
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

Bachelor thesis

Tool for comparison of �les of PLC programming and
con�guration software packages

Miroslav Nedv¥d

Suprevisor: Ing. Pavel Vrba, Ph.D.

Study Program: Cybernetics and Robotics
Field of Study: Robotics

20.5.2014

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

BACHELOR PROJECT ASSIGNMENT

Student: Miroslav N e d v ě d

Study programme: Cybernetics and Robotics

Specialisation: Robotics

Title of Bachelor Project: Tool for Comparison of Files of PLC Programming and Configuration
 Software Packages

Guidelines:

Goal of the work is to get familiar with ways of data representation used in the industrial automation systems
(standard IEC 61131 for PLC programming) and to implement a tool that is able to compare two files and detect the
changes (similarly to popular Windiff). Part of the work is the implementation of the graphical user interface, in which
the differences will be presented to the user in a meaningful form. The work is done in collaboration with Rockwell
Automation company, the world’s leading automation solutions provider.
Content of work:
1. Get familiar with RSLogix5000 software package for programming and configuration of Rockwell Automation’s
 Logix family of PLCs. Get also familiar with the structure of L5X file (XML format) that holds data of the
 RSLogix5000 project.
2. Create test data in form of two L5X files that will contain specific differences to be detected by the tool. Detection
 has to work for the following three major parts of the project: (i) tags in the global data table, (ii) tasks, programs,
 and routines including local data tables. The difference means addition or removal of given element, or
 modification of its parameters (like change of a data type of the tag). In case of routines the tools has to detect
 changes on the level of particular rungs and instructions.
3. Get familiar with existing ways of comparison of XML files and select the proper one, or design your own, method
 for effective comparison of given parts of L5X file.
4. Implement a Java library for comparison of two L5X files including the suitable format for holding the information
 about the detected changes.
5. Implement both textual and graphical user interface, in which the differences will be presented to the user in a vivid
 form.

Bibliography/Sources:
[1] Elhadi, M. ; Dept. of Comput. Sci., Sultan Qaboos Univ., Al-Khod, Oman ; Al-Tobi, A. Refinements of Longest
 Common Subsequence algorithm. 2010 IEEE/ACS International Conference on Computer Systems and
 Applications (AICCSA), 2010, pp. 1-5
[2] Extensible Markup Language (XML) 1.0 (Fifth Edition),
 dostupné z: http://www.w3.org/TR/2008/REC-xml-20081126/
[3] XML Path Language (XPath) 2.0 (Second Edition), dostupné z: http://www.w3.org/TR/xpath20/

Bachelor Project Supervisor: Ing. Pavel Vrba, Ph.D.

Valid until: the end of the summer semester of academic year 2014/2015

 L.S.

doc. Dr. Ing. Jan Kybic
Head of Department

 prof. Ing. Pavel Ripka, CSc.
Dean

Prague, January 10, 2014

České vysoké učení technické v Praze
Fakulta elektrotechnická

Katedra kybernetiky

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

Student: Miroslav N e d v ě d

Studijní program: Kybernetika a robotika (bakalářský)

Obor: Robotika

Název tématu: Nástroj pro porovnání souborů SW nástrojů pro programování
 a konfiguraci PLC

Pokyny pro vypracování:

Cílem je seznámit se se způsoby reprezentace dat v průmyslových automatizačních systémech (standard IEC
61131 pro programování PLC) a vytvořit nástroj, který umožní porovnat dva soubory a detekovat jejich rozdíly
(obdoba populárního nástroje WinDiff). Součástí řešení bude vytvoření prototypu uživatelského rozhraní,
ve kterém bude možné rozdíly vizuálně prezentovat uživateli. Práce je vypracována ve spolupráci se společností
Rockwell Automation, předním světovým hráčem v oblasti automatizačních řešení.
Náplň práce:
1. Seznamte se detailně s programem RSLogix5000 pro programování a konfiguraci PLC typu Logix firmy
 Rockwell Automation. Seznamte se dále se strukturou L5X souboru (formát XML) v němž je uložen projekt
 RSLogix 5000.
2. Vytvořte si testovací data v podobě dvou souborů L5X, které budou obsahovat specifické rozdíly, které bude
 vyvíjený nástroj detekovat. Detekce musí fungovat pro tyto tři hlavní části projektu: (i) tagy v globální datové
 tabulce, (ii) úlohy, programy a rutiny včetně lokálních datových tabulek, a (iii) add-on instrukce. Rozdíly je
 myšleno přidání nebo odebrání daného elementu, popř. modifikace jeho parametrů (např. změna datového typu
 tagu). V případě rutin musí nástroj jít s detekcí až na úroveň jednotlivých příček a instrukcí.
3. Seznamte se s existujícími způsoby porovnávání XML souborů a vyberte nejvhodnější z nich, popř. navrhněte
 vlastní, pro efektivní porovnání jednotlivých částí souboru L5X.
4. Naimplementujte knihovnu v jazyce Java pro porovnání dvou souborů L5X včetně vhodného formátu pro
 reprezentaci rozdílů.
5. Naimplementujte jak textové tak grafické uživatelské rozhraní, ve kterém budou uživateli rozdíly mezi
 porovnávanými soubory srozumitelně prezentovány.
6. Na testovacích datech demonstrujte funkci nástroje.

Seznam odborné literatury:

[1] Elhadi, M. ; Dept. of Comput. Sci., Sultan Qaboos Univ., Al-Khod, Oman ; Al-Tobi, A. Refinements of Longest
 Common Subsequence algorithm. 2010 IEEE/ACS International Conference on Computer Systems and
 Applications (AICCSA), 2010, pp. 1-5
[2] Extensible Markup Language (XML) 1.0 (Fifth Edition),
 dostupné z: http://www.w3.org/TR/2008/REC-xml-20081126/
[3] XML Path Language (XPath) 2.0 (Second Edition), dostupné z: http://www.w3.org/TR/xpath20/

Vedoucí bakalářské práce: Ing. Pavel Vrba, Ph.D.

Platnost zadání: do konce letního semestru 2014/2015

 L.S.

doc. Dr. Ing. Jan Kybic
vedoucí katedry

 prof. Ing. Pavel Ripka, CSc.
děkan

V Praze dne 10. 1. 2014

Abstract

Goal of this work is to create a tool that will be able to compare two projects created in the devel-
opment environment RSLogix5000 used for PLC programming. The project contains de�nitions
of tags and programs written in ladder diagram of IEC61131 standard. The tool �nds di�erences
between two projects and presents them to the user.

First part of the presented tool compares similarity of an XML structure by using the informa-
tion about the XML scheme. Second part of the tool compares textual representation of ladder
diagrams. Lines without changes are matched as �rst by using method for �nding the longest
common substrings to �nd the same blocks of code. The unmatched lines are parsed into the
object-structure containing list of elementary instructions to compute the similarity level. Last
step is selecting the most similar common subsequence of instructions.

Algorithm used in the �rst part is much faster than commonly used algorithms for XML com-
parison, because the XML scheme is used and attributes Name are used as identi�ers. Results
of algorithm that is used in second part are very similar to di�erences that human can �nd and
because unchanged rows were selected at �rst, it is very fast as well.

The proposed tool presents di�erences in a graphical form to the user. The results of comparison
are presented in the same form as in RSLogix5000 and thus provide more useful information to
the user than general text comparison tools. The proposed tool is also much more rich than a
comparison tool RSLogix Compare provided in the standart RSLogix5000 instalation. The tool
will be very usefull for programmers of industrial systems from Rockwell Automation company.

Abstrakt
Cílem této práce je vytvo°it nástroj pro porovnávání dvou projekt· vytvo°ených ve vývojovém
prost°edí RSLogix 5000 pouºívaném pro programování PLC. Projekt se skládá z de�nice tag· a
z program· zapsaných pomocí jazyka kontaktních schémat (standard IEC61131). Nástroj najde
rozdíly mezi projekty a prezentuje je uºivateli.

První £ást nástroje hledá rozdíly ve struktu°e XML soubor· s pouºitím informací které o struktu°e
známe. Druhá £ást se zabývá porovnáním textových reprezentací jazyka kontaktních schémat.
Pomocí spojování nejdel²ích posloupností stejných °ádk·, se vyberou bloky nezm¥n¥ného kódu
a poté se zbylé °ádky p°evedou do objektové struktury tvo°ené jednotlivými instrukcemi. Mezi
t¥mito instrukcemi se vypo£te procentuální podobnost a poté se hledá nejpodobn¥j²í spole£ná
posloupnost instrukcí.

Algoritmus první £ásti je oproti b¥ºným porovnávacím metodám XML soubor· velice rychlý,
protoºe pouºívá známé informace o struktu°e soubor· a atribut Name jako identi�kátor. Výsledky
algoritmu druhé £ásti odpovídají rozdíl·m, které by ozna£il £lov¥k a díky po£áte£nímu vybrání
stejných blok· kódu, je algoritmus také velice rychlý.

Výsledný nástroj prezentuje uºivateli informace o rozdílech v gra�cké podob¥, která je podobná
prost°edí RSLogix 5000. Proto jsou informace pro uºivatele mnohem uºite£n¥j²í, neº informace
z b¥ºn¥ pouºívaných nástroj· pro porovnávání textu. Výsledný nástroj je také mnohem bo-
hat²í neº porovnávací nástroj RSLogix Compare, který je standartn¥ dodávaný spolu s RSLogix
5000. Nástroj bude velmi uºite£ný pro programátory pr·myslových systém· od �rmy Rockwell
Automation.

Acknowledgements

I would like to thank my supervisor, Ing Pavel Vrba, PhD for his help during work on this thesis
and also my family for their support during my study.

Prohlá²ení autora práce

Prohla²uji, ºe jsem p°edloºenou práci vypracoval samostatn¥ a ºe jsem uvedl ve²keré pouºité
informa£ní zdroje v souladu s Metodickým pokynem o dodrºování etických princip· p°i p°íprav¥
vysoko²kolských záv¥re£ných prací.

V Praze dne .

Podpis autora práce

Contents

1 Introduction 9

1.1 Context . 9

1.2 Goals . 9

2 PLC programming 9

2.1 PLC . 9

2.2 IEC 61131 . 10

2.3 Ladder Diagram . 10

2.4 RSLogix 5000 . 11

2.4.1 Project structure . 11

2.4.2 Tags . 11

2.4.3 Programs . 12

2.4.4 Add-On instructions . 12

2.4.5 Structure of .L5X �les . 13

2.5 RSLogix Compare . 14

3 General algorithms for comparison 14

3.1 XML comparison . 14

3.1.1 XML . 14

3.1.2 XML processors . 14

3.1.3 Methods . 15

3.2 Text comparison . 17

3.3 Source code comparison . 19

4 Proposed solution 19

4.1 Tags comparison . 20

4.1.1 Algorithm description . 20

4.1.2 Expressing di�erences . 22

4.1.3 Evaluation . 23

4.2 Programs comparison . 24

4.2.1 Minimal information about programs . 25

4.2.2 Matching identical rungs . 25

4.2.3 Single rungs comparison . 28

4.2.4 Expressing di�erences . 35

4.2.5 Evaluation . 37

4.3 AddOn-Instructions comparison . 37

4.4 Comparison of other parts of L5X �le . 37

5 GUI 37

5.1 Di�erences in tags . 38

5.2 Di�erences in routines . 38

5.2.1 Ladder diagrams . 39

7

6 Case study 39

7 Conclusions 41

7.1 Further development . 42

Abbreviations 44

Content of included CD 44

References 44

8

1 Introduction

1.1 Context

Work is carried out on a request from Rockwell Automation company, which is among the top
automation solutions providers. The �agship product is a family of control logic PLCs delivered
together with programming tool RSLogix 5000.

