPSO. This is induced by initialisation of the swarm of particles and broadly the solution
representation itself.
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Figure 6.2: Comparison of initial behaviour of BPSO and PSO

In BPSO, a schedule for any day is represented by binary matrix X ∈ {0, 1}2×24, where
each pair of bits in a matrix column j denotes an action for the j-th hour of the day.
Considering random generation of the particles from uniform distribution, the probability of
any bit xi,j ∈ X becoming ‘0’ or ‘1’ is equal, that is P (xi,j = 0) = P (xi,j = 1) = 0.5.

As a consequence of this, a probability of any action in the schedule X being charging is
determined as conjoined probability of 2 bits in the same column j becoming both ‘1’. This
can be formulated to calculate the probability P (charge) as

P (x1,j = 1, x2,j = 1) = P (x1,j = 1) · P (x2,j = 1) = 0.5 · 0.5 = 0.25 (6.1)
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and analogically, P (discharge) is calculated as conjoined probability of 2 bits in one
column becoming both ‘0’, delivering the same result.

Adding up these two probabilities together, there is a 50% chance that either charging
or discharging action will take place in any hour of a newly initialised schedule, which
means that roughly 50% of the schedule will lead to selling and buying power and thus
generating profit. Besides, owing to the instant unlimited operations allowed in the relaxed
BPSO problem definition, a lot of power can be transferred within these hourly intervals,
developing potential for more profit at the start of optimisation.

Although the initial swarm in PSO method is as well generated randomly from uniform
distribution, the situation here is quite different due to the continuity of the problem. The
values comprising the particle vector x are restricted by the lower and upper bound, in this
study experimentally determined to be LB = 5 and UB = 40, respectively. Given the UB,
it is ensured that all values xi ∈ x belong to interval [−40,+40], and by excluding its inner
interval [−10,+10] denoting a hold action, we are left with 75% probability of any action in
the initial schedule being either charging or discharging.

While this is more than the 50% chance seen in the BPSO, as soon as these uniformly
distributed xi values get scaled to interval (0, 1] transforming the action length to proportion
of an hour, there is only a very little chance left that an initial solution would comprise a
full-hour action. Unlike in BPSO, a typical initial schedule would contain actions of various
lengths spanning only minutes or tens of minutes, rarely getting close to the whole hour.

This represents a low profit potential at the beginning of optimisation, but as the PSO
progresses through its iterations, it manages to improve the best solution by extending
duration of actions where profitable and by connecting neighbouring actions into lengthy
intervals, thus shortly outperforming the BPSO despite the initial disadvantage.

6.1.4 Consistency of Solutions

When optimising, it is desirable to obtain a stable algorithm which would, for the same
input data, always return the same result. This is obviously not the case in metaheuristic
algorithms, because these are unable to produce the same result on any occasion due to their
stochastic nature. On the other hand, it is appropriate even for metaheuristic methods to
always provide at least very similar output when the same input data are submitted.

Since PSO is a stochastic algorithm, it was tested, together with BPSO, on 10 runs for
the same single set of 500 vehicles to determine their ability to provide consistent results
throughout all trials. The results are to be found in zoomed-in graph in Figure 6.3.

As the curves suggest, the individual runs of the PSO algorithm are not identical, but
considerably alike. The progress of improving the best found solution is very close especially
at the beginning of optimisation, then it starts to differentiate across the runs, but the best
result found after saturation show a very small deviation in the end.

In BPSO, the curves for individual runs display only a subtle difference among themselves
being almost identical, but this is mainly due to the binary representation of the solution,
making the optimised problem much more simple than it is in the redefined formulation for
the proposed PSO method.

Detailed results for the individual PSO runs are further summarised in Table 6.4 showing
that the standard deviation of maximised profit for all 10 runs is only $0.63, which makes
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Figure 6.3: Comparison of 10 runs of BPSO and PSO with same set of 500 vehicles

it 0.21% of the total profit. Similarly to that, the standard deviations in values of power
into and out of vehicle lot are also less than 0.5%, which demonstrates a very reasonable
accuracy for a stochastic algorithm solving a continuous problem.

6.1.5 Comparison of Efficiency

One last step in the comparison between the pair of algorithms involves competing in
computational efficiency. To compare the efficiency, both algorithms were tested with 10
separate sets of 50 vehicles and the time spent by optimisation was measured. Again, the
algorithm parameters used were the same as in previous experiments, but this time, the
number of iterations was decreased to 100. Table 6.5 sums up the results for both algorithms.

