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Abstract

Recent work in Structure from Motion (SfM) has successfully built 3D models from
unordered collections of images. Inspired by their success, we choose one of these as
the baseline [55] for implementing our own 3D reconstruction pipeline. We introduce
three improvements dealing with detection of a sufficient number of features for high
resolution images, speeding up a standard RANSAC for epipolar geometry estimation
and focal length estimation for sets of image files with insufficient information about
cameras. We show that our pipeline performs just as well as, and in some cases better
than, the baseline. To improve reconstruction of indoor scenes, we observe that tradi-
tionally employed features do not work well for significant appearance changes of local
patches which is typical for large camera transformations. We propose to firstly under-
stand the indoor scene as a whole and then exploit this knowledge to improve image
matching. Inspired by recent success of monocular indoor scene reconstruction, we es-
timate a box-like scene model for every input image and rectify individual faces which
are then utilized for matching. We show that using these additional matches brings
a dramatic improvement in reconstructing challenging indoor scenes from images.
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Abstrakt

Nedávné práce zabývaj́ıćı se rekonstrukćı poloh kamer a bod̊u úspěšně vytvořily 3D
modely z neuspořádaných kolekćı obrázk̊u. Tento úspěch nás inspiruje a voĺıme jednu
z těchto praćı jako vzor [55] pro naš́ı implementaci prováděj́ıćı 3D rekonstrukci. Posky-
tujeme tři vylepšeńı, která se zabývaj́ı detekćı dostačuj́ıćıho počtu kĺıčových bod̊u
v obrázćıch vysokého rozlǐseńı, zrychleńım RANSAC algoritmu použ́ıvaného pro výpočet
epipolárńı geometrie a odhadnut́ım ohniskových vzdálenost́ı pro kolekce obrázk̊u s ne-
dostatkem informaćı o kamerách. Demostrujeme, že podáváme stejné a někdy lepš́ı
výsledky než vzor. Pro vylepšeńı rekonstrukce vnitřńıch prostor pozorujeme, že tradičně
použ́ıvané reprezentace kĺıčových bod̊u nefunguj́ı dobře pro výrazné změny vzhledu
lokálńıch ploch, což je typické pro velké změny pozice kamery. Navrhujeme nejprve
globálně porozumět vnitřńımu prostoru jako celku a využ́ıt toho k vylepšeńı hledáńı
korespondenćı. Inspirováni nedávným úspěchem monokulárńı rekonstrukce vnitřńıch
prostor, odhadneme model prostoru jako kvádr pro každý obrázek a rektifikujeme jed-
notlivé stěny, které použijeme pro hledáńı korespondenćı. Demonstrujeme, že tyto
dodatečné korespondence přináš́ı významné vylepšeńı rekonstrukce vnitřńıch prostor.
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1 Introduction

1.1 Motivation

One of the important research topics in computer vision is 3D reconstruction from
images. It is employed in projects such as Google Earth [22], Photo Tours in Google
Maps [23, 33], Nokia Maps 3D [11] and Microsoft Photosynth [40].

Having nothing more than a set of images, it is possible to detect features in every
image and match them to get some sense of how the images relate to each other.
Utilizing these matches, an iterative Structure from Motion (SfM) [24] can be applied
returning a reconstructed sparse 3D point model of the scene as well as extrinsics and
intrinsics of all the recovered cameras [24]. See Fig. 1.1 for a visualization of an output
of a 3D reconstruction pipeline and its possible further use.

Reconstructing an indoor scene is particularly difficult due to its textureless surfaces
such as uniformly-painted walls which can result in detecting an insufficient number of
features. We focus on this issue. We also address the wide baseline stereo problem, i.e.
matching images of the same scene taken from very different angles. Our approach to
these challenges is encouraged by the quality of the results obtained from monocular
scene understanding. Our aim is to use global scene structure to improve feature
matching, which in turn improves the entire reconstruction.

1.2 Problem statement

Since Bundler [55] by Snavely et al . is a frequently utilized tool in the field of 3D recon-
struction, we chose it to be our reference reconstruction pipeline and firstly implement
our pipeline similarly. We notice a problem which occurs for high resolution images.
In more detail, it is often possible to detect so many features in high resolution images
that the detection itself and subsequent matching becomes too time consuming. We
argue that it is not necessary to detect as many features as possible and propose an
approach to scale the feature detector. Next, we realize that Bundler employs a stan-
dard RANSAC [19] for epipolar geometry estimation which can be further improved.
That is why we replace the standard RANSAC by our variant of Progressive Sample
Consensus (PROSAC) [13] which achieves computational savings and thus speeds up
the process of epipolar geometry estimation. We also note that Bundler relies on the
ability to estimate focal lengths of at least one matched image pair from EXIF tags of
a set of image files. The estimation of focal length usually fails when Bundler does not
have a record of a sensor size of a camera in its internal database or when EXIF tags
of an image file do not contain any information whatsoever. We address this problem
by using image resolution for estimating the focal lengths.

In addition, we focus on indoor scene reconstruction. More specifically, we aim at
improving image matching for indoor scenes. In general, all approaches represent image
keypoints by some kinds of features and use a distance metric to find visually similar
local patches. As a similarity measure, the standard Euclidean distance is usually
applied. Conversely, the exploited image features vary from variants of scale-invariant
feature transform (SIFT) [39] and histograms of oriented gradients (HOG) [18] to GIST
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1.2 Problem statement

Figure 1.1 Sample images of a set of 31 images, a sparse 3D point model and cameras (visu-
alized as pyramids) recovered by our 3D reconstruction pipeline using only the images and a
textured 3D model which can be obtained using the result of our pipeline.

Figure 1.2 The image on the left shows detected keypoints on an outdoor scene (a part of
a church) and the image on the right visualizes found keypoints on an indoor scene (a living
room). The standard SIFT detector has found 12 136 on the outdoor scene and 4 999 on
the indoor scene. The resolution of the image on the left is 1.77 Mpix. The resolution of the
image on the right is 1.92 Mpix.

descriptors [46]. A noteworthy common property of these features is good representation
of transformations such as scaling, rotation or illumination.

Hence, if we assume a small baseline, feature representations taking advantage of pixel
intensities work very well in practice. For other situations, however, matching is often
surprisingly difficult; especially if the observed scene is similar only on a higher level and
features consist of pixels too different to be matched by standard matching approaches.
Consider the translation and rotation of cameras between images in Fig. 1.3. Also, 3D
reconstruction naturally has difficulties if too few features can be detected. The lack of
features is often a problem for indoor scenarios; consider Fig. 1.2, for example. That is
another reason why we want to improve feature detection and matching.

Many image matching approaches do not distinguish between indoor and outdoor
scenarios. We argue that every application requires a custom approach and we sub-
sequently suggest a solution specifically tailored for the indoor setting. Restricting
ourselves to indoor environments enables us to employ the Manhattan world assump-
tion, i.e., we model a scene to be aligned according to three dominant and orthogonal
directions defined by vanishing points. It has been shown [25, 64] that estimating four
parameters is sufficient to roughly reconstruct the indoor room layout by means of a
3D box.

3



1 Introduction

(a)

(b)

Figure 1.3 Image pairs that could not be matched by the standard approach were successfully
matched using our indoor improvement. The figure visualizes matches verified by epipolar ge-
ometry and detected scene layouts. The images in (b) are from the data set of Furukawa [21].

Our solution utilizes this box-like indoor scene representation estimated from a single
image. We employ rectification instead of sacrificing discriminative properties by only
increasing the space of local transformations. In more detail, we rectify all faces of
the box which enables us to find feature matches that undergo a large transformation
between two images as illustrated in Fig. 1.3.

1.3 Thesis structure

In the following sections, we firstly discuss related 3D reconstruction state-of-the-art
techniques in general and after that we focus on understanding indoor scene state-of-
the-art methods. Secondly, we describe the reference 3D reconstruction pipeline, then
build upon this explanation and discuss differences and enhancements made in our
3D reconstruction pipeline after which we present our improvement for indoor scene
matching. Thirdly, we evaluate our pipeline and its extensions and we also evaluate the
indoor improvement by comparing a standard run of our pipeline and a run enhanced
with the indoor improvement. Last, we conclude by reviewing contributions of the
thesis.

4



2 State of the art

We firstly review the state of the art in 3D reconstruction in general and secondly the
work done in indoor 3D reconstruction.

2.1 3D reconstruction

3D scene modeling from images is an important problem of computer vision. Large
progress has been made recently in understanding 3D scene modelling related key prob-
lems of geometry [24], optimization [60] and algebra [44].

3D reconstruction techniques differ by what assumptions are made about the input
image set. Some approaches [3, 16, 41, 31, 57] assume that the image set is ordered
as the image order gives a clue which image pairs have overlapping field of view and
are therefore suitable for further processing. However, focusing on ordered sets of
images only would be restrictive for us. We therefore take no such assumption which
consequently allows us to process unordered as well as ordered sets of images. Unordered
sets include images obtained from different sources or at different times. It could even
be images returned by an image search on photo sharing sites like Flickr [67]. A typical
image search could be: ”Rome, Colosseum”, ”New York, Statue of Liberty”, ”Prague,
St Wenceslas statue”, etc.