During the development of projects for PLC regular backups are carried out. There is no solution
how to compare these backups quckly and �nd all the di�erences between two versions of project
instantly. This is necessary in case where the �nal version of the project does not work or the
run of the project is several times slower.

There are version systems like SVN [1], CVS [2], Git [3] or other tools that can compare source
code of programs. However, programming language of compared programs should be one of the
commonly used (for example Java, C, Pascal, etc.) and the most importantly, compared languages
should be textual. That is a problem because Ladder Diagram (see 2.3 on the following page)
uses graphical diagrams for source code creation. Although Ladder Diagrams have their textual
representation. This textual representation looks completely di�erent than source codes written
in commonly used languages.

There are tools such as WinDi� [4] used for comparing only textual �les that can �nd di�er-
ent lines. When two lines are not completely identical, user has to compare them by himself.
Therefore, these tools are inappropriate.

In addition, PLC project can be saved as XML formatted �le. However, pure XML elements and
attributes in this �le are used only for storage information about project structure and de�nition
of variables. Lines of source code representing lines of Ladder Diagrams are saved as text. That is
why we get only di�erences between variables and project structure by using tools for comparing
XML formatted �les.

Finally, none of the existing tools can show di�erences in graphical form, like in Ladder Diagrams
(see picture 1).

1.2 Goals

The aim is to create a tool that can compare two projects created in RSLogix 5000 saved as a �le
with the extension .L5X (page13) and to �nd the di�erences between each other.

- The tool will be designed for comparing �les .L5X and their speci�c formatting. It may not be
applicable to two general �les.

- The tool will record the speci�c di�erences, determining the percent identity between the �les
is irrelevant.

- The tool will be able to show di�erences between rungs in ladder diagrams.

2 PLC programming

2.1 PLC

Programmable Logic Controller (PLC) was originally designed to replace relay circuits that have
been used to automate in industry.

Therefore PLC is special computer designed to use in industry that performs the recorded program
for process control in real time. PLCs have usually lesser failure rate than common computers
and they are designed for multiple outputs and inputs. There are speci�c I/O cards which PLC
interacts with sencors and actuators through in the controlled system.

9

2.2 IEC 61131

IEC 61131 is an International Electrotechnical Commission standard for programmable con-
trollers. It is a set of requirements for advanced control systems. It is independent on the
speci�c organization or company and has a broad international support.

IEC 61131 consists of the following parts:

Part 1: General information

Part 2: Equipment requirements and tests

Part 3: Programming languages

Part 4: User guidelines

Part 5: Communications

Part 6 is reserved

Part 7: Fuzzy-control programming

Part 8: Guidelines for the application and implementation of programming languages
for programmable controllers

IEC 61131-3

IEC61131-3 speci�cation is a part of IEC61131 (see 2.2) and deals with programming languages.

Speci�cation de�nes �ve di�erent programming languages [5].

- Instruction List

- Structured Text Language

- Ladder Diagram

- Sequential Function Chart

- Function Block Diagram

Because of the fact that ladder diagram (LD) is the most commonly used programming language
for PLC in the USA and development of this tool is assigned by Rockwell Automation company
that comes from the USA, the tool will be focused on ladder diagrams.

2.3 Ladder Diagram

Ladder Diagram (LD) comes from relay wiring diagrams used by electricians (LD can be seen in
Figure 2 on page 12). It was necessary to �nd simple way, how to teach electricians to programm
instantly. Electricians are able to make same thing using LD. There is only one di�erence, they
are not using paper, but computer.

Figure 1: Example of ladder diagram

10

Program execution goes from top rung to bottom and from the left to the right on the rungs.
Between instructions in the series logical AND is applied and between branches logical OR is
applied. If program execution passes through all input instructions, an output instruction will
make its action.

Every instruction in ladder diagram has its text representation. For example, text representation
of rung number 0 in Figure 1 looks like this:

XIC(gtag)XIO(gtag2)XIC(gtag1)OTE(tag1)

This rung says that if tag named �gtag� is TRUE, tag �gtag2� is FALSE and tag �gtag1� is TRUE,
program execution will pass through all input instructions and then the output instruction OTE
will energize tag �tag1�. However, if just one evaluation of instructions (XIC, XIO, XIC) returns
FALSE, program execution will continue to the next rung.

Instructions

Instructions say to controller what to do with selected tags.

Simple instructions replace the function of relay. For example, XIC instruction (Examine If
Closed) compares whether selected Tag is set. If so, program continues to the next instruction on
the rung. If not, program continues to next the rung. There are also more complex instructions.
For example, mathematical instruction ADD, that sums the values of the speci�ed tags.

Instructions can by divided into two main categories.[6]

1. Input instructions - instructions that compare, check or examine - when they are evaluated as
true, the program execution continues with the next instruction on the current rung.

2. Output instructions - instructions that take some action - they set value of the selected tag,
turn o� a device, turn on a device or copy data. For example ADD or OTE (Output Energize).

2.4 RSLogix 5000

RSLogix 5000 is development environment of the Rockwell Automation company. Created projects
meet the IEC 61131 standard for programmable controllers (see 2.2 on the previous page).

Unlike other development environments such as NetBeans IDE, RSLogix 5000 is focused on cre-
ating programs only for PLCs. Projects can be created by using graphical environment without
writting code.

2.4.1 Project structure

The structure can be seen in Figure 2 on the following page. It looks like the following:

Controller - Here you can de�ne global variables that will be accessible from all programs
in a project. Variables are called Tags.

Tasks - One project can have multiple Tasks, each of which may consist of multiple
programs. Maximal number of tasks in one project is 16.

Program - Programs consist of several routines. In the program you can de�ne local
Tags, that will be accessible only in this program.

Routine - This is a place for logic of program.

Add-On instruction - They are similar to classes in object oriented programming lan-
guages with some limitations.

2.4.2 Tags

Variables in the environment RSLogix 5000 are called Tags. Each tag has de�ned name and
type. Tags can be created in Controller Tags menu (global tags) or in Program Tags or AddOn-
Instruction Tags menu (local tags).

11

Figure 2: Preview of development environment RSLogix 5000

Data types can be simple like integer, boolean, string, multidimensional arrays etc.. We can de�ne
new data structures as well.

Naming rules by IEC61131-3 & RSLogix 5000 [5] say:

Fact 1. Names for variables consist of a minimum of 1 character starting with an underscore �_� or an
alpha character (A-Z or a-z), followed by one or more characters consisting of an underscore �_�, alpha
character (A-Z or a-z) or a number (0-9).

2.4.3 Programs

Program consists of local tags and routines.

Local tags are accesible only from these routines. Routine from another program can not use
local tags de�ned in this program.

Logic of program is stored in routines. If we are using LD (2.3) each routine contains rungs and
one rung represents one line of source code. Routines can be performed periodically or on the
bases of special events that can be, for example, modi�cation of variable value.

2.4.4 Add-On instructions

Add-On instructions (AI) are similar to classes from object oriented programing languages, but
for example, there is no possibility to use inheritance. It is appropriate to use Add-On instructions
to replace commonly-used rows of logic and it is common that control engineers create libraries
of AI that can be reused in multiple solutions.

We can de�ne input and output parameters and local tags that are available only inside the
Add-On instruction.

12

Source code of Add-On instructions is written in the same way as it is in routines, but code
inside an Add-On instruction uses only the parameters and local tags de�ned in the instruction
de�nition.

Saved Add-On instruction creates its own instruction block that can be inserted into selected rung
simply as other common instructions.

Fact 2. The name can be up to 40 characters long. It must start with a letter or underscore and must contain
only letters, numbers, or underscores. The name must not match the name of a built-in instruction or an
existing Add-On Instruction.[7]

2.4.5 Structure of .L5X �les

Project created in development environment RSLogix 5000 can be saved as text �le with .L5X
extension, default format is .ACD in binary proprietary encoding. Important thing is that these
.L5X �les have XML (see 3.1.1 on the next page) format and additionally basic structure of these
�les is same in all �les generated by RSLogix 5000. Basic structure is shown in Figure 3.

Structure of new empty project: Example of structure of completed project:

Figure 3: Structure of .L5X �les

13

This basic structure says where the information about di�erent parts of project is stored. For
example, if we want an information about a program, we will look for it in the element Programs
in the project structure.

Most of information about project are stored by using only XML elements and attributes. How-
ever, source code representating single rungs is saved as text in single element for each rung. So
we can simply get text representation of logic of whole rung by using an XML parser, but we can
not get code of the selected instruction by using an XML parser only. In case of rungs, we have
to parse stored text and �nd instructions or branches by using some string parser.

Fact 3. Big advantage of .L5X �les over other common XML �les is that many elements in .L5X �le have
attribute �Name�. Every tag has name, every program has name, tasks, routines and Add-On instructions
have names as well.

2.5 RSLogix Compare

RSLogix Compare is a tool that is standardly provided with RSLogix 5000. It can recognize
di�erences between tags and other parts of projects, but recognized di�erences in ladder diagrams
are unsu�cient. It can recognize changed tag if the rest of rung is identical, but neither this is
done everytime. If there is one added instruction in the rung, rung without this instruction is
recognized as deleted in the newer �le and rung with this instruction is recognized as added into
the newer �le. The result is confusing and the user can not clearly see what is di�erent.

You can see the result of RSLogix Compare used on simple routine in Figure 23 on page 43 and
the result of LogixDi� used on same routine in Figure 24.

3 General algorithms for comparison

As it was said before (2.4.5), we can not use an XML parser only, because reasons would not be
su�cient. Some parts of project are stored as a plain text, but in this plain text we can �nd logic
of one line of algorithm. That is why we must select right combination of comparison methods to
get the best reasons.

3.1 XML comparison

3.1.1 XML

�Extensible Markup Language (XML) describes a class of data objects called XML documents.
XML is an application pro�le of Standard Generalized Markup Language [ISO 8879].� [8]

XML documents consist of elements that create tree-structure. Elements can contain either
parsed or unparsed data. Some of parsed data form markup and some are saved as attributes of
elements. Unparsed data are saved as an text in elements. The markup encodes a description of
the document's storage layout and logical structure. [8]

The result is a format that is easy-readable for humans and computers.

3.1.2 XML processors

It is necessary to select the most suitable tool for browsing XML �les. This tool will be an
important part of LogixDi�, because we have to read from the �les all the time. The time that
takes reading of XML �les can take major part in total running time of the LogixDi�.

Options:

Simple API for XML (SAX)

It is suitable for extensive documents. A document is read serially, so it is fast, but is di�cult to
use SAX for extracting information from the random places of XML document. [9]

14

Document Object model (DOM)

It creates a tree structure of the document where nodes represent elements. The entire document
must be loaded into memory and that is memory intensive. [10]

Streaming API for XML (STAX)

It uses a cursor as the entry point. The application moves the cursor for getting the information.
It is necessary to keep the track of location within the document. It is compromise between DOM
and SAX. [11]

XML Path Language (XPath)

XPath is an expression language that allows processing of elements from an XML document. It
is based on a tree structure of XML documents. It can use hierarchic addressing of the nodes in
the XML tree. [12]

Java-based "document object model" (JDOM)

It is a Java representation of an XML document and it is optimalized for Java programmer [13].
For parsing documents it defaultly uses JAXP (Java API for XML Processing) [14] that leverages
the parser standards SAX and DOM. Additionally JDOM is available under an Apache-style open
source license.