As the table suggests, the PSO algorithm not only provided better overall results in terms
of objective function maximisation, but it also spent less time optimising the schedules for
each vehicle set. The computing time for a single set in PSO spanned only 13.9 seconds
in average, whereas in BPSO it took as much as 44.3 seconds, making its average duration
more than 3 times worse compared to PSO.

Considering that the PSO implementation, although sharing the overall scheme with
BPSO, incorporates additional computational burden—such as schedule consistency check,
solution fitness penalisation, or solution vector transformation—the massive reduction of
computing time cannot be achieved by anything else than the reduced solution representation.

In PSO, each solution particle x ∈ R1×(n−m) is a vector of length defined by the vehicle
arrival time m and departure time n, whereas in the BPSO implementation, each solution
is a matrix X ∈ {0, 1}2×24 of fixed size. Then, if we consider an average car staying in the
parking lot for 8 hours a day, an average particle size for PSO is |x| = 1 × 8, whereas in
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Run
Number

Power into Lot
[MWh]

Power out of Lot
[MWh]

Total
Profit

1 6.9243 6.5299 $293.90
2 6.8981 6.5155 $293.91
3 6.9316 6.5439 $294.26
4 6.8665 6.4892 $292.95
5 6.9066 6.5187 $292.66
6 6.9486 6.5519 $292.93
7 6.9018 6.5244 $293.44
8 6.9059 6.5250 $292.71
9 6.8548 6.4813 $292.85
10 6.9385 6.5441 $294.15

Average 6.91 ± 0.030 6.52 ± 0.023 $293.38 ± 0.63
(±0.43%) (±0.35%) (±0.21%)

Table 6.4: Results for 10 runs of PSO with the same set of 500 vehicles

Vehicle
Set

Total Profit
(BPSO)

Run Time
(BPSO)

Total Profit
(PSO)

Run Time
(PSO)

1 $19.87 41.7 s $24.69 14.0 s
2 $22.17 43.2 s $27.17 13.8 s
3 $19.65 39.6 s $23.70 13.8 s
4 $24.35 45.6 s $32.36 14.1 s
5 $24.11 44.5 s $30.52 14.1 s
6 $24.25 43.2 s $29.74 14.0 s
7 $24.17 44.6 s $29.44 13.2 s
8 $28.87 50.2 s $36.47 14.3 s
9 $21.26 42.8 s $25.18 13.6 s
10 $24.49 46.1 s $29.78 13.9 s

Average $23.32 44.2 s $28.90 13.9 s

Table 6.5: Results for 10 runs of BPSO and PSO with the same set of 500 vehicles

BPSO it is fixed to |X| = 2×24. By a naive assumption that the used data type is irrelevant
in computation, this smart particle size reduction would in average case require 6 times less
computing power speaking in favour of PSO, thanks to which the PSO is more time-efficient.

6.2 Schedule Consistency

Although the PSO implementation outperformed the BPSO method significantly, it is hard
to determine, how close are the PSO’s best solutions to the global optimum. However, it
can be at least approximately verified by visual inspection of the actual schedules.

In regard to a given price curve, the charging and discharging operations scheduled by
the PSO must appear to be rational and must not show any evident signs of non-optimality.
To verify this, a number of schedules are visually observed in this section.

The first example of a solution for a vehicle arriving at 3 PM and departing at 12 PM is
shown in Figure 6.4. In the figure, the upper sub-plot depicts the price curve, the middle one



CHAPTER 6. EXPERIMENTS 30

shows the change in SoC over time, and the lower one represents the schedule. Charging is
marked with blue lines, discharging with red ones, and the vertical dotted lines in the colour
of magenta symbolize the time of vehicle arrival m and departure n.
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Figure 6.4: Example 1 of a solution to the scheduling problem for one vehicle

As the figure shows, this solution contains 3 actions – charging twice, and discharging
once. At first, the vehicle charges its battery at the lowest price for something close to 10
minutes to achieve 100% SoC. Then, it waits for the peak price at 6 PM, when it discharges
as much power as possible within the hour. Given that within the next couple of hours, the
price stagnates and charging plus discharging efficiency would not allow for a profit to be
achieved, the vehicle waits until a minimum price within the remaining interval occurs and
it charges at that time only as much to meet the target of SoC Target = 60%, and leave at
12 PM. This behaviour appears to be perfectly reasonable.