First of all, we deem important to implement our own 3D reconstruction pipeline to
be able to understand it properly and modify it prior to improving for a special setting of
indoor environments. For that purpose, we are inspired by state of the art techniques in
3D reconstruction from unordered image sets [65, 10, 17, 2, 37, 20, 50, 62], especially by
well known 3D modelling system Bundler [55]. Similarly to the mentioned approaches,
we take an unordered image set as input. Since SIFT features [39] seem to work quite
well for our purposes according to [55, 65, 10, 17, 2, 37, 20], we begin by detecting
them in all images individually. Next, we match features of all possible pairs of images.
Specially, we notice that approximate nearest neighbor package (ANN) by Arya et
al . [5] is employed in [55, 2] and other approximate nearest neighbor implementations
in [65, 10]. We leverage previously successfully deployed ANN [5] and also fast library
for approximate nearest neighbor (FLANN) included in OpenCV library [9]. We follow
with verification of matches by a distance ratio test [39] similarly to works [55, 2, 65, 20].
After that, matches are further verified by estimating epipolar geometry of every image
pair as in [55, 2, 10, 37, 20, 50, 62]. Finally, focal lengths of cameras need to be
estimated for initializing a Structure from Motion (SfM). We estimate the focal lengths
from EXIF tags of the images as do [55, 2, 17, 37, 20]. When no EXIF information exists
we use image resolution for the estimation as opposed to [55] which sets focal lengths
of an initial camera pair to a predefined constant value. The last step, an incremental
Structure from Motion (SfM), of the pipeline is implemented similarly to Bundler [55]
with a difference being that we not only employ the sparse bundle adjustment library
of Lourakis and Argyros [38] but also Center for Machine Perception (CMP) version of
bundle adjustment [4] which is based on CERES solver [1].

Recent work has focused on improving 3D reconstruction of scenes containing repet-
itive structures or symmetries which is often a phenomenon for man-made objects and
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2 State of the art

buildings. Typical examples of repetitive structures range from windows on buildings
(imagine a modern skyscraper) through wallpapers with repetitive patterns to scenes
containing multiple identical objects (imagine a dining room with identical chairs). A
problem of detecting repetitive patterns on non-planar surfaces is addressed by [29].
This approach utilizes multiple images and a set of 3D points reconstructed from
them by Structure from Motion in order to rectify geometric deformations. The ap-
proaches [68, 30] exploit the idea of missing correspondences. Exploiting triplets of
images, two images can be used to predict features in the third image. Absence of
the predicted features enables additional inference about the triplet. An expectation
maximization based algorithm is used in [49] to estimate camera poses and identify
falsely-matched image pairs. The algorithm exploits geometric reasoning as well as
image-based cues. In contrast, some researchers consider repetitive structures to be an
important distinguishing feature instead of a difficulty. In [59], repetitive structures are
detected in an image and subsequently used to re-weight the bag-of-visual-word model
which standardly assumes independence of features. In [51], highly repetitive nature
of urban environments is exploited. In more detail, multiple repetitive 2D patterns
are detected and then matched to a database of textured facades in order to geo-tag a
photograph. In [15], symmetries are detected using geometric and appearance cues and
then symmetry constraints are imposed on the Structure from Motion to improve 3D
reconstruction. Considering a dense 3D reconstruction from one image, it was shown
in [32] that it is possible to detect a symmetry plane. They used the plane to create
a virtual camera on the other side of the plane if the original camera was not situated
directly on the plane. Then, they utilized both of the cameras for dense 3D reconstruc-
tion. Similarly, [66] improves a single-view dense reconstruction given an image and
its detected repetitive structures. In order to improve the reconstruction, a repetition
constraint is introduced to penalize the inconsistency between repetition intervals.

2.2 Indoor reconstruction

It is often very advantageous to assume something about a task instead of designing
a general approach. This is true especially for object detection for which all the ap-
proaches are almost always based on SIFT [39], GIST [46] and HOG [18] features.
Image matching which is a component of many applications is no exception to this
principle.

Importantly, we note that small differences in viewpoint often result in arbitrary
pixel dissimilarities. But a problem of designing a metric ignoring small details while
distinguishing the important patterns due to which two patches appear similar is still
challenging. We propose to imitate human behaviour by firstly understanding a new
scene on a global level and subsequently identify small details. This approach con-
trasts commonly utilized techniques that directly focus on small details from the very
beginning.

An important element for finding correspondences is the feature space and the sim-
ilarity metric of features. Aforementioned representations like SIFT, GIST and HOG
as well as various other wavelet and gradient decompositions and combinations such
as spatial pyramids [34] are commonly employed. To address the mentioned locality
restriction, matching techniques were dominantly improved in two directions. In the
first one, the space of considered transformations is increased which influences com-
putational efficiency and discriminative abilities. The researchers going in the second
direction modify the similarity metric [42, 7, 6, 12, 8]. Other approaches formalize
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2.2 Indoor reconstruction

image matching from a data perspective to learn a better visual similarity. Tieu and
Viola [58] use boosting to learn image specific features and Hoiem et al . [28] employ
a Bayesian framework to find close matches. Contrasting the mentioned work, which
is based on multiple training examples, Shrivastava et al . [54] showed how to achieve
cross-domain matching using structured support vector machines learned from a single
example. Impressive results were demonstrated. Nevertheless all these approaches can
still address only minor viewpoint changes.

To deal with a larger number of local transformations we follow the physiologic in-
tuition by first investigating an observed scene from a more global perspective. We
specifically design a solution for image matching of indoor scenes by leveraging the
Manhattan world assumption, the restriction that scenes are aligned to three dominant
and orthogonal vanishing points. This assumption was already utilized in indoor 3D
reconstruction by Furukawa et al . [21] for a stereo algorithm which was employed in an
automatic system capable of reconstructing and visualizing a house interior. Further-
more, Manhattan world assumption has enabled researchers to design methods that
retrieve a 3D layout that fits the observed room layout even when given only a single
image.

The Manhattan world assumption was also taken by methods for monocular scene
layout estimation [25, 64, 35, 47, 52, 53]. As a consequence, [25, 64] introduced a
simple parameterization of the 3D layout based on four variables. By exploiting the de-
composition of the additive energy functions with an integral geometry technique [52],
globally optimal inference of frequently utilized cost functions was shown to be possi-
ble [53]. Given high quality image cues known as geometric context [27] and orientation
maps [36] accuracies exceeding 85% are achieved [53] on standard data sets [25, 26].

In contrast to recent work in image matching, which has been extended to better
represent local transformations, we introduce the first work for indoor Structure from
Motion to use global scene interpretation for rectification of local patches. Note that
rectification based on global image properties has been done for outdoor facades in the
context of image-based localization [14].

7



3 The proposed approach

3.1 Reference Bundler implementation

We have chosen Bundler v0.4 [55] to be our baseline of 3D reconstruction pipeline.
With only image files observing a scene as input, this system outputs parameters of
recovered cameras, including intrinsics (focal length and radial distortion coefficients)
and extrinsics (camera rotation and translation). In addition, reconstructed 3D points
(color and 3D position) are returned. This is achieved by computer vision techniques.
Firstly, the features are detected in every image separately. Secondly, the features are
matched between all pairs of images. Thirdly, the feature matches are verified. Last,
an iterative SfM procedure is applied.

3.1.1 Feature detection

In this first step of the pipeline, some kinds of keypoints need to be detected in every
image and after that a descriptor computed for every keypoint in every image.

SIFT keypoint detector [39] is utilized due to its invariance to image transformations.
Besides the keypoint locations themselves, SIFT provides a local descriptor for each
keypoint. This descriptor is a 128 dimensional vector. Bundler makes use of David
Lowe’s SIFT implementation for this process.

3.1.2 Feature matching

Next, having a set of SIFT descriptors for each image, the descriptors are matched for
every image pair. An image pair is an unordered set of two images. For instance, image
pair (img1, img2) is the same as (img2, img1).

Matching is done using approximate nearest neighbor (ANN) kd-tree package by
Arya et al . [5]. To match the features of images img1 and img2, a kd-tree from feature
descriptors of img2 is created and subsequently a nearest neighbor is found for each
feature descriptor of img1 using the kd-tree. For efficiency, a priority search algorithm
of ANN is employed, limiting each query to visit maximum of 200 bins in the kd-tree.

Furthermore, to eliminate false matches, a ratio test, described by Lowe [39], is
exploited rather than thresholding the distance to the nearest neighbor. For a feature
descriptor in img1, the nearest neighbor and the second nearest neighbor is found in
the set of descriptors of img2 with distances d1 and d2 respectively. A match is then
accepted only if d1

d2
≤ 0.6. Additionally, if more than one feature descriptor in img1

matches the same feature descriptor in img2, all of these matches are removed as some
of them must be spurious. We will refer to the resulting matches as tentative.

3.1.3 Verification of matches

Furthermore, all tentatively matched image pairs must be verified. The verification
consists of two phases.

In the first, a fundamental matrix is estimated for each matched image pair using an
eight-point algorithm [24] inside a RANSAC [19]. The RANSAC investigates a total
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3.1 Reference Bundler implementation

number of 2048 fundamental matrices. A tentative match is defined as an outlier if
its residual for a generated fundamental matrix fails to lie within a predefined thresh-
old. Additionally, the RANSAC is preliminarily terminated if a fundamental matrix
supported by at least 95% of all the tentative matches is found. If the best epipolar
geometry for a given image pair is supported by at least 16 inliers then it is accepted
and outliers are disregarded. In the case when less than 16 inliers are found, the hy-
pothesis is rejected as unreliable and no matches are taken into account. Additionally,
the fundamental matrix is refined by running the Levenberg-Marquardt algorithm for
non-linear least squares minimization (Nocedal and Wright [45]) of errors of all the
inliers to the best fundamental matrix found by the RANSAC. We will refer to the
resulting matches as verified.

The second phase utilizes the geometrically verified matches mentioned above. All
the matches across all the images are organized into tracks. A track is a set of matching
features across multiple images. Note that even a single match between two images is
a track. Only consistent tracks are kept. A consistent track is a track that contains a
maximum of one feature in one image.

3.1.4 Focal length estimation

Every image is considered to be taken by a different camera. That is why focal lengths
are estimated for every camera separately. The focal length in pixels is computed using
information from EXIF tags of an image file.

Firstly, information from the EXIF tags are extracted using Matthias Wandel’s jhead
program [63]. Out of all the extracted data, only camera make, camera model, focal
length in millimeters, image resolution and CCD width are of interest.

Next, the width of the image sensor of the camera in millimeters is looked up in an
internal database using the camera make and model information. In cases where the
database does not contain an entry for the desired camera, the CCD width from the
EXIF tags is used.