JDOM java representation of an XML document:

An XML �le is represented by tree structure, where nodes are called Elements. Each element can
have Attributes that specify its properties. The elements can contain Text and other children
elements.

Example:

<Tags>

<Tag Name="t1" TagType="Base" DataType="DINT" Constant="false">

<Data>01 00 00 00</Data>

<Data Format="Decorated">

<DataValue DataType="DINT" Radix="Decimal" Value="1" />

</Data>

</Tag>

<Tag Name="t3" TagType="Base" DataType="DCI_STOP" Constant="false">

....

</Tags>

When we use JDOM to this XML structure we get element Tags with no attributes or text, but
with child elements. The �rst child element is Tag that has attributes Name, TagType, DataType,
Constant and it has child elements Data and Data. The �rst child element Data has no attributes
but it contains text �01 00 00 00�.

3.1.3 Methods

It is often faster and better to see changes between �les than their current versions. For that
purpose there are programs like di�, WinMerge and other, but algorithms of these programs work
with text as a sequence of lines. We can use these algorithms to �nd di�erences between XML
formatted documents, but they still handle it like sequence of lines.

Algorithms that work with XML documents like with tree-structured documents can gather more
information about di�erences. These change detection algorithms are optimalized for di�erent

15

<table>

<tr id="1">

<td>First line</td>

</tr>

<tr id="2">

<td>Second line</td>

</tr>

</table>

<table>

<tr id="2">

<td>Second line</td>

</tr>

</table>

<tr id="1">

<td>First line</td>

</tr>

Original structure: Updated structure:

Figure 4: Example of the tree structure

requirements on time, memory or accuracy of results. Most of algorithms used for common
XML �les are looking for similarities in the tree-structure. This tree-structure can be ordered or
unordered and this fact divides algorithms into �rst two groups.

When we have structure as in Figure (4), algorithms working with unordered tree do not �nd any
di�erence. However, ordering among siblings is signi�cant for algorithms that work with ordered
trees. These algorithms mark the di�erences.

What kind of di�erence algorithm can �nd is another division of commonly used algorithms. Each
algorithm can recognize added and deleted node and most of them can recognize updates. Last
group of algorithms can recognize moves and copy. When we return to the Figure (4) and we
use an algorithm for ordered trees, the algorithm will �nd one move if it can recognize moves.
If not, it recognizes one deleted part and one added part. Recognizing of moves over the entire
document is demanding, but the result with moves is smaller and more easily readable for the
user. Results are saved in delta �les. We should be able to create updated �le by using the delta
�le and the original XML �le .

Examples of tools for XML comparison are as follows:

X-Di�

The algorithm works with unordered trees and it can recognize added, deleted and updated
elements [15]. It integrates an XML tree-structure with standard tree-to-tree correction technique
[16], to �nd di�erences and to generate minimum-cost delta �le.

XyDi�

XyDi� works with ordered trees and recognizes added, deleted, updated and moved elements
[15]. It is focused on improving time and memory management, but it can not guarantee optimal
results.

The algorithm computes hash and weight for every node in both XML trees and each node in
original XML document gets its unique identi�er. The algorithm matches nodes with the same
value of hash and it tries to make the tree as large as possible.

DeltaXML

This tool can work with both, ordered and unordered trees and it recognizes added, deleted and
updated elements [15]. Disadvantages of this tool are that it is commercial and maximum size of
tree is 50 MB. On the other hand, it uses algorithm that runs in linear time.

Schema-Less, Semantic-Based Change Detection for XML Documents

As the title said, this method is not using an XML structure as the main source of information.
This is an advantage in cases where structural changes of XML are signi�cant, because algorithms

16

described above will break down in these cases. These structural changes happen particularly in
data on the web.

The example of XML structures that can be compared by this method is shown in Figure 5. For
more details about this method see [17]. For us this is just an example of method that is not
using tree-to-tree comparison. We can not use advantages of this method, because we know the
basic structure of �les that will be compared (see 2.4.5) and this structure is same in all cases.

<user>

<nick>Joy</nick>

<game>

<name>Train</name>

<score>550</score>

</game>

</user>

<user>

<nick>Pette</nick>

<game>

<name>Train</name>

<score>280</score>

</game>

</user>

<game>

<name>Train</name>

<score>550

<user>

<nick>Joy</nick>

</user>

</score>

<user>

<nick>Pette</nick>

</user>

</game>

<score>280

</score>

Original version: Updated version:

Figure 5: Example of the same information considered in di�erent XML schema

3.2 Text comparison

These methods and algorithms do not take meaning of a text into account. They work with the
text as with sequence of characters. Most of tools such as Windi� [4] compare only whole lines
of a text �le. This should be much faster than to compare every single character and the results
are very similar for the user.

Methods will be explained on one line of the text. However, you can imagine that one character
in the line represents the whole row of the text.

Examples of text comparison algorithms:

Longest Common Subsequence

The longest common subsequence (LCS) problem is to �nd the longest sequence of characters
that is the same in all compared strings [18]. Algorithms for computing LCS [19, 20] are used,
for example, in �le comparison tools like WinDi� [4], unix di� [21] etc.. The example of LCS you
can see in Figure 7.

Longest Common Substring

The longest common substring (LCSS) problem is to �nd the longest string that is the same in
all compared strings [22]. The example of LCSS you can see in Figure 7.

Levenshtein distance

It says how dissimilar two strings are [23]. It counts minimal amount of operations (insertion,
deletion, substitution) that are needed to make strings identical. This method can be used, for
example, for dictionaries or some whisperers. It is an easy way to �nd similar word or to say how
much two words are di�erent. However, it is not the best way for comparison of extensive text
�les.

For example, if we compute Levenshtein distance between word �head� and �hands�, the result
will be number three (see Fig. 6).

17

head

hand - insertion of “s”

hands

h ad -

ha d -

a

n

s

substiotution for “e” to “a”

substiotution for “a” to “n”

Figure 6: Example of computing Levenshtein distance

Di�erences between LCS and LCSS methods

In Figure 7 you can see example of LCS and LCSS methods. We prepare two strings and compare
them with both methods. At �rst you can see the sequence of characters selected by using
LCS and LCSS methods, which were used only once. These sequences are the longest selected
ones. Secondly you can see all subsequences selected by using methods recursively on unmatched
characters until their results are not empty.

At the end of the Figure you can see how the characters are matched. Notice that it is the same
in both methods.

Longest subsequence:

All subsequences (2):

Matched couples:

A B G H I J K L M N O P R

A B G H I J K L M N O P R

A B G H I J K L M N O P R

A B G H I J K L M N O P R

A B G H I J K L M N O P R

A B G H I J K L M N O P R

C D E F 2 Q

A X D E P 2 Q

C F

A X P

C F

A X P

D E 2 Q

D E 2 Q

D E 2 Q

D E 2 Q

Longest substring:

All substrings (7):

Matched couples:

P

P

A B

A B

A B

A B

A B C D E F 2 M N O P Q R

A B M N O P A X D E P R 2 Q

C F

A X

C F

A X

G H I J K L

G H I J K L

G H I J K L

G H I J K L

G H I J K L

G H I J K L

D E

D E

D E

D E

2

2

2

2

M N O P

M N O P

M N O P

M N O P

Q

Q

Q

Q

R

R

R

R

1. string:

2. string:

A B C D E F G H I J K L 2 M N O P Q R

A B G H I J K L M N O P A X D E P R 2 Q

1. 2. 3. 4. 5. 6. 7. 1. 2. 3. 4. 5. 6. 7.

Figure 7: First example of di�erences between LCS and LCSS results

Only in special cases results of recursively used methods are d�erent. For example, where some
characters are copied after substring moved from the end of �rst string to the beggining of second
string and this moved substring is shorter than the rest of strings and additionally in the rest
of the string there are some little changes. These little changes break the LCSS method on the
beggining of the �rst string and it matches moved substring, but LCS method skips little changes
and matches the �rst part of the string (see Fig. 8).

Longest subsequence:

All subsequences (2):

Matched couples:

A B C D E F G

A B C D E F G

A B C D E F G

A B C D E F G

A B C D E F G

A B C D E F G

X M N O P A

M N O P

X A

X A

M N O P

M N O P

M N O P

M N O P

Longest substring:

All substrings (3):

Matched couples:

B C

B C

B C

B C

A B C X D E F G

B C D E F G

A X

A X

M N O P A

M N O P A

M N O P A

M N O P A

M N O P A

M N O P A

D E F G

D E F G

D E F G

D E F G

1. string:

2. string:

A B C X D E F G M N O P A

M N O P A B C D E F G

Figure 8: Second example of di�erences between LCS and LCSS results

18

3.3 Source code comparison

The typical thing is that these methods parse text �le to some atomic elements (tokens) at �rst.
To recognize what is atomic element and what is its function, tables of known tokens are used.
These are di�erent for di�erent languages. The comparison itself works with these tokens. Some
methods use text comparison methods modi�ed for working with tokens instead of characters
(Levenshtein Distance, LCS, see 3.2). Some methods make a tree-structure from tokens and
compare similarities between tree structures. They either use a combination of tree structure and
text comparison methods.

Source code comparison methods in this article [24] are divided into Textual comparison, Token
Comparison, Metric comparison, Comparison of abstract syntax trees and Others.

Examples of known algorithms:

The NCP Algorithm of Fuzzy Source Code Comparison

This algorithm works with tokens carried in trie-trees. It uses Levenshtein distance between
tokens for similarity computation. The algorithm is used for recognizing plagiarism. [25]

Clone Detection Using Abstract Syntax Trees

Clone detection tries to �nd parts of codes that compute same results [26]. These parts are mostly
produced by copy-paste operation. Therefore semantic equivalence of programs is not detected
completely. For the same reason, commentaries, spacing or other non-semnantic changes are
expected not to be modi�ed.

The �rst step of algorithm is creation of abstract syntax tree. Then sub-trees are detected. In
the next step sequence of sub-tree clones is found. In the last step clones are tried to be found
by combinations generalizing of other clones.

4 Proposed solution

At the beggining of developing LogixDi� we have to select some tool to handle information stored
in XML documents. We have selected JDOM browser (see 3.1.2). There are several reasons for
this decision, like:

1. LogixDi� have to be created in Java language and JDOM is optimalized for Java.

2. The most usefull thing is that elements from an XML document are represented as
Java objects and they implement functions to work with them.

3. These given objects are still in tree structure.

4. There is a possibility to change used parser or to use XPath language and that is
good to know to start the project, which basis will stay on this tool.

XML comparison method

We can say that our algorithm works with unordered trees, because order between siblings is not
signi�cant (see 3.1.3). However, we do not compare tree-structures of XML documents, because
we know that the basic structure of used �les is the same (see 2.4.5). Information about used
project structure giving us a possibility to optimalize the algorithm to be faster, with no impact
on the accuracy of the obtained results.

Another fact arising from the known structure is that we do not have to look for moved or copied
elements, because for example element Tag can not be moved between Programs etc.. So we
recognize only added, deleted and changed elements and �le with results is still minimum-sized.

These facts are used in both proposed methods, Tags comparison and Logic comparison. Each
comparison of whole L5X document uses both methods together to reach the best results.