The next example, shown in Figure 6.5, depicts an EV that arrives at the parking lot and
starts charging immediately up to 100% SoC again to utilise the most capacity potential of
its battery. The vehicle then keeps its full battery charge until the maximum price within its
stay interval occurs, but because, due to the realistic charging/discharging speed, it cannot
discharge all capacity within only one hour, it discharges a small portion of it already before
the peek price, when the price is the second highest. Then, within the last hour prior to
departure, when the price is the lowest, the vehicle battery is charged to the desired target
SoC level of 60%.

The last example, showing a situation with a completely different price curve, is depicted
in Figure 6.6. In this situation, the vehicle completely discharges its battery at the time
of the first small price peak, and then utilises the price decrease to gain full battery charge
prior to the greatest price peak of the day. At the peak price, it sells as much energy as
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Figure 6.5: Example 2 of a solution to the scheduling problem for one vehicle

possible, and again uses the last hour before departure to gain the necessary target SoC.

The presented graphs revealed a new information, which was not apparent from the
results in previous sections. With the problem definition as it is, the PSO algorithm creates
schedules, which very often lead to charging vehicle batteries up to the full charge, as well
as discharging down to the completely empty state. From the profit point of view, this
is perfectly rational and leads to high profits, therefore we verified that the implemented
method creates reasonable schedules that maximise profit.

However, in a real life situation, where the excessive amounts of extra charging and
discharging would decrease battery life time, the profits generated by this technique might
not be high enough to even compensate the arising costs associated with the harm to the
battery leading to the potential need of its expensive replacement.

6.3 Effect of Voltage

Up to this point, every previous experiment was conducted while considering the charging
voltage UCHG of 440 V. Such high voltage, as explained earlier (Section 4.3), allows to charge
or discharge as much as 12 kWh of the battery capacity within just an hour. For most of the
vehicles, according to the Table 3.1 of vehicle parameters, kWhHourly rate this high allows
transferring more than a half of their battery capacity within an hour. This should ensure
sufficient flexibility of the system and good potential for considerable profit.

It is clearly supposable that the level of used charging voltage UCHG will have a direct
impact on the fitness of the best found solutions. To verify this, a set of tests was conducted,
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Figure 6.6: Example 3 of a solution to the scheduling problem for one vehicle

comparing the influence of various voltage levels on the profit function growth. The voltage
levels used were 110 V, 220 V, and 440 V. The results comparing impact of the use of
different voltage levels, given a price curve for 7 August 2008, is shown in the Figure 6.7.
The experiment was conducted for 10 different vehicle sets of size 500.

As the figure shows, the used charging voltage UCHG has a direct impact on the system
performance, which is entirely in accordance with the presumptions. Interestingly, the fitness
curves appear to be almost perfectly proportional to the level of voltage used, suggesting that
there might be approximately linear relation between the charging voltage and the profit.

The lower is the charging voltage UCHG , the lower is the kWhHourly rate, leading to
reduction of the EV ability to use its battery capacity to generate profit. This is due to the
reduced amounts of energy that can be transferred within the same time, which is clearly
shown in Table 6.6. The low charging voltage leads to smaller amounts of power into and
out of the vehicle lot, allowing only for smaller amounts of profit to be achieved.

Charging
Voltage

Power into Lot
[MWh]

Power out of Lot
[MWh]

Total
Profit

110 V 1.2048 1.9571 $109.71
220 V 3.0386 3.4745 $176.51
440 V 7.1012 6.6332 $293.44

Table 6.6: Comparison of influence of charging voltage
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Figure 6.7: Comparison of influence of charging voltage on profit

6.4 Impact of Battery Degradation

Due to the presumed significant negative effect of battery degradation on the proposed
system, this section examines the extent of the awaited effect. It is worth noting that the
previous tests did not assume the battery degradation in the process, and maximised the
fitness function only based on the revenues and costs.

The following experiments are performed with the modified objective function f ′(xi),
which incorporates battery degradation costs DG i. For the purposes of battery degradation
cost calculation, it was at first required to define the battery price PBat and the battery life
time LTBat. Since the commonly indicated number of cycles in EV lithium-ion batteries is
around 3000, we adopted the value for the battery life time LTBat = 3000 cycles.