The focal length in pixels is then computed as

focal length in pixels = max(width, height)
focal length in mm

image sensor width in mm
(3.1)

where (width x height) is the image size. These estimates are convenient for the SfM
initialization but sometimes they might be inaccurate. Unfortunately, EXIF tags do
not always contain all the necessary information, so in the event of missing crucial
information in EXIF tags, no estimate is provided and the camera is treated differently
in the SfM.

3.1.5 Structure from Motion

Finally, a set of parameters of cameras and 3D locations of tracks can be recovered.
For the camera parameters and the tracks, the reprojection error, i.e. the sum of dis-
tances between the projections of each track and its corresponding image features, is
minimized. The minimization problem can be formulated as a non-linear least squares
problem (see the following paragraph) and solved using bundle adjustment [60]. Algo-
rithms for finding a solution to this non-linear problem, such as Nocedal and Wright [45]
guarantee finding a local minimum. Unfortunately, large-scale SfM problems tend to
get stuck in bad local minima. That is the reason why it is crucial to provide a good
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3 The proposed approach

initial estimate of the parameters. An approach of estimating initial camera pair pa-
rameters and then iteratively adding other cameras is chosen instead of estimating the
parameters of all cameras and tracks at once.

Optimization We will now formulate the aforementioned minimization problem as a
non-linear least squares problem as in [55, 56].

A perspective camera can be parameterized by an eleven-parameter projection ma-
trix. It is possible to reduce the number of parameters by making the common ad-
ditional assumptions that the pixels are square and that the center of projection is
coincident with the image center. The parameters are: the 3D orientation (three), the
camera center c (three), the focal length f (one). In addition, the system solves for two
radial distortion parameters κ1 and κ2, so the total number of parameters per camera
is nine.

An incremental rotation ω is used to parameterize the 3D rotation, where

R(θ, n̂) = I + sin θ
[
n̂
]
× + (1− cos θ)

[
n̂
]2
×, ω = θn̂ (3.2)

is the incremental rotation matrix applied to an initial rotation and

[
n̂
]
× =

 0 −n̂z n̂y
n̂z 0 −n̂x
−n̂y n̂x 0

 (3.3)

The nine parameters are grouped into a vector Θ =
[
ω c f κ1 κ2

]
. Each point is

parameterized by a 3D position p.
To formulate the optimization problem, consider a set of n cameras, parameterized

by Θi, a set of m 3D points (tracks) parameterized by pj and a set of 2D projections
(feature locations) qij , where qij is the observed projection of the j-th 3D point by the
i-th camera.

Let P(Θ, p) be the equation mapping a 3D point p to its 2D projection in a camera
with parameters Θ. P transforms p to homogeneous image coordinates and performs
the perspective division that applies the radial distortion:

p′(Θ, p) = KR(p− c)

p0(Θ, p) =
[
−p′x/p′z −p′y/p′z

]T
P(Θ, p) = grd(p0)

(3.4)

where K = diag(f, f, 1) and grd is the distortion equation that maps a projected 2D
point q = (qx, qy) to a distorted point as follows

ρ2 = (
qx
f

)2 + (
qy
f

)2

α = 1 + κ1ρ
2 + κ2ρ

4

grd(q) = αq

(3.5)

It is sought to minimize the sum of the reprojection errors:

n∑
i=1

m∑
j=1

wij‖qij −P(Θi, pj)‖ (3.6)

wij is used as an indicator variable where wij = 1 if camera i observes 3D point j and
wij = 0 otherwise.
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3.1 Reference Bundler implementation

Initialization To initialize the algorithm, an initial camera pair must be selected and
subsequently the parameters of both cameras estimated.

In order to robustly estimate the initial two-frame reconstruction, the initial pair
should have a lot of matches and a large baseline. To ensure that the pair has a large
baseline, it is confirmed that the verified matches (see Sec. 3.1.3) of this pair cannot be
well modeled by a homography. For the estimation of a homography, a RANSAC [19]
is utilized. The RANSAC investigates a total of 256 homographies. A match is defined
as an outlier if the distance between a feature from one image and a feature from the
second image transformed by the generated homography exceeds a predefined pixel
threshold. If less than 10 inliers support the best homography, an empty inlier set is
returned.

The initial image pair is chosen as the one with the most matches satisfying the
conditions of having at least 32 matches and the percentage of inliers to the best ho-
mography lower than 50%. In cases where no such pair exists, the initial pair is chosen
as the one with the lowest percentage of inliers to the best homography and with at
least 80 matches. Additionally to both of the rules, both images in the pair must have
a focal length estimate computed from their EXIF tags (see Sec. 3.1.4). If there are
no two matched images with a known focal length estimate, the initial image pair is
selected according to the aforementioned rules but without the restriction on the focal
length estimate. If even then no suitable image pair could be chosen, then considering
a lexicographical ordering of image filenames, the first and the second image is selected.

Next, if the cameras have a known focal length, initial camera parameters of the initial
pair are estimated using Nistér’s five point algorithm [44]. With the camera parameters
estimated, the 3D positions of tracks that correspond to the matched features between
the pair are computed by triangulating the projections (features) in the images. When
the focal lengths of the initial camera pair are unknown, then both camera centers are set
to the origin and their rotation matrices are set to the identity matrices. Subsequently,
the 3D positions of tracks corresponding to the matches between the pair are computed
as xy

z

 =

xproj/default focal length
yproj/default focal length

1

 initial depth (3.7)

where x, y and z are 3D coordinates of a track, xproj and yproj are 2D coordinates of a
feature corresponding to the track, the default focal length is set to 532 and the initial
depth is set to 3. This basically means that the points are back projected to a constant
depth.

Last, a two-frame bundle adjustment is applied.

Iterative procedure With the algorithm fully initialized, the procedure described in
this paragraph is iterated until all the images are added to the reconstruction or until
no more images can be added.

To start with, a camera observing the most tracks which were already reconstructed
is found. In cases where this camera observes less than 16 tracks, the iterative proce-
dure is stopped since only weakly connected cameras are left (this corresponds to the
stopping criterion mentioned above). If the procedure was not stopped then let us call
the number of tracks that are observed by the found camera nmax. Then also all other
cameras that observe at least 75% of nmax are found; all the found cameras are added to
the optimization. To initialize parameters of the newly added cameras, for each of the
cameras, a projection matrix is estimated using the direct linear transform (DLT) tech-
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3 The proposed approach

nique [24] in a RANSAC [19]. A total of 4096 projection matrices are investigated. An
inlier is defined as having an error less than 4 pixels and a weak inlier less than 64 pixels;
the error is the distance between a projection and a 3D point projected by the generated
matrix. The best projection matrix is further refined using the Levenberg-Marquardt
algorithm for non-linear least squares minimization of errors of all the inliers to the
best matrix found by the RANSAC. If the resulting projection matrix is supported by
at least 6 inliers then it is accepted as sufficiently reliable. When no projection matrix
was found, then the camera is removed from the optimization. Next, camera rotation
matrix, translation vector and calibration matrix K are computed from the projection
matrix using QR decomposition. The acquired K can be used as an estimate of a focal
length

f1 =
1

2
(K11 + K22) (3.8)

If the focal length was estimated from EXIF tags, let us refer to it as f2. For further
use, f2 is preferred on condition that

0.7f1 < f2 < 1.4f1 (3.9)

Otherwise f1 is used, including cases in which f2 could not be estimated. Finally, radial
distortion parameters are initialized to 0. With a set of initial parameters including
the rotation matrix, the translation vector, the focal length and the radial distortion
parameters, a bundle adjustment step is applied, allowing only the new camera and
the points it observes, which are weak inliers defined earlier in this paragraph, to
change. The rest of the reconstructed model is fixed. Some of the input points (weak
inliers) might get rejected in the process. If less than 8 points remain after the bundle
adjustment step or the estimated focal length is smaller than 0.1width, where width
is the image width, the new camera is removed from the optimization. An inlier in
the bundle adjustment step is defined as a point with a reprojection error lower than a
threshold which is set as

min (max (2.4 d95, 8), 16) (3.10)

where d95 is a 95th percentile of reprojection errors of all points which were inliers in
the previous round of the bundle adjustment (all weak inliers in the first round). That
way it is ensured for errors less than 8 to be always inliers and the ones with error
above 16 to be always outliers, with the exact threshold lying in between.

Furthermore, tracks observed by the cameras newly added to the optimization are
also added to the optimization if they meet the following conditions. A track has to
be observed by at least two cameras that are already in the optimization (including
the new ones). Also, triangulating a track must give a well-conditioned estimate of its
location. The conditioning is given by considering all pairs of rays that could be used for
triangulation and finding a pair of rays with the maximum angle of separation. If the
maximum angle is larger than 2 degrees the track is well-conditioned and is triangulated
using least squares. If the reprojection error is smaller than a 16 pixel threshold, the
triangulated track is accepted and added to the optimization.

Finally, a global bundle adjustment is employed to refine the whole model. The
minimization is done using the sparse bundle adjustment library of Lourakis and Argy-
ros [38]. After every run of this optimization, outlier tracks are detected and removed,
and that is repeated beginning with the optimization until no outlier tracks are de-
tected. An outlier track is a track associated with at least one feature for which the
reprojection error exceeds a threshold, which is defined as

min (max (2.4 dimgi80 , 8), 16) (3.11)
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3.2 Reconstruction pipeline implementation

Figure 3.1 A visualization of standard SIFT keypoints on the left and upright on the right.
The yellow circles represent individual keypoints. The scale of a keypoint is illustrated by
the radius of its respective circle and an orientation by a line going from the center of the
circle to a point on it. This example shows only keypoints of a scale higher than 10 to enable
a nice visualization.

where dimgi80 is the 80th percentile of the reprojection errors for image imgi.

Additionally, all tracks which are in the optimization are pruned after the global
bundle adjustment step. Similar to adding a new track to the optimization, the maximal
angle of separation between all pairs of rays associated with the track is found. If this
angle is smaller than 1 degree, the track is removed from the optimization. Note that it
is possible for the track to be added to the optimization again if a new camera observing
this track is added to the optimization.