19

4.1 Tags comparison

Tags comparison method uses facts that we know about common XML �les and additionally
speci�c properties of L5X �les (see 2.4.5 on page 13). It can �nd all di�erences in projects but
di�erences found between rungs are insu�cient, because this method can only detect if rungs are
completely identical or not.

The method is used for �nding di�erences between properties of programs, structure of projects,
tags and all other infromation stored in L5X �les. It is not used for �nding di�erences in routines
of programs and add-on instructions, that means di�erences between single rungs.

Basic preconditions:

1. Proposed algorithm uses JDOM for reading �les, so �les have to be XML formatted.
It would be ine�cient not to use advantages of XML formatting.

2. Algorithm compares only the same elements which means that for example element
Tags from �rst �le is compared only with element Tags from second �le. It does not
make sense to compare element DataValue with element Program, because we know
that di�erent elements carry information about di�erent part of the project (see 2.4.5
on page 13).

3. It uses fact that lots of elements have attribute Name (Fact 3 on page 14). If an
element has attribute Name, the element from the second �le must have this attribute
as well and the attribute must have same values.

4. We know that in one �le can not be two programs with the same name, two global
tags with the same name and in one program can not be two routines with the same
name. In general we can say, that in the same deep in project structure and under the
same parent element can not be two same elements with identical values of attribute
Name. So if we �nd two elements with the same name and with identical values of
attribute Name with belonging to the same parent element (but in another �le) these
elements are original one and its updated copy.

5. Basic project structure of .L5X �les is the same (see 2.4.5 on page 13). We know
that if wanted element is under one parent element in one �le this wanted element must
be under the same parent element in second �le. If wanted element is not there, it is
deleted. So we can simply recognize added or deleted elements and we do not have to
look into this elements and look at their structure.

You can see that defaultly there are not compared elements with di�erent name or with di�erent
value of attribute �Name�. However, user can specify paths to wanted parts of L5X �les and then
these parts will be compared.

4.1.1 Algorithm description

At the beggining we have two L5X �les Older and Newer. Older �le represents original �le and
Newer �le represents updated �le.

Algorithm step 1 - The algorithm connects to L5X �les and loads root elements rootOlder and
rootNewer and then objects (pathOlder and pathNewer) representing path to these root elements
in XML �les are created (see algorithm 1 on the following page in pseudocode).

Algorithm step 2 - These roots and paths are passed as arguments to function compareByXML
and it recursively checks all elements in L5X �le and returns all di�erences found. If the passed
older element is Programs or AddonInstructionDe�niton the function returns empty di�s without
comparison, because programs and add-on instructions are compared by second proposed method
(see chapter 4.2 on page 24).

Algorithm step 2 a) - Attributes of elements are selected and empty map of their couples is
prepared (see algorithm 2 on the following page in pseudocode).

Algorithm step 2 b) - Starts a loop to compare each attribute of attributesOlder with each
attribute of attributesNewer:

20

Algorithm 1 main method of Tags comparison algorithm (pseudocode)

1 .
roodOlder = loadRootElement (o l d e rF i l e)
roodNewer = loadRootElement (newerFi le)
pathOlder = rootOlder . getPath () ;
pathNewer = rootNewer . getPath () ;
2 .
compareByXML(rootOlder , rootNewer , pathOlder , pathNewer)

If attribute has no couple in the map, checks if the names of attributes are identical,
if they are, saves this couple to the map and checks if values of attributes are same, if
values are di�erent adds all information about paths, names and di�erences to Di�s.

Algorithm step 2 c) - Looks for attributes with no couple in the attributeMap and adds them to
di�s

Algorithm step 2 d) - Checks di�erence between text of elements.

Algorithm step 2 e) - Creates lists of children of given elements and makes map of couples
childrenElementsMap (see algorithm 3 on the next page in pseudocode). If element has couple in
childrenElementsMap function compareByXML is recursively used to them and its di�erences are
added to list of di�erences. If element has no couple in childrenElementsMap information about
it is added into the list of di�erences.

Algorithm 2 description of function compareByXML (pseudocode)

compareByXML(olderElement , newerElement , pathOlder , pathNewer)
d i f f s = new empty l i s t o f d i f f e r e n c e s
IF olderElement IS NOT Programs AND olderElement IS NOT AddOnInstruct ionDef in i t ion

2 a)
a t t r i bu t e sO ld e r = olderElement . g e tAt t r i bu t e s ()
at t r ibutesNewer = newerElement . g e tAt t r i bu t e s ()
attr ibuteMap = array [2]

2 b)
FOR i < number o f o l d e r a t t r i b u t e s

FOR j < number o f newer a t t r i b u t e s
IF there i s no matched couple in attr ibuteMap [1] [j]

IF names o f a t t r i bu t eO lde r i s equal to name o f attr ibuteNewer
adds both to attr ibuteMap
IF va lue s o f a t t r i b u t e s are not i d e n t i c a l

adds new d i f f to d i f f s
2 c)

FOR i < number o f o l d e r a t t r i b u t e s
IF attr ibuteMap [0] [i] == −1

adds new d i f f to d i f f s
FOR i < number o f newer a t t r i b u t e s

IF attr ibuteMap [1] [i] == −1
adds new d i f f to d i f f s

2 d)
IF text o f e lementOlder i s not equal to t ext o f elementNewer

adds new d i f f to d i f f s
2 e)

childrenElementsMap = makeChildrenElementsMap (elementOlder , elementNewer)
FOR i < number o f olderElement ch i l d r en

IF ch i l d has couple in childrenElementsMap
adds r e s u l t o f compareByXML(ch i ldOlder , childNewer , updated pathOlder , updated

pathNewer) to d i f f s
ELSE

adds new d i f f to d i f f s
RETURN d i f f s

21

Algorithm 3 description of function makeElementsMap (pseudocode)

makeChildrenElementsMap (elementOlder , elementNewer)
elementsMap = array [2] where va lue on the s e l e c t e d po s i t i o n means matched element from

second f i l e
FOR i < number o f o l d e r e lements

FOR j < number o f newer e lements
IF ac tua l newer element has no couple in elementsMap

IF name o f elementOlder i s equa l s to name o f elementNewer
IF a t t r i b u t e "Name" i s nu l l in both e lements

saves t h i s couple to the elementsMap
ELSE IF a t t r i b u t e "Name" i s NOT nu l l in both e lements

IF value o f a t t r i b u t e "Name" i s i d e n t i c a l in both e lements
saves t h i s couple to the elementsMap

RETURN elementsMap

4.1.2 Expressing di�erences

Each di�erence carries information about positions in both L5X �les that means about its positions
in projects structure, information about what type of di�erence it is (added, deleted, changed)
and information about what type of XML part is changed (element, text, attribute).

Recognized di�erences

Three types of di�erences are de�ned:

1. added - Di�erent part was added to newer �le. This element is not in the older �le.

2. deleted - Di�erent part was deleted from newer �le. This part is in the older �le,
but it is not in the newer �le.

3. changed - Di�erent part was changed in newer �le. This part is in both �les, but it
has di�erent values.

Each type of di�erence can be in Attribute, Element can be added or deleted and Text can be
only changed.

Position in project structure

Position in project structure is saved as path consisting of three parts. Every part carries infor-
mation about way from the root element through parent elements to this modi�ed element.

First part is a list of strings, where each string is name of element.

Second part is a list of numbers, where each number means order between children under actual
parent element.

Third part is a list of strings, where each string is value of actual attribute Name.

List of numbers is only one of these that has right unique path in every situation, because each
element does not have attribute Name and there are some situation where are more than one
element with same name, but with no attribute Name (see 4.1.2).

Lists of strings are mainly for users, because if we show to the user path of numbers it will be
di�cult for him to �nd wanted element. However, we can get strings by using list of numbers,
but it is faster to save them than to �nd it by using the path of numbers. We assume that there
will not be too di�erences to �ll memory, but computing time can be long.

Example:

Example of di�erences is shown in Figure 9. We can see four di�erences there.

1. element Tag with name �gtag� is deleted.

22

Path in older �le: Controller(example)/Tags/Tag(gtag)

2. text of element Data was changed.

Path: Controller(example)/Tags/Tag(X)/Data

Older value: 0

Newer value: 16

3. value of attribute of element DataValue was changed.

Path shown to user: Controller(example)/Tags/Tag(X)/Data/DataValue

All tree parts of path:

a) elements: Controller/Tags/Tag/Data/DataValue
b) order in older �le: 0/5/1/1/0
c) names: example/-/X/-/-

Ordered path in newer �le is di�erent: 0/5/0/1/0

Attribute: DataType

Older value: DINT

Newer value: REAL

4. element Tag with name �check� is added.

Path in newer �le: Controller(example)/Tags/Tag(check)

Older: Newer:

<Controller Use="Target" Name=" ”>

<RedundancyInfo Enabled="false" />

<Tag Name=" ” TagType="Base" >

<Data Format="Decorated">

<DataValue DataType=" "/>

</Data>

</Tag>

example

X

...

<Security Code="0"/>

<SafetyInfo/>

<DataTypes/>

<AddOnInstructionDefinitions/>

<Tags>

<Data> </Data>

</Tags>

16

check
0

Decorated
BOOL

REAL

<Tag Name=" " TagType="Base">
<Data> </Data>
<Data Format=" ”>

<DataValue DataType=" "/>
</Data>

</Tag>

<Controller Use="Target" Name=" ”>

<RedundancyInfo Enabled="false" />

<Tag Name=" ” TagType="Base" >

<Data> </Data>

<Data Format="Decorated">

<DataValue DataType=" "/>

</Data>

</Tag>

example

X

...

<Security Code="0"/>

<SafetyInfo/>

<DataTypes/>

<AddOnInstructionDefinitions/>

<Tags>

</Tags>

<Tag Name="gtag" TagType="Base">
<Data></Data>
<Data Format="String" Length="0">

<![CDATA['']]>
</Data>

</Tag>

0

DINT

Figure 9: Example of di�erence types

4.1.3 Evaluation

Tags comparison method is maximally optimalized for our needs. We do not compare tree struc-
tures, but we use known information about the project structure (see 2.4.5). Algorithm �nds all
di�erences in project structure, global tags, tasks etc., it is not used for comparison of Programs
and AddOnInstructions. Each di�erence carries information about position in the project struc-
ture. So users have complete information about what is changed in what part of their projects.

Algorithm complexity is O(mn) to compare two documents with number of elements n and m.
However, number of executed operations is much smaller, because we compare only elements on

23

the same position in the project structure. Additionally if we do not match couple of elements we
do not look on their children elements. On the other side if we match couple of elements, second
loop stops.

Implementation of algorithm can be found on attached CD. There you can see used classes for
storing di�erences and concrete source codes for comparison.

Example of operations executed for elements matching.

Files structures are in Figure 10. In older structure is 30 elements and in newer structure is 29
elements. Theoretically, we would need n ·m = 30 · 29 = 870 operations.

Our rules:

I. Algorithms compares elements only on same position in project structure.

II. Our algorithm stops second loop when two elements are matched.

III. Matched elements are not compared again.

If we use these three simple rules, we need only 36 operations to compare these �les. All executed
compares are in Figure 10.

Name=”A”

Name=”B”

Name=”C”

Name=”D”

Name=”X”

Name=”B”

Name=”C”

Name=”D”

Newer file:Older file:

Figure 10: Example of executed comparisons

4.2 Programs comparison

Programs comparison uses both methods Tags comparison method and new method (Logic com-
parison method), which is described in this chapter.