According to the report by NADA organisation [21], the current cost of a complete
automotive lithium-ion battery system ranges from $500 to $600 per kilowatt-hour. Also,
according to estimations, the lithium-ion battery prices are likely to drop down to only
around $150 per kWh by 2030. Given that observation, we conducted experiments with
various different battery prices, those being PBat = {50, 150, 500}, all expressed in $/kWh.

Having various battery prices defined, the testing of the PSO algorithm was taken, again
with a set of 10 different sets of 500 vehicles. The results retrieved from the testing are
shown in Figure 6.8.

The bold red curve shows averaged results for multiple PSO runs without the degradation
costs considered. Naturally, with relaxation on the degradation costs, the best performance
in terms of profit is achieved.

The remaining curves all represent runs of the algorithm with the battery degradation
employed. With the battery price PBat = $500/kWh, which corresponds to the current
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Figure 6.8: Comparison of influence of battery degradation to profit

situation in automotive industry, the initial fitness of the whole vehicle lot starts profoundly
from negative values, which is the result of the additional degradation costs over-riding the
revenues. Possibly with the assistance of the penalty function penalising solutions that do
not meet the target SoC, the algorithm within only few iterations manages to push fitness
value across the zero line to area of positive profit by reducing the number of actions in
vehicle schedules and their lengths.

Even with the battery price set to PBat = $150/kWh to simulate the battery price
decrease likely to happen within 15 years from today, the situation is still quite alike.
Regardless of the decreased battery price, the algorithm seems to schedule only the extent of
charging and discharging needed to meet the target SoC requirement, omitting any additional
power flow due to its unprofitability induced by battery degradation costs.

Despite the similarity in the final best achieved values, shared in both cases when the
battery price is $150/kWh, and when it is $500/kWh, it is observable that in each of the two
cases, the PSO algorithm behaves quite differently around approximately the 10th iteration.
It appears that when the battery price is higher and thus incurring worse initial fitness,
the penalty function stimulates the whole swarm of particles to gain higher velocity and
keep improving the best solution more briskly, producing a sharper knee on the fitness curve
compared to the situation of the lower battery price.
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The Table 6.7 provides further insight and clarification to this situation showing that
at the battery price of $150 per kilowatt-hour, although the average number of charge and
discharge actions per vehicle is higher leading to larger amounts of power transferred, all
the consequent revenues get disguised by the resulting degradation costs, providing the same
final profit as if those additional actions did not occur in the end.

Battery
Price

Power
into Lot
[MWh]

Power
out of Lot

[MWh]

Number of
Charging
Actions

Number of
Discharging

Actions

Total
Profit

$0/kWh 7.0852 6.6219 1.90 1.87 $293.33
$50/kWh 4.6234 4.7335 1.44 1.34 $205.73
$150/kWh 0.8980 1.8450 0.54 0.86 $131.51
$500/kWh 0.1069 0.6405 0.21 0.40 $131.99

Table 6.7: Comparison of influence of battery degradation to performance

Finally, as the Figure 6.8 and Table 6.7 suggest, at the battery price of only $50 per
kilowatt-hour, the degradation costs for the proposed model get reduced to such an acceptable
amount, which allows for the extra charging and discharging to occur and generate reasonable
profit considerably outmatching the associated degradation costs.

Based upon that, a conclusion can be made such that somewhere in the course of battery
price decrease from $150 to $50 per kilowatt-hour, there is a breaking-point when it actually
becomes profitable to use the electric vehicle batteries as a grid electricity storage device.



Chapter 7

Conclusions

This diploma thesis thoroughly investigates the topic of intelligent optimisation of schedules
for charging and discharging of electric vehicles and plug-in hybrid electric vehicles.

7.1 Summary

First of all, a comprehensive research was done to explore the closely related topics of Smart
Grids and vehicle-to-grid transactions, discovering the key aspects such as charging efficiency
and battery degradation likely to affect the concerned optimisation problem.

Following to this, we investigated various existing studies that solved the EV charging
and discharging scheduling problem by utilising metaheuristic methods like binary particle
swarm optimisation (BPSO), simplified social impact theory based optimisation (SSITO), or
even mathematical methods like convex optimisation. Owing to its straightforwardness,
the published vehicle parameters, and the presented detailed results allowing potential
comparison, the BPSO implementation became the most inspiring source for this work.