3.2 Reconstruction pipeline implementation

This section presents our implementation of a 3D reconstruction pipeline. Since we use
Bundler [55], described in detail in Sec. 3.1, as a reference reconstruction pipeline, we
will now point out differences and improvements of our implementation.

3.2.1 Feature detection

We have seen fit to also use SIFT keypoint detector and descriptor [39]. We provide the
user of our pipeline with two choices concerning implementation of the SIFT; both of
them being publicly available open source projects. Firstly, one can choose the OpenCV
library [9]. Specifically, we employ the currently newest version 2.4.8. Secondly, one
can decide for the VLFeat library [61]. We again exploit the currently newest version,
which is 0.9.18. In our experiments, we use the VLFeat library because its interface
enables us to easily implement extensions presented below.

Additionally to the VLFeat library option, we provide a sub option. The user can
choose to detect more discriminative upright SIFT keypoints, which are defined as
standard SIFT keypoints with fixed orientation. Note that it makes them susceptible
to rotations. For a visual comparison of the standard and the upright SIFT keypoints,
see Fig. 3.1.

SIFT octaves We will now explain the basic idea of a few technical details of SIFT [39]
so that even a reader unfamiliar with it would understand our next step. To detect
keypoints, SIFT exploits so called scale spaces. To understand scale spaces, it is useful
to consider a person looking at an object, e.g ., a tree, at different distances. From afar
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3 The proposed approach

they would see only the shape of the tree. As they come closer, they would be able to
recognize more details such as different leaves, and subsequently even smaller details of
the individual leaves. In SIFT, these viewpoints from different distances are simulated
by resizing the original image. Keypoints are then detected in the different sizes of the
image. The processing of one size of the image is referred to as an octave. Typically,
the first octave is created by doubling the original image in size. The second one is
then formed from the original image and all the following octaves are based on an image
preceding them resized to half of its size. That means that the third octave is created
from the original image resized to half size, the fourth octave from the original image
scaled down to a quarter of its size and so on.

Scaling of the SIFT detector It is not always desirable to detect as many keypoints as
possible since it significantly decreases computational efficiency. Therefore, a problem of
detecting too many keypoints arises for high resolution images. Usually, one would need
to resize all images to some reasonable size prior to inputting them into the pipeline.
That is true even for Bundler [55]. Another way to approach this problem would be
detecting all keypoints and then keeping only some of them. Note that some scoring
would be necessary for choosing which to keep and which to discard.

Nonetheless, we argue that it is sufficient to exploit the SIFT octaves mentioned
above. We notice that choosing a different first octave is equivalent to resizing the
image a priori. Also, we reason that there is some function taking resolution of an
image and returning first octave at which the SIFT keypoint detection should start.
Next, consider an ordered sequence of octaves

o−1, o0, o1, . . . , ok (3.12)

and corresponding resolutions in megapixels of images they are formed from

r−1, r0, r1, . . . , rk = 2r0, r0,
1

2
r0,

1

4
r0, . . . ,

1

2k
r0 (3.13)

where r0 is the resolution of the original image. We are looking for a function f(r) = i,
where r is a resolution of an image in megapixels and i is an index of the starting
octave. For this purpose, we collected a set of images of various sizes and manually
determined which octaves are ideal to start at, where ideal stands for the detection
of as many keypoints as possible but staying under 20000 keypoints. We plotted the
measured data as points. Next, we chose to approximate them by a function, which fits
the points well

f ′(r) = a0 + a1
√
r + a2 log r, a0, a1, a2 ∈ R (3.14)

The parameters (a0, a1, a2) were then estimated from the measured data by least squares
and the result is

f ′(r) = −1.5673 + 0.5497
√
r + 0.0319 log r (3.15)

To get the final function which returns an index of the ideal octave we compose auxiliary
functions

f(r) = g(h(f ′(r))) (3.16)

where function h rounds a number to the nearest whole number and function g only
keeps a number in interval −1 and k, i.e.

g(x) = max (−1,min (k, x)) (3.17)
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3.2 Reconstruction pipeline implementation

By providing the scaling of the SIFT detector, we remove the overhead connected
to a resizing of images and in addition the user of our pipeline does not need to man-
ually choose an ideal resolution of their images. We utilize the scaling approach for
VLFeat [61] option since it offers easy interface for choosing the first octave. Neverthe-
less, we still enable the user to set the first octave manually.

3.2.2 Feature matching

Similar to the feature detection, we provide two possible choices of libraries. The two
choices use different algorithms for the computation. First, we make use of the approx-
imate nearest neighbor package (ANN) by Arya et al . [5] the same way as described in
Sec. 3.1.2. Next, we utilize OpenCV [9] for two different algorithms. The first being
a naive brute force matcher, which for each descriptor in the first set finds the closest
descriptor in the second set by computing distances to all descriptors in the second set.
The second, OpenCV matcher, is based on a fast library for finding approximate near-
est neighbor (FLANN) [43]. FLANN is a library containing a collection of algorithms
for fast nearest neighbor search in large data sets and for high dimensional features. It
is described in detail by M. Muja et al . [43]. From all the possibilities, we choose to
employ an algorithm utilizing randomized kd-trees. More concretely, four randomized
kd-trees are constructed and searched in parallel. We employ FLANN in our experi-
ments, since in our tests it has proved to be faster than both brute force and ANN and
it tends to be as effective in matching as ANN. The brute force matcher is disregarded
mainly because it is ineffective for large data sets. We always apply a ratio test after
matching as detailed in Sec. 3.1.2.

3.2.3 Verification of matches

The verification of tentative matches is done exactly as detailed in Sec. 3.1.3, with
one exception. When estimating epipolar geometry, we exploit the Progressive Sample
Consensus (PROSAC) [13] framework, presented later in this section, instead of the
standard RANSAC [19]. In addition, we use a stricter threshold of 5 pixels for deter-
mining inliers. To complement this, we supply the user of our pipeline with an option to
use OpenCV implementation of estimating epipolar geometry. Nonetheless, this option
does not take advantage of our PROSAC implementation.

PROSAC We are inspired by the Progressive Sample Consensus (PROSAC) detailed
by Raguram et al . [48] and Chum and Matas [13]. Our interest lies in speeding up
the the standard RANSAC procedure which was proved to be achieved by [48, 13].
PROSAC utilizes ordering of matches by a quality measure. For example, a distance
between two matched features can be used as a quality score of a match. PROSAC then
firstly tests the most promising hypotheses which often allows it to terminate earlier
than the standard RANSAC would.

For illustration, see the pseudocode of our PROSAC implementation in Alg. 1. As
mentioned above, our PROSAC implementation exploits match distances. Therefore,
we sort matches in an ascending order by the distances prior to the main loop of
PROSAC. That enables using the best matched features first which in turn allows us
to generate the most promising hypotheses first.

In the following, we define the sampling strategy of our PROSAC implementation
the same way as in [13]. The set of N matches is denoted by UN . The matches in UN
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Algorithm 1 Progressive Sample Consensus (PROSAC), see Sec. 3.2.3

Input: A set of matches UN sorted according to the distance measure

r ··= 0
n ··= m
imax ··= 0
while r < K do

1. Choice of a semi-random sample Mr of size m
if r = T ′n && n < N then

n ··= n+ 1, see Eq. (3.23)

if r < T ′n then
Choose m− 1 matches from Un−1 at random and un into the sample

else
Choose m matches from UN at random into the sample

2. Hypothesis generation
Compute a hypothesis from the sample Mr

3. Hypothesis evaluation and possible termination
Compute a number of supporting inliers i to the hypothesis
if i > imax then

imax ··= i
Remember the hypothesis as the best one so far
if r ≥ k && the hypothesis is non-degenerate then

if i > c || Eq. (3.25) then
Terminate

if i > 0.95N then
Terminate

r ··= r + 1
end while

are sorted in ascending order with respect to the match distance function d

ui,uj ∈ UN : i < j ⇒ d(ui) ≤ d(uj) (3.18)

The set of n matches with the lowest distance is denoted Un. Next, imagine the standard
RANSAC drawing TN samples of size m out of N matches. Let {Mi}TNi=1 denote the

sequence of samplesMi ⊂ UN that are uniformly drawn by RANSAC and let {M(i)}TNi=1

be the same sequence sorted in ascending order according to the distance score

i < j ⇒ q(M(i)) ≤ q(M(j)), q(M) = max
ui∈M

d(ui) (3.19)

If the samples are taken in order M(i), the samples that are more likely to be uncon-
taminated are drawn earlier. Progressively, samples containing matches with bigger
distances are drawn. After TN samples, exactly all RANSAC samples {Mi}TNi=1 were

drawn. Next, let Tn be an average number of samples from {Mi}TNi=1 that contain
matches Um only

Tn = TN

(
n
m

)(
N
M

) = TN

m−1∏
i=0

n− i
N − i

, then (3.20)

Tn+1

Tn
=
TN
TN

m−1∏
i=0

n+ 1− i
N − i

m−1∏
i=0

N − i
n− i

=
n+ 1

n+ 1−m
(3.21)
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3.2 Reconstruction pipeline implementation

Figure 3.2 A visualization of the PROSAC non-degeneration check. The lines represent
matches and the dots positions of matched keypoints. The color green stands for inliers and
blue for outliers to the current hypothesis. This particular example shows a non-degenerate
hypothesis.