24

Obtaining more accurate results while comparing logic of single rungs is main reason for the
development of the Logic comparison method. As it is written in chapter 4.1, Tags comparison
method can recognize only if logic of two rungs is completely identical or not.

Logic comparison method is proposed to compare rungs of programs. It can �nd di�erences
between single instructions.

Programs comparison runs in �ve steps:

Tags comparison method:

1. Pairs programs by attribute �Name�.

2. Loads minimal information about programs (see 4.2.1).

Only matched couples of programs are compared in next steps.

3. Finds di�erences between local tags and matched routines. It is not looking to
children elements of single routines

Logic comparison method:

4. Selects rungs that are identical in original and updated routine and pairs these rungs
by �nding the longest common substrings.

5. Compares all unpaired rungs by �nding the longest common subsequence between
its instructions. Selects couples that have the biggest similarity and saves di�erences
between them.

4.2.1 Minimal information about programs

Minimal information about programs is only visualization of programs structure for user. It is
mainly used for comparisons operated from command line that have only textual output. In
minimal information user can see whether some program was probably only renamed and based
on that he can decide to compare this program and its renamed copy. Renamed programs are
not compared, because only programs and routines with same name are compared defaultly.

Minimal information consist of:

- program name

- names of all routines in this program

- numbers of rungs in each routine

In Figure 11 there is example of minimal information about programs printed into command line.
Notice that program �zero� is probably renamed copy of program �prog2�.

file:

program name: MainProgram

0. routine name: MainRoutine, rungs: 13

1. routine name: routinre01, rungs: 7

program name: prog2

0. routine name: routine20, rungs: 7

1. routine name: routine21, rungs: 3

program name: programX

0. routine name: routineX1, rungs: 5

Older file:

program name: MainProgram

0. routine name: MainRoutine, rungs: 13

1. routine name: routA, rungs: 0

2. routine name: routinre01, rungs: 7

program name: programX

0. routine name: routineX1, rungs: 5

program name:

0. routine name: routine20, rungs: 7

1. routine name: routine21, rungs: 3

Newer

zero

Figure 11: Example of minimal information output

4.2.2 Matching identical rungs

This part tries to �nd all sequences of rungs that are unchanged or only moved. It can recognize
added or deleted rungs only in case, that each rung of one routine has couple and second routine
has more rungs. Results of this part correspond with changes that could be done by programmer.

25

This method can not recognize di�erences between instructions, but it is fast way to select modi�ed
and identical rungs.

Routine stored in L5X �le is a combination of XML language and textual strings that represent
ladder diagrams. Used XML structure is the same in all cases. So we can select only strings that
represent ladder diagrams and we can work only with them in following steps. Example of routine
stored in the L5X �le is shown in Figure 12.

<Routine Name=" ” Type="RLL">

<RLLContent>

<Rung Number="0" Type="N">

<Text>

<![CDATA[XIC()OTE();]]>

</Text>

</Rung>

<Rung Number="1" Type="N">

<Text>

<![CDATA[XIC()XIC()XIC(?)XIC(?)ONS()OTL();]]>

</Text>

</Rung>

<Rung Number="2" Type="N">

<Text>

<![CDATA[XIO()XIC()OTE();]]>

</Text>

</Rung>

</RLLContent>

</Routine>

MainRoutine

A B

A B X A

i A b

Figure 12: Example of routine stored in L5X �le

Algorithm description

At the beggining we have two lists of Strings that represent all rungs in older and newer routine.

Comment for algorithm 4 on the next page:

1. Each rung from �rst list is compared with each rung from second list. If they are equal the
algorithm saves number that says how many rungs in the sequence are same into similarityMatrix.

Rows in the similarityMatrix represent older rungs and columns represent newer rungs.

2. Starts a loop for getting all rungs that have pair.

2 a) The longest substring between unmatched values in the similarityMatrix is selected here (the
biggest number in matrix).

2 b) Single rungs from selected substring are matched.

Two dimensional array carries information about couples.

2 c) Some rows of the matrix are reserved now. It is necessary to check columns that are one
row below these reserved rows. If they have bigger value than one, it means, that the substring,
which lenght is represented by this value, starts somewhere between or above the reserved rows.
We have to change these values to 1 and update all next values of this substring. (see example
on page 28).

2 d) The same process as 2 c) however, we check rows that are one column on the right from
reserved columns.

Result of this function is two-dimensional array of integers (couplesMap[2][]), where all informa-
tion about couples is stored. Array couplesMap[0] represents rungs from older �le, position of
x (couplesMap[0][x]) means rung from older �le and value of couplesMap[0][x] means matched
couple from newer �le. Array couplesMap[1] represents rungs from newer �le, position of y (cou-
plesMap[1][y]) means rung from second �le and value on this position means matched couple from

26

Algorithm 4 matching rungs by using longest common substring method (pseudocode)

1 .
FOR i < number o f rungs in o ld e r f i l e

FOR j < number o f rungs in newer f i l e
IF rungsO [i] EQUALS rungsN [j]

s im i l a r i t yMat r i x [i] [j] = 1 + s im i l a r i t yMat r i x [i −1] [j −1]
ELSE

s im i l a r i t yMat r i x [i] [j] = 0
2 .
WHILE longes tSubSt r ing IS NOT 0
2 a)

longe s tSubSt r ing = 0
coo rd ina t e s = nu l l
FOR i < number o f rungs in o ld e r f i l e

IF rungsO [i] IS NOT matched
FOR j < number o f rungs in newer f i l e

IF rungsN [j] IS NOT matched
IF s im i l a r i t yMat r i x [i] [j] > longes tSubSt r ing

longe s tSubSt r ing = s im i l a r i t yMat r i x [i] [j]
c oo rd ina t e s = [i , j]

2 b)
FOR i < longes tSubSt r ing

couplesMap [Older] [c oo rd ina t e s [row]− i] = coo rd ina t e s [column]− i
couplesMap [Newer] [c oo rd ina t e s [column]− i] = coo rd ina t e s [row]− i

2 c)
i = coo rd ina t e s [row] + 1
FOR i < number o f rows

IF s im i l a r i t yMat r i x [i] [c oo rd ina t e s [column] + 1] > 1
WHILE nextNumber > 1

s im i l a r i t yMat r i x [i + step] [c oo rd ina t e s [column] + 1 + step] = 1 + step
nextNumber = s im i l a r i t yMat r i x [i + step + 1] [c oo rd ina t e s [column] + 1 + step + 1]
s tep ++

2 d)
j = coo rd ina t e s [column] + 1
FOR j < number o f columns

IF s im i l a r i t yMat r i x [c oo rd ina t e s [row] + 1] [j] > 1
WHILE nextNumber > 1

s im i l a r i t yMat r i x [c oo rd ina t e s [row] + 1 + step] [j + step] = 1 + step
nextNumber = s im i l a r i t yMat r i x [c oo rd ina t e s [row] + 1 + step + 1] [j + step + 1]
s tep ++

27

older �le. Notice, that arrays do not need to have same lenght. If value is -1, selected rung has
no couple in second �le.

We need information about all rungs and that is reason why we use two-dimensional array although
the information about matched rungs is duplicated. We can get unmatched rungs very quickly
from two-dimensional array.

Example

If we use described algorithm to these lists of strings:

rungsO: {a,a,c,d,e,f,g,f,g,h,d}

rungsN: {a,b,c,d,e,f,g,h,d,a,c,x}

Algorithm step 1 - We get similarity matrix a) which is shown in Figure 13.

Algorithm step 2 a) - First longest substring has lenght 5, it is substring {c,d,e,f,g}, it can be
seen in matrix a) in Figure.

Algorithm step 2 b) - All used rows and columns are reserved, see matrix b) in Figure. Rungs
from the longest substring are matched. Our array is now:

couplesMap[0] : −1 −1 2 3 4 5 6 −1 −1 −1 −1
couplesMap[1] : −1 −1 2 3 4 5 6 −1 −1 −1 −1 −1

Algorithm step 2 d) - While checking rows, the algorithm �nds value 3. This value is changed to
1 and all values that continue with this substring are updated. See di�erences between matrix b)
and c).

a)

a b h d a c x

a 1 0 0 0 0 0 0 0 0 1 0 0

a 1 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

f 0 0 0 0 0 1 0 0 0 0 0 0

g 0 0 0 0 0 0 2 0 0 0 0 0

h 0 0 0 0 0 0 0 3 0 0 0 0

d 0 0 0 1 0 0 0 0 4 0 0 0

c d e f g

c 1

d 2

e 3

f 4

g 5

b)

a b c d e f g a c x

a 1 0 - - - - - 0 0 1 0 0

a 1 0 - - - - - 0 0 1 0 0

c - - * - - - - - - - - -

d - - - * - - - - - - - -

e - - - - * - - - - - - -

f - - - - - * - - - - - -

g - - - - - - * - - - - -

f 0 0 - - - - 0 0 0 0 0

g 0 0 - - - - 0 0 0 0 0

0 0 - - - - - 0 0 0 0

0 0 - - - - - 0 0 0 0

h d

-

-

h 3

d 4

c)

a b c d e f g h d a c x

a 1 - - - - - - - - - - -

a - - - - - - - - - 1 - -

c - - 1 - - - - - - - - -

d - - - 2 - - - - - - - -

e - - - - 3 - - - - - - -

f - - - - - 4 - - - - - -

g - - - - - - 5 - - - - -

f - 0 - - - - - - - - 0 0

g - 0 - - - - - - - - 0 0

h - - - - - - - 1 - - - -

d - - - - - - - - 2 - - -

Figure 13: Example of similarity matrix in some steps of running algorithm

Matrix c) shows all reserved rows and columns and all selected couples, when loop from algorithm
step 2 ends.

Final array with couples:

couplesMap[0] : 0 9 2 3 4 5 6 −1 −1 7 8
couplesMap[1] : 0 −1 2 3 4 5 6 9 10 1 −1 −1

4.2.3 Single rungs comparison

We want to �nd visual similarity between rungs, thus for example logical instructions that are
swapped are a di�erence for us. Although swapped logical instructions change nothing in program
functionality.

28

This part of programs comparison starts after method for identical rungs matching. So we can use
the array of couples, which is result of previous part. Firstly, this method selects rungs that have
no couple in array (values -1 on their position). Each of this rungs from older �le is compared
with each of rungs from newer �le and similarities between all of them are computed. Couples
are matched by similarities, the most similar rungs are matched as �rst. Rungs with similarity
less than 30% are marked as deleted or added, because in these cases it can be assumed that
rung is not the original and its updated copy. This value is selected empirically, because there
is no possibility how to detect what programmer has really made and because rungs with this
similarity are very di�erent.

Parsing rung to single elements

Rung is parsed into list of elements, where element can be atomic or branching. Atomic element
is an instruction and its tags that is represented by name of instruction and list of tags names.
Branching consists of list of lists of elements.

By using this simple structure we can parse entire rung with branchings in branchings etc. and
thus we can create structure of objects in Java. Example of parsed rung can be seen in Figure 14.

lists of elemets elements (atomic and branching)

Figure 14: Example of parsed rung

Parsed rung comparison

At �rst, similarity between each element from older rung with each element of newer rung is
computed. You can imagine that these similarities are stored in matrix where rows represent
elements from older rung and columns represent elements from newer rung. We want to �nd
visual di�erences so order between elements is important. That is a reason for �nding the longest
common subsequence (see 3.2 on page 17) between elements, because LCS �nds the largest number
of elements that have same order in both rungs.