Having the related research done, we identified disadvantages and weaknesses of the
existing methods, and presented the resulting drawbacks in a detailed list. We then proposed
a reformulated problem definition and solution representation providing a new outsight to
the given optimisation problem, removing some of the major drawbacks identified before.

The proposed formulation emerged as a problem of continuous search space, which for
we then proposed and implemented a particle swarm optimisation (PSO) method tailored to
the needs of the study. To eliminate remaining drawbacks, the implementation incorporated
a penalty function to penalise inconsistent solutions for not meeting requirement on target
battery state of charge, and an alternative fitness function comprising battery degradation
costs to outline a model of a practical real-life situation.

Finally, the implemented PSO algorithm was confronted with the BPSO implementation
in order to determine its performance. In the testing, it was verified that the proposed PSO
implementation significantly outperforms the other algorithm in terms of the quality of the
best found solutions (by more than 25%), and in terms of time and memory efficiency as
well. The superior performance of the PSO algorithm, observed despite the fact that it
incorporates more restrictions allowing to simulate a more realistic situation compared to
the BPSO, was proved to be substantially the work of the proposed solution representation.
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7.2 Eliminated Drawbacks

Besides the very good overall performance, the implemented PSO algorithm managed to
eliminate the following drawbacks off the designated list:

• instant operations – this unrealistic assumption was eradicated by the use of constant
level of charging voltage requiring a realistic amount of time for each operation;

• battery degradation – through the proposal of a simple battery degradation model,
the effect of battery price was taken into account;

• desired SoC verification – the engagement of the penalty function helps to prevent
inconsistent solutions from occurring within the final stages of optimisation;

• discharging restriction – the removal of restriction disabling discharging bellow
the target SoC could be done owing to the penalty function, which watches over the
accomplishment of the target SoC;

• algorithm overkill – by the transformation from binary to continuous search space,
in favour of the problem practicability, its complexity increased as well, thus making
the used algorithm adequate to the situation.

7.3 Battery Degradation

The experiments with the PSO offered an interesting outlook to the problem of battery
degradation. Based on the assumption that the proposed battery degradation model is at
least approximately accurate and relevant, it appears that the current automotive battery
prices, ranging from $500/kWh to $600/kWh, completely put the whole idea of making profit
by charging and discharging off the table.

Given a situation of similar electricity prices and vehicle parameters to those in this study,
it might require the battery prices to drop down to somewhere between $50–$150/kWh before
this approach becomes profitable.

On the other hand, subtracting the battery degradation costs from the profit is necessary
only by the assumption that the extra charging and discharging accelerates the degradation
of the EV battery to such degree that its replacement would be inevitable. In case that the
life time of the battery would outlast the life span of the EV itself, this penalisation would
need not to be done. Considering the rapid automotive battery technology development in
recent years, this situation could in the future be accomplished by combining increase of the
battery life time with decrease of its price.

7.4 Future Work

Although not necessarily economically viable at the conditions of today, the concept of
optimisation of EV charging and discharging schedules remain very interesting, and would
deserve further attention. The future works concerning this topic could take additional
aspects in consideration to provide even more realistic model of the situation. Investigating
the effect of realistic battery charging characteristics, or influence of error in electricity price
prediction could prove as a great example of such aspects.
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Appendix A

List of Abbreviations

EV Electric Vehicle

PHEV Plug-in Hybrid Electric Vehicle

G2V Grid-to-Vehicle

V2G Vehicle-to-Grid

SoC State of Charge

LB Lower Bound

UB Upper Bound

PSO Particle Swarm Optimisation

BPSO Binary Particle Swarm Optimisation

SSITO Simplified Social Impact Theory based Optimisation

CAISO California Independent System Operators
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Appendix B

CD Contents

Since the character of this work is rather research-oriented than implementation-oriented,
all programming was done in MATLAB, a computing environment and a programming
language, supporting easy manipulation with matrices and plotting of various types of data.

The programmed source codes, included on the CD enclosed with this diploma thesis, consist
of MATLAB scripts and functions in *.m files.

On the attached CD, there is a MATLAB directory containing subdirectories Data, BPSO, and
PSO, which the contents of are following:

• Data – Contains 10 randomly generated sets of 500 vehicles;

• BPSO – Contains own implementation of BPSO algorithm;

• PSO – Contains own implementation of PSO algorithm.

In each directory containing source codes for an algorithm, use the main_script.m file to
run the algorithm.
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