Finally, the recurrent relation for Tn+1 is

Tn+1 =
n+ 1

n+ 1−m
Tn (3.22)

There are Tn samples containing only matches from Un and Tn+1 samples containing
matches from Un+1. Since Un+1 = Un ∪ {un+1}, there are Tn+1 − Tn samples that
contain a match un+1 and m− 1 matches drawn from Un. Therefore, a procedure that
for n = m. . .N draws Tn+1−Tn samples consisting of a match un+1 and m−1 matches
drawn from Un at random efficiently generates samples M(i). As the values of Tn are
not integer in general, we define T ′m = 1 and

T ′n+1 = T ′n + dTn+1 − Tne (3.23)

To define our PROSAC procedure fully, we need to introduce a stopping criterion,
since without it the procedure would not gain any computational savings in compar-
ison with standard RANSAC. Let K be the maximum and k the minimum of tested
hypotheses. We propose to terminate the algorithm when k hypotheses has already
been tested, the best hypothesis found so far is non-degenerate and it is supported
by at least c inliers. We set K to the number of rounds that the standard RANSAC
would run, which in our case (see Sec. 3.1.3) is 2048. Next, we want to test at least k
hypotheses where

k = min (K,max (100, b0.1Kc)) (3.24)

We propose that 50 inliers are enough to support a good epipolar geometry, assuming
that it is non-degenerate and therefore we set the threshold c on inliers to min (50, 0.95N),
where N is the number of all matches.

In order to define a non-degenerate hypothesis, consider Fig. 3.2. Having two matched
images, we propose to partition both of them into cells. In more detail, we make the
cells have a square shape with one row having rectangular cells depending on the aspect
ratio of an image. The length of one side of a square is given by the image resolution.
We set a longer side of the image to have 10 rows of squares which defines the whole
grid. Next, having the partitioning of the images, we calculate the area that is covered
by the cells which contain at least one inlier for both images. In cases where for at least
one of the images the area is at least one eighth of the whole image, we say that the
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hypothesis is non-degenerate. This comes from an assumption that a photographer is
considered to have captured a desired object in at least one eighth of a photograph.

In addition, we propose that if a generated hypothesis is supported by a number of
inliers close under the threshold c and a PROSAC is still to run for many rounds, it
can be terminated assuming that the minimum of k hypotheses was already tested and
the currently best hypothesis is non-degenerate. In more detail, we threshold a ratio

1− |I|c
K − r

< t (3.25)

where r is a current round, I is a set of inliers and t is the threshold. We have empirically
found that setting the value of t to 0.00015 works well for estimating epipolar geometry.
For an even bigger speedup, we introduce a secondary stopping criterion. If an hypoth-
esis supported by at least 95% of all matches is found, the procedure is terminated
immediately since the remaining 5% is not worth the additional computation.

3.2.4 Focal length estimation

We estimate focal length the same way as explained in Sec. 3.1.4.

3.2.5 Structure from Motion

For details on this phase see Sec. 3.1.5.
The first difference in our implementation is the strategy used for choosing an initial

pair. We use a similar approach as in Sec. 3.1.5, which means finding a camera pair with
the most matches and simultaneously having at least 32 matches and the percentage of
inliers to the best homograhy lower than 50%. If there is no such pair, the initial pair is
chosen as the one minimizing the inlier percentage to the best homography and having
at least 80 matches. We firstly apply this set of rules to image pairs where both of the
images have focal lengths estimated from their EXIF tags. If this fails, we look for the
initial pair in a set of image pairs where at least one of the two images has an estimated
focal length. Only when both of these searches are not successful do we attempt to find
the initial pair in a set of all matched image pairs. In cases where even the last search
fails, we pick the first and the second image when considering ordering of image files
lexicographically.

As opposed to Bundler (see Sec. 3.1.5), in the need of estimating camera parameters
for an initial camera pair without estimated focal length from their EXIF tags we
approach the problem differently. To begin with, we estimate the focal lengths as

focal length in pixels = 0.82 image width (3.26)

Next, instead of putting both of the cameras into origin and setting their rotation matri-
ces to the identity matrices, we utilize the aforementioned estimate of the focal lengths
and run the five point algorithm [44] as if the focal lengths were estimated correctly
from EXIF tags. This proves to be a remarkable improvement for reconstructing a set
of cameras for which the focal lengths could not be estimated from EXIF tags (see the
experiments in Sec. 4.1). Nonetheless, since Eq. (3.26) does not provide an accurate
estimate, we place no constraint on the focal to the optimization.

Finally, we do not want to restrict ourselves to one bundle adjustment package.
Therefore, we incorporate into the pipeline the sparse bundle adjustment library of
Lourakis and Argyros [38] as well as a CMP version of bundle adjustment [4] which is
based on Ceres Solver [1]. We compare both of the packages in the experiments (see
Sec. 4.1 and Sec. 4.2.1).
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3.3 Indoor reconstruction

3.3 Indoor reconstruction

See Fig. 3.3 for the visualization of steps taken by the proposed approach. We are
given a set of images (step 1). First of all, we estimate scene model for every image
individually. That consists of detecting tree mutually orthogonal vanishing points using
the algorithm from Hedau et al . [25]. Subsequently, detecting orientation maps [36] and
geometric context [27] image cues which are visualized in step 2. Next, minimizing an
energy function, which is based on the image cues, to estimate the room layout. For
minimization, we employ a variant of a branch-and-bound algorithm [53] which is briefly
described in Sec. 3.3.1. The resulting scene layout is visualized in step 3 of Fig. 3.3.
Given the scene model, we rectify walls, floor and ceiling as detailed in Sec. 3.3.2 (step
4). and use them for detecting and matching SIFT features (step 5).

Next, as described in Sec. 3.3.3 we extract and subsequently match standard SIFT
features [39] from the rectified floor and ceiling as well as upright SIFT from the rectified
walls. We transform the obtained matches back to the original image and combine them
with the result from standard feature matching (see step 5 of Fig. 3.3). Afterwards, we
verify the matches and run the SfM procedure.

3.3.1 Scene estimation

We will now give a brief description of the scene layout estimation. Note that our
exposition follows the approach described in [53] and we refer the interested reader to
this work for additional details.

For the scene estimation task, let the room layout be referred to via variable y.
Finding the best scene interpretation is commonly defined as the general energy mini-
mization problem

y∗ = arg min
y∈Y

E(y). (3.27)

where y∗ denotes the best interpretation. In order to specialize the general energy min-
imization, we first discuss the parameterization of an indoor scene. Hence we describe
the space of all possible layouts y ∈ Y. Secondly, we detail the energy function E.
Finally, we discuss the optimization algorithm.

Scene parameterization Following the standard monocular scene understanding liter-
ature [25, 64, 35, 47, 52, 53], we use the Manhattan world assumption, i.e., we assume
that the observed scene is described by three mutually orthogonal plane directions
(vanishing points). Therefore, having one image as input we detect the three vanish-
ing points (vp) using the algorithm of Hedau et al . [25]. Next, we parameterize the
indoor scene as a 3D box using the three vanishing points. Note that at most three
walls as well as floor and ceiling can be visible in an image. Hence, similar to [25, 64],
we parameterize the 3D box by four parameters yi, i ∈ {1, . . . , 4} each corresponding
to an angle describing a ray ri, i ∈ {1, . . . , 4} as visualized in Fig. 3.4. We point out
that the rays r1, r2 are limited to lying either above or below the horizon which is the
line that connects vp0 and vp2. Also, similar constraint is valid for the rays r3 and
r4 in order to only parameterize valid layouts. For efficient computation, the possible
angles yi ∈ Yi = {1, . . . , |Yi|} are discretized such that the space of all valid layouts
Y =

∏4
i=1 Yi is a product space describing a countable amount of possibilities. To

ensure a sufficiently dense discretization, the number of discrete states |Yi| is made de-
pendent on the location of the vanishing points while making sure that the area within
the image domain covered by successive rays is smaller than 3000 pixel.
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(1) original image (1) original image

(2) GC and OM (2) GC and OM

(3) scene layout (3) scene layout

(4) rectification (4) rectification

(5) tentative scene model matches

Figure 3.3 The proposed procedure. Given input images (1) we extract orientation maps (OM)
and geometric context (GC) (2) which enable an optimization to find a scene layout (3). The
scene estimate enables rectification of the detected faces (floor, ceiling and walls) (4) used
for keypoint detection and matching (5). This particular example could not be matched by
standard approach whereas we obtained 33 tentative matches.
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vp0

vp1

vp2
y1

y2

y3
y4

r1

r2

r3 r4

Figure 3.4 Parameterization of 3D layout estimation

(a) geometric context (b) orientation maps

Figure 3.5 A visualization of geometric context (GC) and orientation maps (OM). The colors
red, blue, cyan, green and yellow represent the left wall, the front wall, the right wall, the
floor and the ceiling, respectively. Uncolored locations symbolize unassigned pixels for OM
and objects for GC.

Energy function Having all the possible layouts parameterized, we score a single lay-
out hypothesis y by an energy function E(y). In the following, we discuss the em-
ployed energy function. Let the five visible layout faces be subsumed within the set
F = {left-wall, right-wall, front-wall,floor, ceiling}. We design the energy function so
that it decomposes into a sum of terms, each depending on a single layout face, i.e.,

E(y) =
∑
α∈F

Eα(yα). (3.28)

Note that the set of variables involved in computing a face energy Eα is a subset of all
variables, i.e., α ⊆ {1, . . . , 4} denotes a restriction of (y1, . . . , y4) to yα.

To define an energy function of a single face, we employ geometric context (GC) [27]
and orientation maps (OM) [36] (see Fig. 3.5 for an example), which were shown by
many authors [35, 47, 52] as the most promising image cues for indoor scene layout
estimation. Hence, we let the face energy function decouple to Eα = Eα,GC + Eα,OM.

21
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Figure 3.6 The estimated room layout represented by the color cyan.

Orientation maps are based on sweeping lines to obtain one of five possible wall orien-
tations. In contrast, geometric context is computed using classifiers trained on a data
set provided by Hedau et al . [25].

Scene model construction Importantly, using integral geometry, it was shown by
Schwing et al . [52] that the energy functions Eα,· decouple for every wall face α into
a sum of terms with each summand depending on at most two variables. This en-
ables efficient storage. Furthermore, [53] demonstrated that the geometric properties of
the parameterization can be exploited in order to utilize branch-and-bound algorithm
which retrieves the globally optimal solution y∗ = arg miny∈Y E(y) of the initially given
optimization problem stated in Eq. (3.27).