Problem is, that values stored in similarity matrix are not only 1 and 0, but they occur in interval
<0;1>. So one element can have better similarity than many others (that are not zeros) together.
Thus it is not enough to �nd the largest number of elements, but we have to �nd the largest sum
of similarities of selected sequence of elements. This can be done by �nding the longest weighted
way in ordered graph.

Computation of similarity:

Each computed similarity S occurs in interval < 0; 1 >.

1. Similarity between atomic instructions:

29

If two instructions have same name, their similarity is SI = SI + 0.5 . Additionally
similarity for two instructions with same number of tags tn is SI = SI +

0.5
tn for every

identical tag that has same order in both instructions.

Similarity between two instructions is:

SI = x · 0.5 +
∑a

1
0.5
tn

Where if instructions name are not same x = 0 and if instructions have same name
x = 1 and where instructions have number of same tags in same order a.

2. Similarity between branchings:

Firstly similarities between all branches are computed. The most similar branches
are matched as couples, their similarities are bs1 ... bsn where n is number of branches
in branching with less number of branches. Similarity between two branchings with
number of branches bn1 and bn2 is:

SB = 2 ·
∑n

i=1 bsi
bn1+bn2

3. Similarity between atomic element and branching:

This similarity is set to zero. SIB = 0

4. Similarity between single branches:

It is computed in same way as similarity between rungs.

5. Similarity between rungs:

Firstly similarities between all elements on rung are computed. If similarity is bigger
than 0.1 (we do not need zeros) it is saved as node of graph to list of nodes. Each node
carries information about order in older and newer rung and about its similarity.

You can imagine that similarities are stored in matrix (see Fig. 15 a)) where rows
are elements in older rung and columns are elements in newer rung. We want to select
couples that have the biggest sum of similarities and we do not want to match couples
to get the crossing. So we need to solve the longest common subsequence problem by
�nding the most similar common subsequence. Selecting LCS in matrix means that if
some couple C is matched on coordinates [r,c], next matched couple has to be minimally
one line below and one column right from couple C, which means that the nearest
allowed coordinates are [r+1,c+1]. In our graph �nding LCS means, that there is a
ordered way from each node N with coordinates [r,c] to each node X with coordinates
[r+z,c+z] where z > 0 (see Fig. 15 c)). There should be many zero similarities in
the matrix that is why we make graph from non-zero similarities only (see di�erence
between Fig. 15 a) and 15 b)).

0.8 0 1 0 0

0 0 0 1 0

0.2 0 0 0 1

0 0.5 0 0 0.5

0.7 0 0 0.4 0

0 -

1 -

2 -

3 -

4 -

0 1 2 3 4 0 1 2 3 40 1 2 3 4

a) matrix b) graph c) graph with ways

0 -

1 -

2 -

3 -

4 -

0 -

1 -

2 -

3 -

4 -

0.8 1

1

0.2 1

0.5 0.5

0.7 0.4

0.8 1

1

0.2 1

0.5 0.5

0.7 0.4

Figure 15: Example of similarity matrix and derived graph

30

Finding the most similar common sequence of elements (�bestWay�) itself is described
in algorithm 5 and commented here:

Algorithm uses nodesList as list of all nodes that is private in the class. So all functions
can use it. Each node in nodeList has defaultly set weight to -1.

Algorithm step 1 - First node of bestWay can be situated anywhere in graph, probably
it will be located somewhere at top-left position, but this is not a rule. So for simplify
we adds startNode to the most top-left position in the graph. We can recursively use
proposed function now.

There is the same problem with last node of bestWay, probably it will be located
somewhere at bottom-right position, but this is not a rule. Adding one node (lastNode)
with information that it is last node (weight=0), than to �nd children nodes of it and
check if there is some child, is better for running time of algorithm.

0 1 2 3 4

a) browsing order b) weights and selected children c) bestWay

0 -

1 -

2 -

3 -

4 -

0 1 2 3 4

0 -

1 -

2 -

3 -

4 -

0 1 2 3 4

0 -

1 -

2 -

3 -

4 -
0

0.4

0.9

1.1

0.7

0.5

1

2

32.8

startNode endNode

0.8 1

1

0.2 1

0.5 0.5

0.7 0.4

0.8 1

1

0.2 1

0.5 0.5

0.7 0.4

0.8 1

1

0.2 1

0.5 0.5

0.7 0.4

Figure 16: Example of graph browsing, weights, selected children and bestWay

Algorithm step 2 - List of orders of nodes in nodesList (nodesLinks) is created by
calling function getChildrenLinks. This function selects order of each node that can
be selected after given parentNode with coordinates [r,c], these children-nodes have
coordinates [r+z,c+z] where z > 0.

Algorithm step 3 - Function that recursively computes weight of each node N starts.
Weight is computed as sum of similarity of N and weight of the most weighted child of
N. Additionally it sets the most weighted child as selectedChild in every node N, which
is not a lastNode. Selected child and computed weights can be seen in Fig. 16 b).

Algorithm step 3 a) - Loop that goes through all children-nodes, from last node from
nodeList to the previous nodes starts. This means that nodes in row (with same vertical
coordinates) are browsed from the right to the left and rows are browsed from the
bottom to the top. You can see this order in Figure 16 a) .

If weight of actual child is not computed (weight < 0), function calls itself with actual
child as parent and with new list of nodesLinks computed for actual child.

If weight of actual child is bigger than weight of all child browsed before, its weight is
set as the biggest and the link to actual child is set as selected.

Algorithm step 3 b) - If there is a selected link to child (that means that actual node
is not a lastNode) it is set as selected child of actual node and weight of actual node is
set to sum of actual node similarity and weight of selected child.

If there is not selected link, child of actual node is set to NULL and weight of actual
node is set to 0.

Algorithm step 4 - The algorithm calls function that selects the most similar common
subsequence. It only makes list from selected children nodes. Function starts from
startNode and select its child, this child represents �rst matched couple of elements.

31

Algorithm 5 selecting the most similar common subsequence, LCS problem (pseudocode)

1 .
startNode with s im i l a r i t y 1 and coo rd ina t e s [−1 ,−1] i s added in to nodesL i s t
endNode with s im i l a r i t y 1 , c oo rd ina t e s [rn+1,cn+1] and weight 0 i s added in to nodesL i s t
2 .
nodesLinks = getChi ldrenLinks (startNode)
3 .
computeWeights (startNode , nodesLinks)
4 .
bestWay = getBestWay ()

func t i on getChi ldrenLinks (parentNode)
FOR i < s i z e o f nodesL i s t

i f c oo rd ina t e s o f nodesL i s t [i] > coo rd ina t e s o f parentNode
i i s ADDED to ch i l d r e nL i s t

RETURN ch i l d r e nL i s t

func t i on computeWeights (actualNode , ch i l d r en)
highestWeight = −1
returnedLink = −1
bestNode = −1

3 a)
i= (number o f ch i l d r en) − 1
FOR i >= 0

IF weight o f ch i l d r en [i] < 0
computeWeights (ch i l d r en [i] , ge tChi ldrenLinks (ch i l d r en [i]))

i f highestWeight < weight o f ch i l d r en [i]
h ighestWeight = weight o f ch i l d r en [i]
returnedLink = i

3 b)
IF returnedLink IS NOT −1

weight o f actualNode = (weight o f nodesL i s t [returnedLink]) + (s im i l a r i t y o f actualNode
)

s e l e c t edCh i l d o f actualNode = nodesL i s t [returnedLink]
ELSE

weight o f actualNode = 0
s e l e c t edCh i l d o f actualNode = NULL

func t i on getBestWay ()
node = s e l e c t edCh i l d o f startNode
WHILE node IS NOT NULL

add node in to bestWay
node = s e l e c t edCh i l d o f node

remove l a s t added node from bestWay
RETURN bestWay

Other children are selected in the loop as child of child etc.. Last selected child is
lastNode and it is removed from the list. Selected nodes are blue in Figure 16 c).

Final similarity between two rungs with number of elements rn1 and rn2 and with
weight of �rst matched element w is:

SR = 2 · w
rn1+rn2

Example of similarity computing between two rungs

Compared rungs are shown in Figure 17. Their textual representation is following:

Original rung: XIC(T1)[XIO(T2),XIC(T3)]XIC(T4)OTE(T2)

Updated rung: XIC(T5)[XIO(T2),XIO(T3)XIC(T2)]XIC(T4)ADD(A,B,C)OTL(T2)

You can see that two elements are added in updated rung. First added element is in second branch
of branching and second added element is instruction ADD. Additionally tag in �rst instruction
and last instruction in the rungs are di�erent.

32

Original rung: Updated rung:

Figure 17: Example of similarity computing between two rungs

Computing similarity of branchings:

Each branch is compared with each branch from second rung and their similarities are
stored in the matrix. Similarities are computed by using method for comparison of
rungs. Than branches with the bigest similarity are matched as couples.

 XIO(T2) XIO(T3)XIC(T2)
XIO(T2) 2 · 1

1+1
2 · 0.5

1+2

XIC(T3) 0 2 · 0.5
1+2

 =>

 XIO(T2) XIO(T3)XIC(T2)
XIO(T2) 1 0.33
XIC(T3) 0 0.33

SB = 2 · 1+0.33
2+2 = 0.665

Computing similarity of rungs:

At �rst each element from �rst rung is compared with each element from second rung
and their similarities are saved as nodes of graph (see Fig. 18).

XIC(T5) [...] XIC(T4) ADD(A,B,C) OTL(T2)

XIC(T1)

[...]

XIC(T4)

OTE(T2)

0.5 0.5

0.665

0.5 1

0.5

Figure 18: Concrete example of similarity computing between two rungs

Than algorithm starts and works with given nodes only. Algorithm execution in steps:

1. startNode and endNode are added to nodeList. Weights of nodes are defaultly set
to -1, for endNode it is 0.

2. Children of startNode are selected.

0.5 0.5

0.665

0.5 1

0.5

1) 2)

-1

-1

-1 -1

-1

-1

0

-1

-1

-1 -1

-1

-1

0

0.5 0.5

0.665

0.5 1

0.5

33

3. Browsing of children nodes starts. It goes from bottom right to the left and upper
by rows. EndNode has weight 0 and no child.

4. Next child X has only endNode between its children. So endNode is set as its child
and weight of X is sum of endNode weight and X similarity.

4)

0.5

-1

-1 -1

-1

-1

0

0.5 0.5

0.665

0.5 1

0.5

3)

-1

-1

-1 -1

-1

-1

0

0.5 0.5

0.665

0.5 1

0.5

X

X

5. Next child X selects its the most weighted child between two children-nodes.

6. 7. Procedure is repeated for next children.

6,7)

0.5

1

-1 -1

1.5

2.165

0
5)

X

0.5

-1

-1 -1

1.5

-1

0

X

0.5 0.5

0.665

0.5 1

0.5

0.5 0.5

0.665

0.5 1

0.5

8. Note that children-nodes are minimally one line bellow and one column right from
parent node.

9. Weights of all children-nodes of startNode are computed.

9)

0.5

1

2.665 1

1.5

2.165

0
8)

X

0.5 0.5

0.665

0.5 1

0.5

0.5

1

-1 1

1.5

2.165

0

X

0.5 0.5

0.665

0.5 1

0.5

10. The most weighted child is selected for startNode.

11. Selecting bestWay starts, it selects �selected� child of startNode and then �selected�
child of it etc.. Selecting ends when endNode is reached.

11)

0.5

1

2.665 1

1.5

2.165

0
10)

0.5

1

2.665 1

1.5

2.165

0

0.5 0.5

0.665

0.5 1

0.5

0.5

0.5 0.5

0.665

1

0.5

34

Similarity of rungs is then computed as:

SR = 2 · 2.665
4+5 = 0.592.

Where 2.665 is weight of �rst selected node, 4 is number of elements in original rung and 5 is
number of elements in updated rung.

Concrete di�erence recognized by our algorithm (see Fig. 19):

1. First element (instruction XIC) has di�erent tags.

2. Atomic element is added into second branch in branching XIC(T3).

3. Atomic element XIC in second branch of branching has di�erent tags.

Note that in second branch of branching you can not recognize if programmer has
changed tag in instruction XIC and he adds instruction XIO(T3), or if he have changed
instruction XIC to XIO and he adds instruction XIC(T2). This is projected in our
algorithm by same similarity value between these atomic elements.

4. Instruction ADD was added into updated rung.

5. Instruction OTE was changed to OTL.

Original rung:

Updated rung:

Figure 19: Speci�c di�erences recognized between rungs

4.2.4 Expressing di�erences

Di�erences in programs are divided into two parts. Di�erences about local tags and some other
di�erences that was found by using method for tags comparison are stored in the �rst part. These
di�erences are stored by using the same way as in Tags comparison (see 4.1.2).

Di�erences, which concern with program logic are stored in the second part. These di�erences
are stored in the structure that is used in each program. Each program has list with di�erences in
single routines. In this list one element means one routine and it stores information about names
of older routine and newer routine, array of matched couples of rungs and list of rungs di�erences.
In the list of rung di�erences one element means di�erences between one couple of rungs. This
single element contains information about number of this rung in older and newer �le and list
of concrete di�erences between elements on rung (instructions, branches and branchings). Single
element in the list of concrete rung di�erences stores information about position of di�erence in
the rung, type of di�erence and concrete values.

This structure saves space in memory, because if there are two di�erences in same rung, they
do not have to duplicate information as name of program, routine and number of rung. An

35

additionally it is better to work with this structure in other parts of our tool, for example while
showing di�erences in graphical user interface.

Di�erences between elements

There are four types of di�erence between elements:

1. element is deleted in newer rung.

2. element is added into newer rung

3. instruction name is di�erent

4. tag or tags are di�erent

Position of di�erence in the rung is stored as list of integers. There are two lists of integers for
each rung of couple. First number in this list means order of element in the rung. If there are more
than one number in the list, it means that di�erence is somewhere in a branching. So numbers at
odd positions in the list (list starts from zero) mean order of branch in the branching. When we
are using this list we can reach position of element anywhere in the rung and the position meets
our object-representation of the rung (see 4.2.3).

Example of concrete stored di�erences

We can see concrete recognized di�erences showed in ladder diagrams by our tool in Fig. 19 on
the previous page. These �ve di�erences are stored as follows:

1. First instruction in the rung XIC(T1) has di�erent tag.

path in older rung: 0

path in newer rung: 0

type: 4 (tag is di�erent)

Concrete values:

tag in older �le: T1
tag in newer �le: T5

2. Instruction XIO(T3) was added into second branch of branching.

path in older rung: 1/1/-

path in newer rung: 1/1/0 (second element in the rung, second branch of branching,
�rst element in branch)

type: 2 (element is added)

3. Instruction XIC(T3) has di�erent tag in second branch of branching.

path in older rung: 1/1/0

path in newer rung: 1/1/1

type: 4 (tag is di�erent)

Concrete values:

tag in older �le: T3
tag in newer �le: T2

4. Insturction ADD was added.

path in older rung: -

path in newer rung: 3

type: 2 (element is added)

5. Instruction OTE was changed to OTL.

36

path in older rung: 3

path in newer rung: 4

type: 3 (instruction is di�erent)

Concrete values:

instruction in older �le: OTE
instruction in newer �le: OTL

4.2.5 Evaluation

Proposed method for programs comparison can �nd di�erences between local tags of programs
and additionally it can recognize di�erences between instructions in rungs and moves of rungs.
Method defaultly compares only programs and routines with the same name, but user can select
what should be compared.

Method that matches rungs with no changes inside is used at �rst. This algorithm is �nding the
longest common substrings as the longest common sequences of identical rungs and it is matching
couples of them until there is no free identical couple. Complexity of this algorithm is O(uv)
where u is number of rungs in �rst routine and v in second routine. These numbers would be
about one digit lesser than numbers of single instructions in routines. This algorithm recognizes
moves between rungs.

Finding the most similar subsequence of elements is used on the rest of rungs, these rungs have
to be parsed into the object-structure at �rst. Complexity of this algorithm is O(mn) where m
is number of elements in older rung and n in newer rung. Because there will be probably a huge
number of elements in both �les, this algorithm is used only to rungs that are not matched by
the previous algorithm.

Results of program comparison are list of di�erences between tags and list of di�erences between
routines. Second list contains information about moves of rungs and concrete di�erences in all
rungs. These di�erences are very similar to di�erences that human can recognize.

4.3 AddOn-Instructions comparison

Add-On Instructions are saved in L5X �le in a structure that is very similar to the structure that
carries information about programs. So we can use the same method as in programs comparison
(see 4.2 on page 24) and we get results with the same quality.

Di�erences in the structure are that for example tags are not stored under element Tags/Tag as
it is in programs, but they are under LocalTags/LocalTag.

4.4 Comparison of other parts of L5X �le

Di�erences between other parts of L5X �les (other than Tags, Programs and Add-On Instructions)
can be found by using method that is used for tags comparison (see 4.1 on page 20). This method
�nds all di�erences in project structure, security, modules, tasks etc..

5 GUI

Proposed graphical user interface (GUI) shows recognized di�erences in user-friendly way. It is
much faster for users to �nd di�erences in ladder diagrams if they can see it presented in same
way as it is in RSLogix 5000.

GUI is divided into two main parts. In the �rst part, which is on the left side there is a project
structure that is similar to the project structure used in RSLogix 5000. Additionally in this
structure are icons signaling state of elements. The state can be changed (!), deleted in newer
�le (-), added into newer �le (+) and not-changed (ok) (see Fig. 20). Second part is a main
window, where di�erences are shown. There can be three things in the main window:

37

There are two tables for di�erences in tags (local and global). On the left side are tags
de�ned in the older �le and on the right side are tags de�ned in the newer �le. Di�er-
ences are highlighted by the icon and background color of table columns (see Fig. 21).

Di�erences in ladder diagrams are shown in three windows. On the left side is a ladder
diagram from the older �le. In the middle pane there is matching between rungs shown
and on the right side is ladder diagram from the newer �le (see Fig. 20).

Di�erences in other parts of L5X �les are indicated in the project structure and concrete
information is shown only in single window as text. These di�erences are presented in
the same format as di�erences printed into command line (see Fig. 22).

Figure 20: LogixDi�, routine di�erences

Each function that can be used in LogixDi� operated from command line, can be used in the GUI
as well. Additionally there are options to browsing di�erences by clicking �next� or �previous�
buttons and to show only di�erent / added / deleted / ok elements in the project structure.

5.1 Di�erences in tags

The user can see all global tags or all local tags of selected program or add-on instruction by
clicking on �Global Tags� / �Local Tags� in the project structure. Then tags are shown in same
order on both sides and the user can see di�erences highlighted by orange background color. As
most useful information we have selected tag name, data type and data value. These information
are shown for each existing tag in the table. All other di�erences between tags are in the last
column of tables, because changes in these information are less common. They are shown when
mouse is over the cell.

The user can select only one tag. It is shown in same way as group of tags, but there is only one
row in the table.

5.2 Di�erences in routines

Di�erences between routines are presented in ladder diagrams.

Middle pane where the user can see moves of rungs is between two ladder diagrams. Blocks of
rungs that are moved same way have the same background color. These colors are selected from

38

Figure 21: LogixDi�, Global tags di�erences

list of eight colors and it tries to use only few of them. It can happen that more blocks have same
color, but algorithm checks that these blocks will not be next to each other (see Fig. 20). The
user can show rungs of this block in both ladder diagrams by clicking to them.

Note, that deleted or added rungs have reserved pink background color.

In ladder diagrams is defaultly set to show same background as it is in the middle pane, this
option can be deactivated, but pink color for deleted or added rungs stay there. Di�erences
between single instructions are highlighted by pink background color as well. As you can see in
Fig. 19 on page 35, instructions that are di�erent in name have pink background under name of
instruction. Instructions with di�erent tags have pink background under changed tags. Deleted
and added instructions are all on a pink background and in the second ladder diagram is free space
only with pink background. Pink background is used for highlighting di�erences in branchings as
well.

There is an option to show value that is in second routine above the di�erence in the �rst routine
by using red color. It can be activated in the menu.

5.2.1 Ladder diagrams

When the user selects a routine that should be shown. Creation of object structure starts. The
selected routine is found in L5X �le at �rst. It is parsed into object structure (see 4.2.3 on
page 29). Then the found di�erences are assigned to elements in the objected structure. This
updated object structure is stored until the user selects something else in the project structure,
because if the user scrolls down in routine, routine is redrawed and there is no time for �nding in
what element should di�erences be drawn.

Each instruction in object structure can draw itself. Drawing is called in a loop for each rung and
rungs only passes to instructions position where they would be connected to lines. Only rungs at
wanted position are drawn, that makes scrolling through huge ladder diagrams very dynamical
and quick. For the user there is no di�erence between scrolling in routine with 15 rungs and in
routine with 1000 rungs.

Position of free space in a second routine (space that highlights deleted / added elements from
the �rst routine) is located in front of element from the second routine that is matched with the
next element in �rst routine.

6 Case study

Tests that check runnings times of used algorithms and accuracy of results are described in this
chapter.

39

Figure 22: LogixDi�, Other di�erences

L5X �le �TestO� with the same structure as �les from RSLogix 5000 was generated as �rst. Size
of TestO is 1044 kB and it contains 125 tags, 2 add-on instructions and 7 programs in sum of 36
routines. Routines contain 7867 rungs together, the biggest routine contains 2143 rungs. There
is on avarage 6 instructions in the rung that means 47202 instructions in the whole project.

This �le was copied to TestN, where we made few changes. Speci�cally one renamed tag, one
deleted tag, changed datatype in one tag. Change of TimeZone in WallClockTime element. And
about hundred of di�erences in rungs (deleted / moved / changed). These �les are on attached
CD.

Tests were operated in the LogixDi� GUI and here are avarage values from ten measurements.
Values are rounded to miliseconds. Used laptop has CPU Intel Core2 Duo T5870 2x2GHz, 3GB
RAM and OS Windows 7.

Running time of the algorithm that compares XML structure (see 4.1.2) and �nds di�erences in
tags was under 1ms.

Running times of the algorithm, which �nds the longest common blocks of identical rungs (see 4.2.2)
are in the table. The column �rungs� is number of rungs (it is same for both �les), �SM� means
time that costs comparison of each rung with each rung from second �le and then �lling the
similarity matrix, �LCSS� is time that was needed for �nd the longest common substrings in the
matrix.

rungs SM [ms] LCSS [ms] sum [ms]

211 35 0.4 35.4
422 130 1.1 131.1
1055 1102 10 1112
2143 6325 17 6343

You can see that the slowest part is the strings comparison while �lling the similarity matrix.
Complexity of the algorithm in this part is O(n2). We can not reduce the complexity without
loss of accuracy of results.