The approach proceeds by successively dividing a set of layouts Ŷ = Ŷ1 ∪ Ŷ2 into
two disjoint sets Ŷ1, Ŷ2 with Ŷ1 ∩ Ŷ2 = ∅. A lower bound on the energy function
is computed for each set so that it is ensured for every member of the set to score
equally well or worse. The sets are inserted into a priority queue with a score being the
lower bound. An iterative procedure retrieves the lowest scoring set to be considered
for further partitioning until such a set contains only a single element, i.e., when the
procedure stops, we have found the best scoring layout y∗. Even though the algorithm
evaluates all the possible layout hypotheses in the worst case, it was shown in [53] that
only a few layouts are partitioned in practice. An example of the best layout for one
room is visualized in Fig. 3.6.

3.3.2 Image rectification

Finding the optimal 3D layout by solving the problem given in Eq. (3.27) yields a result
similar to the one visualized in Fig. 3.6, which enables a rectification of the estimated
3D parametric box (shown in Fig. 3.7). The rectification, which could also be explained
as an unwrapping of the 3D box, makes local patches in images look more similar which
eventually makes matching them easier.

To unwrap the 3D box into a 2D image we apply a homography to each face separately.
Given the three vanishing points and the estimation result being the four angles yi, the
four corners of the front wall are completely specified by intersecting the rays ri. Since
we only observe three walls as well as the floor and ceiling, but not the closing wall of
the box, the other corners are not specified uniquely. We compute the other corners in
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3.3 Indoor reconstruction

Figure 3.7 A visualization of the unwrapped room, i.e., all rectified faces.

a way that no image region is cropped.
Hence, every wall is given by four points and we compute a projective transformation

to warp each quadrilateral into a square-shaped image. The length of a side of the
resulting image a is computed in the following way.

a = min (bh+ w

2
c, 1600) (3.29)

where h and w are the height and width of the original image.
To give an example, let the four corners of the quadrilateral describing the front wall

be referred to via x1, . . . , x4 ∈ R2. We solve a linear system of equations to obtain the
transformation matrix Tfront-wall which projects x1, . . . , x4 to the corners of the square
defined above. We then warp the texture of the front-wall to the square by applying
the transformation. The resulting rectification upon processing all the walls, ceiling
and floor is illustrated in Fig. 3.7.

We address the fact that a camera can move in an indoor scene which makes defining
the front, left and right wall ambiguous. We compose all three rectified images of walls
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next to each other into one image. That way, when matching one composed walls image
to another, we can easily match a wall which is front for one camera and right for the
other, for example.

3.3.3 Feature extraction and matching

Next, we describe SIFT features [39] extraction and matching.

Feature extraction Having defined the images of rectified faces defined above, we
employ SIFT extraction described in Sec. 3.2.1. We detect standard SIFT on floors
and ceilings and more discriminative upright SIFT on walls since we assume that they
are aligned with gravity. In cases where the scaling of the SIFT detector extension (see
Sec. 3.2.1) is on, we relax the detection of the first octave for the image of walls. In
more detail, the walls image is composed from 3 individual images so we adjust the
function detecting the first octave by inputting a resolution three times smaller than
the image containing the walls has. In addition, we traditionally detect standard SIFT
for the original images.

Feature matching Next, we match the detected features utilizing the OpenCV [9]
implementation of FLANN (see Sec. 3.2.2). Especially for our indoor approach, we
match floors with floors, ceilings with ceilings, walls with walls and original images
with original images only.

In the last step, we transform all the detected features from the rectified domain
back to the original image domain using inverse mappings for every face, e.g ., T−1front-wall.
Afterwards, we augment matches obtained by traditional matching of original images
with those acquired by matching ceilings, floors and walls. We refer to these combined
matches as tentative scene model matches.

3.3.4 Verification of matches and Structure from Motion

In this last phase, we verify tentative scene model matches using the algorithm described
in Sec. 3.2.3. Subsequently, we run an iterative SfM procedure presented in Sec. 3.2.5.
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4 Experiments

In the following, we firstly show that our reconstruction pipeline performs just as well or
better than Bundler [55] on standard data sets and secondly we evaluate our approach
to indoor scenes in comparison to a standard run of our pipeline without the indoor
extension. By Bundler we always mean Bundler v0.4 described in Sec. 3.1.

4.1 Reconstruction pipeline

In this section, we evaluate our pipeline on 8 different data sets. These data sets contain
64, 13, 122, 66, 63, 189, 31 and 50 images. Lets consider labelling of the sets 1, 2,. . . , 8
as in Tab. 4.1. Then, the data set 1 depicts a paper model of Daliborka tower, Prague
and neighboring buildings, the number 2 shows a desk with various leaflets and boxes
on it, the number 3 displays a fantasy figurine of werewolf, the images in 4 capture an
African tribal mask, the number 5 contains a statue of Probost Mikulas Karlach and
the number 7 a statue of Saint Prokop, the data set 6 shows a large church Sagrada
Familia, Barcelona and finally, the images in 8 capture a rock on sandy ground. We
consider these data sets to be an interesting mixture of different types of scenes thus
enabling us a good evaluation of our pipeline.

We divide the evaluation into the following subsections. First of all, we show how
well our pipeline performs as a whole and what influence has our scaling of the SIFT
detector. Secondly, we evaluate efficiency of our PROSAC implementation in contrast to
the standard RANSAC. Finally, we compare two different bundle adjustment packages
which we have integrated into our pipeline.

4.1.1 The pipeline as a whole and scaling of the SIFT detector

From all the options we have implemented and described in Sec. 3.2, we use one configu-
ration. For SIFT, we utilize VLFeat [61]. For matching, we employ OpenCV [9] FLANN
implementation. Matches are subsequently verified using the proposed PROSAC pro-
cedure (see Sec. 3.2.3). In SfM phase, we use CMP version of bundle adjustment [4],
which is based on Ceres Solver [1].

Also, to test our automatic selection of the octave in SIFT detection described in
Sec. 3.2.1, we show results for running our pipeline on resized images without the
automatic octave detection (denoted as Ours-) and with the automatic octave detection
on original images (denoted as Ours+). All results can be found in Tab. 4.1 and Tab. 4.2.
We point out that Bundler does not implement any such thing as automatic resizing and
therefore a problem of how to resize the images arises, because both Bundler and Ours-
require resized images; for our purpose, to a size at which less than 20000 keypoints
gets detected. Since every data set was taken with a single camera, all images in a
single data set have the same resolution. Thus, for every data set we do the following.
We let Bundler detect keypoints in all images of a data set and if an average of more
than 20000 keypoints is detected, we decrease the size of all the images by a factor of 2
and repeat the process again. A resolution of the original images, of the resized images
and additionally an octave which was selected as a starting one by our scaling extension
can be found in Tab. 4.2.

25



4 Experiments

Set # images
# cameras Error

Bundler Ours- Ours+ Bundler Ours- Ours+

1 64 64 64 64 0.377 0.320 0.320

2 13 13 13 13 0.206 0.307 0.487

3 122 122 122 122 0.195 0.215 0.388

4 66 21 21 21 0.438 0.453 0.506

5 63 63 63 63 0.217 0.241 0.664

6 189 189 189 189 0.333 0.344 0.627

7 31 31 31 31 0.261 0.301 0.794

8 50 21 50 50 1.792 0.217 0.322

Table 4.1 The number of images and the number of cameras reconstructed by the standard
Bundler procedure and by our proposed approach without and with the scaling of the SIFT
extension (denoted by - and + respectively) for eight different data sets.

Set
resolution [MPix] Octave # keypoints
original resized Ours+ Bundler Ours- Ours+

1 0.94 0.94 =1 981 1196 1196

2 10.04 2.51 0 8982 9594 9936

3 10.04 2.51 0 8530 8339 8728

4 5.63 5.63 0 2564 5137 2476

5 14.16 1.77 1 18123 20632 10608

6 7.08 1.77 0 8670 10900 11399

7 14.16 1.77 1 10427 13473 7753

8 4.92 1.23 0 14705 13020 14270

Table 4.2 The resolution of the original images, of the resized images and the first octave
chosen by Ours+. Also, the average number of detected keypoints on the resized images by
Bundler and our approach without the scaling extension and on the original images by our
approach with the scaling extension.

In Tab. 4.1 we show results for running Bundler, Ours- and Ours+ on the data
described earlier. Both Bundler and Ours- have the advantage of manually resized
images whereas Ours+ relies on an automatic detection of the first octave by our scaling
extension. You can see that we manage to recover the same number of cameras for
data sets 1-7. As far as the data set 8 is concerned, our pipeline performs rather well
in comparison to Bundler since we are able to recover all of the cameras (50) whereas
Bundler only 21. Next, we notice that for all the data sets except for the data set
number 4, we recover all of the cameras. Comparing the reprojection error of Bundler
and Ours- for the data sets 1-7, we see that even though we are better only for two data
sets, the errors are typically very close to those of Bundler. Considering Ours+, we
observe higher reprojection error than the other two approaches. Since the difference
between Ours- and Ours+ is only the keypoint detection, we hypothesise that detecting
different keypoints can result in different matches which can place different constraints
on the optimization and that can result in a different reprojection error. Nevertheless,
the error is still of the same order and the reconstruction was finished successfully (see
Fig. 4.1 and Fig. 4.2).
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(a)

(b)

Figure 4.1 Visualizations of reconstructions of the data set 6. In (a), we see a result of Bundler
and in (b), a result of Ours+ approach. The square pyramids represent cameras. A camera
center is in a top of its pyramid and an orientation of the camera is given by a base of its
pyramid. Note that the clutter at the bottom are cameras since it is a large church and
all photos were taken from the ground. We see how our pipeline performs just as well as
Bundler.

Reconstructions of data sets for which we recover the same number of cameras as
Bundler are very similar. As a typical example of this, see a visualization of reconstruc-
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(a)

(b)

Figure 4.2 Visualizations similar to Fig. 4.1. In (a), results of Bundler are shown on the left
and Ours+ on the right and in (b) reconstruction done by Ours- on the left and the one done
by Ours+ on the right. (a) displays reconstructions of the data set 8. On the left, you see
how Bundler failed due to a lack of information in EXIF tags of images of this set. Whereas
on the right, you see how our pipeline recovered all the cameras. (b) demonstrates how
detecting less keypoints influences a reconstruction process for the data set 5. Concretely,
Ours- reconstructed 49 731 3D points and Ours+ 20 329 3D points.

tions of the data set 6 in Fig. 4.1. You can even spot by eye how the reconstruction done
by Bundler and the one done by our pipeline look alike which shows that we perform
just as well as Bundler. Next, we visualize reconstructions of the data set 8, for which
we outperform Bundler, in Fig. 4.2(a). We have investigated why we are able to return
so much better result in this particular case. It is caused by a lack of information in
EXIF tags of images in 8 which are used for estimating initial focal lengths of cameras.
Therefore we directly see how our improvement for data sets containing images with
no EXIF tags detailed in Sec. 3.2.5 really makes a difference in the final result.

In Tab. 4.2, we compare the number of detected keypoints by Bundler and Ours- on
the resized images and by Ours+ on the original images. Comparing results of Bundler
and Ours- procedures, we see that for most of the data sets our approach yields in
average more keypoints. Even though we detect less keypoints on data sets 3 and
8, we argue that the difference between our results and Bundler’s is not so large to
fatally influence the reconstruction as a whole as you can see in Tab. 4.1. To evaluate
our scaling of the SIFT detector extension we compare Ours+ approach to Ours- and
Bundler. Firstly, consider Tab. 4.2 which compares the numbers of detected keypoints
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by the approaches. We point out how the scaling extension utilized by Ours+ algorithm
automatically chooses the first octave such that in average less than 20000 keypoints
is successfully detected for every data set. Next, we see that Ours+ approach detects
in average more keypoints than Bundler and Ours- procedure for half of the data sets
and less keypoints for the other half. A special case is the data set 4, for which Ours-
detected twice more keypoints than Ours+. Ours+ has automatically chosen the octave
0 as a starting one which is equivalent to resizing the original images to half of their
sizes. On the other hand, Ours- utilized original images for the SIFT detection.

We hypothesise that as a result of detecting different numbers of keypoints, the
numbers of matches could be different which could possibly result in better or worse
reconstruction. Especially, less 3D points is typically reconstructed when less matches is
provided but note that that does not yet mean worse resulting parameters of recovered
cameras. We demonstrate this on the data set 5, where Ours- procedure detects almost
twice more keypoints in average than Ours+. The resulting reconstruction by Ours-
and Ours+ is visualized in Fig. 4.2(b). What we see is a sparser density of 3D points
returned by Ours+ but still well estimated cameras. Since Ours+ and Ours- are the
same except keypoint detection, we see the direct impact of detecting less keypoints.

4.1.2 Verification via PROSAC

In this subsection, we evaluate our implementation of Progressive Sample Consensus
(PROSAC) which we use for estimating a fundamental matrix in the verification of
matching phase (see Sec. 3.2.3). We first run our algorithm on benchmark data of
Raguram et al . [48] and compare results achieved by our PROSAC implementation
with [48]. Subsequently, we extensively evaluate the PROSAC on the real data used
for 3D reconstruction in the previous chapter.

Our RANSAC randomly samples matches used to generate a hypothesis and sub-
sequently generates it. Then it counts the number of inliers and if it is the highest
number so far, it remembers the hypothesis. If a hypothesis supported by more than
95% of matches is found, the procedure is terminated. A total of 2048 hypothesis is
tested if the algorithm is not terminated prematurely. The PROSAC implementation
is described in detail in Sec. 3.2.3. Both of the algorithms use the threshold of 5 pixels
to determine inliers.

Data of Raguram et al. In Tab. 4.3, we give results for the RANSAC and the
PROSAC of [48] on their data designated to be used for fundamental matrix estimation.
Additionally we provide results of our RANSAC and our PROSAC implementation on
the same data. We note that [48] employs seven-point algorithm [24] whereas our im-
plementation exploits eight-point algorithm [24]. Also note that we do not know the
inlier threshold applied in [48]. The data consists of five matched image pairs. We
denote them the same way as in [48], i.e., A–E. The image pairs show a house, a part
of a church, a street, a forest and two books.

We point out that the RANSAC of [48] has an adaptive stopping criterion. On the
other hand, ours tests a predefined number of models. To give comparable results,
we set the number of models to test by our RANSAC to the number of models that
the RANSAC of [48] needed, i.e., also the maximum number of tested models by our
PROSAC is set accordingly. Nevertheless, note that to get our results and those of [48],
a different computer was used. Therefore the time of our approaches and those of [48]
is not comparable. The time is averaged over 500 runs of the algorithms.
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Set
Raguram et al . [48] Ours

RANSAC PROSAC RANSAC PROSAC

A

# inliers 1412 645 894 1478
# models 3499 10 3499 348

time 255.90 2.01 259.73 53.72
# matches 3154

B

# inliers 315 115 156 227
# models 941 17 941 99

time 14.98 1.35 28.23 7.47
# matches 575

C

# inliers 381 295 361 371
# models 19578 9 19578 1956

time 546.53 5.41 664.63 78.82
# matches 1088

D

# inliers 324 313 321 319
# models 661141 16 661141 66113

time 23892.20 1.77 26189.60 2724.00
# matches 1516

E

# inliers 685 588 602 613
# models 34 3 34 33

time 0.85 0.12 76.52 17.22
# matches 786

Table 4.3 The number of found inliers, the number of tested models, the total time in millisec-
onds and the number of initial matches. Every data set (A–E) is a pair of matched images.
All the data is the courtesy of Raguram et al . [48]. The table compares the results achieved
by [48] and those achieved by our implementations (see Sec. 3.2.3). Note that to get our
results and those of Raguram et al ., a different computer was used. All of the results are
averaged over 500 runs of the algorithms.

To evaluate a PROSAC, we compare its results with those of its respective RANSAC
(see Tab. 4.3). Considering results of [48], we see that their PROSAC procedure is
7–127 times faster than their RANSAC for 4 data sets and 13 498 times faster for the
data set D. On the other hand, our PROSAC implementation estimates a fundamental
matrix 3.5–9.5 times faster than our RANSAC. Even though our PROSAC introduces
a smaller speedup than the PROSAC of [48], we note that our PROSAC always finds
more inliers. For the data sets A and B even twice more which is a significant number.

Our data We use our pipeline with a configuration utilizing the scaling of the SIFT
detector extension (see Sec. 3.2.1), VLFeat keypoint detector [61] and OpenCV [9]
FLANN for matching. We let our pipeline detect keypoints and match them to get
tentative (not verified) matches. Then, we compare a verification of the matches using
epipolar geometry in a RANSAC and a PROSAC procedure.

Results for running both of the algorithms on the data presented earlier in previous
sections (see Sec. 4.1.1) can be seen in Tab. 4.4. To provide better results for these
procedures utilizing randomness, we average the results over 25 runs of the algorithms.
We observe how PROSAC speeds up the process of verification. In some cases, the
PROSAC requires only half of the time needed by RANSAC and it is never slower.
Note that we include time needed for sorting matches in the PROSAC time shown in
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Set RANSAC PROSAC Set RANSAC PROSAC

1

# inliers 65 64

2

# inliers 392 376
# pairs 842 839 # pairs 61 60

# models 1878 1109 # models 2048 1256
time 27.18 18.50 time 6.38 3.06

# matches 66 # matches 418
# pairs 954 # pairs 78

3

# inliers 551 514

4

# inliers 128 116
# pairs 1454 1450 # pairs 316 320

# models 1757 1047 # models 2048 1109
time 158.41 117.31 time 14.10 7.85

# matches 512 # matches 137
# pairs 1639 # pairs 394

5

# inliers 218 183

6

# inliers 576 531
# pairs 528 528 # pairs 7052 7050

# models 2038 961 # models 1973 723
time 24.24 12.40 time 720.14 421.82

# matches 269 # matches 616
# pairs 580 # pairs 8253

7

# inliers 481 450

8

# inliers 328 299
# pairs 305 303 # pairs 235 234

# models 2048 626 # models 1872 632
time 27.90 12.30 time 17.53 9.98

# matches 676 # matches 364
# pairs 321 # pairs 247

Table 4.4 The average number of inliers found for an image pair and the total number of
matched image pairs after verification. The average number of tested models for an image
pair and time in seconds needed to verify all of the initially matched image pairs. The average
number of initial matches for one image pair and the total number of initially matched image
pairs. The results are provided for our RANSAC and for our PROSAC described in Sec. 3.2.3.
All of the results are averaged over 25 runs of the algorithms.

the table. Related to the required time, we see that the PROSAC always tests less
models (hypotheses) in average than the RANSAC which is the main reason for being
faster. Unfortunately, the speed up has a cost in a form of finding less inliers in average.
This sometimes results in finding less image pairs. We hypothesise that such a pair must
have been weakly connected since a small decline in the number of inliers decreased the
number of matches below the acceptable minimum.

We notice that our PROSAC speeded up our RANSAC more for the data of [48]
than for our data. To explain this, note that the data of [48] are more contaminated
by outliers than our data, which has ultimately effect on the speedup.

4.1.3 Bundle adjustment

This section describes evaluation of two bundle adjustment packages incorporated into
our pipeline. First of them is the sparse bundle adjustment library (sba) of Lourakis and
Argyros [38] which is also utilized by Bundler [55]. The other one is the CMP version
of bundle adjustment [4] based on Ceres [1]. For evaluation, consider our pipeline
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Set
# cams # points Error Time

sba Ceres sba Ceres sba Ceres sba Ceres

1 64 64 6303 6284 0.359 0.320 70.76 11.16

2 13 13 11833 11413 0.325 0.487 39.33 4.45

3 122 122 127929 127822 0.419 0.388 3670.10 611.05

4 21 21 6373 6326 0.500 0.506 23.25 3.53

5 63 63 21521 20329 0.670 0.664 291.30 36.29

6 189 189 92177 83551 0.598 0.627 15132.70 1421.63

7 31 31 24294 21402 0.787 0.794 221.69 46.43

8 48 50 17836 23922 1.081 0.322 998.13 33.19

Table 4.5 The results of running our pipeline with two different bundle adjustment packages.
In more detail, the number of recovered cameras, the number of reconstructed 3D points, the
average reprojection error and the time in seconds required by a bundle adjustment package
alone.

in a configuration using the scaling of the SIFT extension (see Sec. 3.2.1), the VLFeat
keypoint detector [61], the OpenCV [9] FLANN for matching and verification exploiting
our PROSAC (see Sec. 3.2.3). That is basically the configuration defined as Ours+
earlier in this part of the thesis, only without the restriction on a bundle adjustment
package.