But there can be done an optimalization if the number of rungs will be commonly in thousands.
And if there is some probability that rungs should not be duplicated in the routine. we can
compare strings between rungs that has no couple at �rst and if we �nd couple between them, it
means that we do not have to check other matched rungs, because they are di�erent.

On the other side, if there is some probability that rungs will be duplicated. Then if an identical
rung is found we can check values in same column of similarity matrix whether there is some

40

other matched couple at �rst. Then if the couple exists we can automatically match all couples
that are matched between the duplicated rungs. Other possible solution is selecting of only one
rung from group of duplicated rungs and then to compare only these rungs.

Second test checks the algorithm for selecting the most similar sequence of tokens (instructions
and branchings in parsed rung, see chapter 4.2.3). The procedure was same as in �rst test, same
computer, ten measurements, rounded to miliseconds. In the table are times of LCS method,
column �tokens� means number of elements in the rung, �duplicities� means that there were only
5 di�erent instructions, �branchings� says whether rung contains branchings.

For better imagination the time needed for compare only strings that contain 20 instructions was
0.02 ms and 0.05 ms for 200 instructions.

tokens duplicities branchings time [ms]

20 ! ! 0.3

20 ! 0.4
20 0.1

200 ! ! 241

200 ! 3228
200 5

We should say that 200 instructions in series (with no branchings) in one rung is extremly huge
number. Additionally duplicities between instructions in series do not make sence. That is why
there is a huge time (3.228 s), because graph that is created from similarities between couples
contains many nodes in this case and this slows proposed method down. We assume that there
will not be many duplicities and this is the reason to use graph instead of matrix.

Results of both methods were correct and each di�erence was recognized.

7 Conclusions

The proposed tool LogixDi� meets all requirements of the task.

I have studied characteristics of XML �les (see 3.1.1), PLC programming and the project struc-
tures of L5X �les, the structure and characteristics of projects in RSLogix 5000 at �rst (see 2),
which was very usefull in next phases of the work.

Then the most appropriate processor of XML structured �les have been chosen. It is JDOM
(see 3.1.2) because it provides Java representation of XML documents. It leverages SAX and
DOM parsers.

The last step before the implementation was getting familiar with the existing ways of comparison
of XML �les and additionally with the existing ways of comparison of text �les and algorithms
(see 3). Only few methods were appropriate to use for the best solution. Comparison of tree-
structures and other XML comparison methods are not needed. The fact we know about the
project structure of L5X �les is su�cient for our faster algorithm for XML structure comparison.
The longest common substring method and the combination of tokens created from instructions
and modi�ed longest common subsequence method were used from known methods for text and
algorithm comparison.

The implementation of comparison algorithm was divided into two parts, because there is a big
di�erence between the structure of data that holds information about program logic and the
structure of data that holds information about the project structure, tags, modules etc..

The �rst part of the proposed algorithm �nds di�erences between tags. It uses only speci�c
characteristics of XML and L5X �les, which means that some XML elements have attribute
Name. The �Name� attribute is unique on the selected position of L5X document. For example,
there can not be two global tags with the same name, but there can be a program with the same

41

name as a tag. That is a reason to use attribute �Name� as identi�er. This method is used for
recognizing di�erences in all parts of the project, besides di�erences in ladder diagram (see 4.1).

The results of this method are correct and all di�erences are identi�ed. Additionally the running
time of this method is very fast. Complexity of the proposed algorithm is O(n2), but number of
operations executed while running is much less than n2 that is teoretically needed (see 4.1.3).

The second part complements the �rst part that has insu�cient results in comparison of programs
logic. The �rst part is able to recognize only if two rungs (lines of logic) are completely identical
or not. The second part of algorithm works only with strings that are textual representation of
rungs from ladder diagrams. It matches all unchanged couples of rungs by recursively �nding the
longest common substrings (see 4.2.2). We have unmatched couples of rungs now. These rungs
are parsed into object-structure of java objects (tokens). Then the graph of similarities between
single tokens of two rungs is created, where the most similar sequence of couples is found (the
longest common subsequence method). (see 4.2.3) This is done for each unmatched rung, so we
have computed similarity between each rung from the �rst �le with each rung from the second
�le. The last step is matching the couples by looking for the most similar couples of rungs.

Results of this method are very similar to di�erences that the man can recognize. Running time
of algorithm is shorter, because most of the rungs is matched without parsing and comparing
every single instruction (see 4.2.5).

The algorithm gets complete information about all di�erences in projects. Chapter 4.1.2 describes
what information about every single di�erence is stored for di�erences in project structure. Chap-
ter 4.2.4 describes these information for di�erences in logic.

The proposed tool gets results for common sized �les (200 kB) in reasonable time (1 s). Concrete
tests are described in chapter 6. In general we can say that time depends on the size of the
biggest routines (quadratic complexity of the algorithm) and on the di�erence level between
rungs, because parsing and comparing rungs is more time-consuming than comparing two strings.

LogixDi� can operate in two ways. It defaultly starts with graphical user interface (GUI), where
the structure of project can be seen. GUI can show di�erences in logic directly in ladder diagrams.
Other di�erences can be opened from the project structure as well. More information about the
GUI, including screenshots, can be found in chapter 5. When input parameters are passed to
LogixDi� while it is starting, it starts without GUI and prints results of comparison to the
command line.

The proposed tool recognizes di�erences in ladder diagrams much more precisely than RSLogix
Compare (see chapter 2.5) and these di�erences are presented to the user in more clearly way. You
can compare results of LogixDi� and RSLogix Compare used on the same couple of routines (see
Fig. 23 and 24). You can see that di�erences recognized by RSLogix Compare are confusing, for
example, there is only change in one tag in the second rung and it is classi�ed by Logix Compare
as two di�erent rungs.

LogixDi� will be used by developers of Rockwell Automotion company to compare developing
projects and to see di�erences between used Add-On Instructions. It can help to reduce duplicities
between used Add-On Instructions. Additionally it can be used as a �lightweight� and fast ladder
diagrams viewer. Its size is about 300 kB.

7.1 Further development

While matching the most similar non-identical couples of rungs we do not take the results of
matching of identical blocks of rungs into account. If the results of matching non-identical couples
were too disordered we could try to match couples of rungs that make these blocks larger at �rst.

Renamed and frequently used tag slows the algorithm down, because method for �nding blocks of
identical rungs will not match rungs with this tag. If it occurs often, we can implement an option
where user selects renamed tag and it will be replaced in the document before comparison.

Morever, we can try to work on recognizing di�erences in the functionality of logic.

42

Figure 23: Example of di�erences recognized by RSLogix Compare

Figure 24: Example of di�erences recognized by LogixDi�

43

Abbreviations

PLC - Programmable Logic Controller

AI - Add-On Instruction

LD - Ladder Diagram

XML - Extensible Markup Language

LCS - the Longest Common Subsequence

LCSS - the Longest Common Substring

L5X �le - �le with .L5X extension

LogixDi� - name selected for the proposed tool

Content of included CD

+ source
+ examples
. t h e s i s . pdf
. Log ixDi f f . j a r
. readme . txt

Folder source contains all source codes of LogixDi� as project generated by NetBeams IDE.

Folder examples contains examples of L5X �les.

References

[1] Apache Subversion [Online]. Available: http://www.w3.org/TR/xpath20/.

[2] Concurrent Versions System [Online]. Available: http://www.nongnu.org/cvs/.

[3] Git [Online]. Available: http://git-scm.com/.

[4] WinDi� [Online]. Available: http://msdn.microsoft.com/en-us/library/aa242739(v=vs.60)

.aspx.

[5] Rockwell Automation, Logix5000 Controllers IEC 61131-3 Compliance Programming Manual, (2008,
July).

[6] Rockwell Automation, Logix5000 Controllers Ladder Diagram Programming Manual, (2012, November).

[7] Rockwell Automation, Logix5000 Controllers Add-on Instructions Programming Manual, 1756-PM010E-
EN-P, (2012, September).

[8] Extensible Markup Language (XML) 1.0 (Fifth Edition) [Online]., (2008, November 26). Available:
http://www.w3.org/TR/REC-xml/.

[9] Simple API for XML (SAX) [Online]. Available: http://www.saxproject.org/.

[10] Document Object Model (DOM) [Online]. Available: http://www.w3schools.com/xml/xml_dom.asp.

[11] Streaming API for XML (StAX) [Online]. Available: http://en.wikipedia.org/wiki/StAX.

[12] XML Path Language (XPath) 2.0 (Second Edition) [Online]., (2010, December 14). Available: http:

//www.w3.org/TR/xpath20/.

[13] JDOM [Online]., (2000). Available: http://www.jdom.org/.

44

[14] JAXP [Online]. Available: http://docs.oracle.com/javaee/1.3/tutorial/doc/IntroWS4.html.

[15] L. Peters, �Change detection in xml trees: a survey,� 2005.

[16] K. Zhang, �A new editing based distance between unordered labeled trees,� in Combinatorial Pattern
Matching (A. Apostolico, M. Crochemore, Z. Galil, and U. Manber, eds.), vol. 684 of Lecture Notes in
Computer Science, pp. 254�265, Springer Berlin Heidelberg, 1993.

[17] S. Zhang, C. Dyreson, and R. Snodgrass, �Schema-less, semantics-based change detection for xml doc-
uments,� in Web Information Systems WISE 2004 (X. Zhou, S. Su, M. Papazoglou, M. Orlowska, and
K. Je�ery, eds.), vol. 3306 of Lecture Notes in Computer Science, pp. 279�290, Springer Berlin Heidel-
berg, 2004.

[18] Longest common subsequence problem [Online]. Available: http://en.wikipedia.org/wiki/Longest_
common_subsequence_problem.

[19] M. Elhadi and A. Al-Tobi, �Re�nements of longest common subsequence algorithm,� in Computer Sys-
tems and Applications (AICCSA), 2010 IEEE/ACS International Conference on, pp. 1�5, May 2010.

[20] L. Bergroth, H. Hakonen, and T. Raita, �A survey of longest common subsequence algorithms,� in String
Processing and Information Retrieval, 2000. SPIRE 2000. Proceedings. Seventh International Symposium
on, pp. 39�48, 2000.

[21] di�, IEEE Std 1003.1 (2013 Edition) [Online]. Available: http://pubs.opengroup.org/onlinepubs/
9699919799/utilities/diff.html.

[22] Longest common substring problem [Online]. Available: http://en.wikipedia.org/wiki/Longest_

common_substring.

[23] Levenshtein distance [Online]. Available: http://en.wikipedia.org/wiki/Levenshtein_distance.

[24] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, �Comparison and evaluation of clone
detection tools,� Software Engineering, IEEE Transactions on, vol. 33, pp. 577�591, Sept 2007.

[25] P. A. Khaustov, �The ncp algorithm of fuzzy source code comparison,� in Strategic Technology (IFOST),
2012 7th International Forum on, pp. 1�3, Sept 2012.

[26] I. Baxter, A. Yahin, L. Moura, M. Sant'Anna, and L. Bier, �Clone detection using abstract syntax trees,�
in Software Maintenance, 1998. Proceedings., International Conference on, pp. 368�377, Nov 1998.

45