We let our pipeline detect keypoints, match them, verify them and then we run
Structure from Motion (SfM) with different bundle adjustment modules. That is done
for all 8 data sets described in the beginning of this chapter. We have implemented the
SfM so that we can change a bundle adjustment module with a simple switch. That
way we can directly see the impact of using different bundle adjustment packages. The
results are shown in Tab. 4.5. As far as the data sets 1-7 are concerned, we see that
not considering the time, the packages perform similarly well. The number of recovered
cameras is the same for both of the modules, the number of points reconstructed by
sba is always better but not significantly and the reprojection error is sometimes better
for one package and sometimes for the other but the differences are negligible. The
8th data set is an exception since sba was able to connect only 48 cameras whereas
Ceres-based CMP package was able to reconstruct all 50 cameras. Relating to that,
sba reconstructed less 3D points and its reprojection error is one order higher than
the one of CMP module. Finally, considering the time issue, the Ceres-based bundle
adjustment is always more effective. It is four to ten times faster for the data sets 1-7
and thirty times faster for the 8th data set.

4.2 Indoor reconstruction

In this section, we evaluate our improvement for indoor scenes on 10 different data
sets. These data sets contain 101, 75, 116, 129, 79, 79, 98, 70, 57 and 492 images. Lets
consider labelling of the sets 10, 11,. . . , 19 as in Tab. 4.1. Then, the data sets visualize:
living rooms in 10 and 14, a bathroom with a large mirror on a wall in 11, kitchens
in 12 and 17, general rooms in 13 and 15, a library in 16 and an empty room with
white walls in 18. Finally, the number 19 is a gallery data set of Furukawa et al . [21]
consisting of multiple rooms. Some of these data sets are very challenging as you will
subsequently see.
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Set # images
# cams

sba Ceres
Std Indoor Std Indoor

10 101 100 100 100 100

11 75 29 31 30 38

12 116 102 107 104 59

13 129 89 83 103 99

14 79 75 77 72 76

15 79 9 55 9 10

16 98 95 95 94 94

17 70 70 70 70 70

18 57 9 20 9 20

19 492 290 373 484 414

Table 4.6 The number of images and the number of recovered cameras for two bundle adjust-
ment packages.

Set
# points Error

sba Ceres sba Ceres
Std Indoor Std Indoor Std Indoor Std Indoor

10 15741 34002 15772 33563 0.425 0.494 0.434 0.451

11 7230 9614 7354 10358 0.435 0.498 0.467 0.491

12 25037 35297 21539 16487 0.978 0.618 1.044 0.675

13 29302 25193 34618 39030 0.705 3.442 0.564 0.623

14 20847 27888 21518 30547 0.534 0.614 0.540 0.569

15 668 12135 588 2801 0.594 0.438 0.576 0.450

16 34691 63126 33414 63383 0.714 0.737 0.703 0.717

17 14338 23683 14321 23804 0.719 0.812 0.727 0.799

18 867 2084 867 2022 0.417 0.858 0.410 0.801

19 35270 59820 69677 73013 0.924 1.162 0.392 0.656

Table 4.7 The number of reconstructed 3D points and the reprojection error for two bundle
adjustment packages.

For the following subsections, consider our pipeline with 2 configurations. Both of
them utilize the scaling of the SIFT extension (see Sec. 3.2.1), the VLFeat keypoint
detector [61], the OpenCV [9] FLANN for matching and verification exploiting our
PROSAC (see Sec. 3.2.3). The only difference being that one of them exploits the sparse
bundle adjustment library (sba) of Lourakis and Argyros [38] and the other one is the
CMP version of bundle adjustment [4] based on Ceres [1]. Next, we denote standard
runs of our pipeline by Std and runs utilizing the indoor extension (see Sec. 3.3) by
Indoor. We first provide quantitative results before subsequently showing qualitative
results on the aforementioned data.

4.2.1 Quantitative evaluation

In Tab. 4.6 and Tab. 4.7, we compare results of the reconstruction phase. We provide
the number of recovered cameras, the number of reconstructed 3D points and the aver-
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4 Experiments

(a)

(b)

Figure 4.3 Typical examples of image pairs mismatched due to the occurrence of repetitive
structures. The green lines represent verified matches and the dots respective keypoints. (a)
shows two different ends of the same hallway and (b) visualizes two different walls of the
same kitchen incorrectly matched via tiles.

age reprojection error achieved by either of the methods. Additionally, we show results
for both of the incorporated bundle adjustment packages since they perform quite dif-
ferently in some cases. Out of 20 cases, we are able to recover more cameras with the
indoor extension in 10, the same number in 6 and surprisingly, less in 4 cases. Except
for two failures, we always reconstruct more 3D points and, considering the reprojection
error as a metric, we perform worse in 16 cases and better in 4 cases.

We have investigated the cases in which our extension produced a lower number of
recovered cameras and found that the failures have 2 causes. Firstly, since our indoor
extension detects keypoints located on planes, it is possible that all (or most of) matches
of an image pair are located on a single plane. That can cause the verification phase
which utilizes the eight-point algorithm [24] and does not calibrate cameras to estimate
a degenerate epipolar geometry which does not reject some mismatches. Secondly, if a
scene generates by its nature mismatches caused by repetitive structures, our approach
can simply reinforce the mismatches. The mismatches can then influence the SfM.
See Fig. 4.3 for typical examples of image pairs mismatched due to the occurrence
of repetitive structures. To explain the influence on the SfM, we emphasize that we
utilize an incremental SfM algorithm, i.e., the procedure iterates over cameras and
always adds only a subset of them having enough matches to already reconstructed 3D
points. Therefore, if a camera connected by mismatches is added to the reconstruction,
the whole process might irreversibly deteriorate. To fully exploit the benefit of our
contribution in SfM pipelines, the problem of dealing with repetitive structures has
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4.2 Indoor reconstruction

Set
# matches # pairs

Tentative Verified Tentative Verified
Std Indoor Std Indoor Std Indoor Std Indoor

10 102 166 100 168 890 1120 850 1010

11 121 130 115 137 405 510 314 338

12 144 139 137 195 972 1709 766 840

13 178 178 206 243 1238 1641 818 878

14 197 199 184 214 550 760 464 522

15 94 121 88 113 279 313 232 249

16 272 361 316 481 1846 2276 1282 1312

17 188 284 168 245 1183 1278 1003 1062

18 80 128 64 89 195 222 138 156

18 95 137 92 129 6415 6968 5336 5920

Table 4.8 The average number of tentative and verified matches and the total number of
matched image pairs before and after verification. The results are shown for a standard run
of our pipeline described in Sec. 3.2 and a run utilizing the indoor extension from Sec. 3.3.

Set Component size
Graph diameter
Std Indoor

10 101 7 5

11 75 12 10

12 115 7 7

13 123 8 7

14 79 6 5

15 (72 + 1) (9 + 0) 6

16 98 6 6

17 70 5 4

18 10, (23 + 13), 4, 4 4, (5 + 6), 2, 2 4, 10, 2, 2

18 486 21 19

Table 4.9 The size and the graph diameter of all connected components of size larger than
2. Individual components are separated by ’,’. If a component was disconnected utilizing
the standard approach, we show the sizes and the diameters of all sub-components that got
connected in parenthesis, separated by ’+’. The graphs are constructed from matched image
pairs that were accepted by the epipolar geometry verification.

to be addressed. Also, matches have to be verified by an algorithm which does not
estimate a degenerate epipolar geometry from matches located on a single plane. Such
an algorithm should employ camera calibration.

To explain the worse reprojection error for successfully reconstructed data sets, we
hypothesise that one cause is adding new cameras and a second one is adding new
matches which can result in reconstructing more 3D points. In both situations new
constraints to the bundle adjustment are added and that can make it harder to get lower
reprojection error. We point out that higher reprojection error does not automatically
mean worse reconstruction. Unfortunately, we do not have ground truth data for the
data sets and therefore we are not able to compute the true reconstruction error.

To improve the reconstruction process, we want connections between images to be
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4 Experiments

(a)

(b)

Figure 4.4 Nodes depicted as the blue dots represent images. The magenta lines represent
matched and verified image pairs of the standard method and the green lines those of our
approach. In (a) we show the data set 14. The nodes are ordered in a way to nicely illustrate
the connectedness of the graphs. In (b) we visualize the data set 18. The nodes in both
graphs have the same ordering which allows observing the individual connected components
and how two standardly disconnected components got connected by our approach.

strong, i.e. we want to have as many matches as possible. In Tab. 4.8, we show the num-
ber of tentative and verified matches averaged over all image pairs. We note that our
approach utilizes matches found by the indoor extension as well as standard matches.
Therefore the tentative number of matches shows how much our indoor extension rein-
forces the standard matches. To explain, why our method finds less tentative matches
for one data set and the same number of matches for another data set, we point out that
our approach connected many more image pairs than the standard procedure, hence
the number of matches is averaged over more image pairs. Considering the number
of verified matches, we observe that our approach performs better than the standard
method for all the data sets. That means that matches found by the indoor extension
are not spurious since they overcome the verification phase.
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4.2 Indoor reconstruction

Additionally, it is desired that images are connected to as many other images as
possible. Consider a graph where nodes represent images and an edge exists if an
image pair was matched and accepted by the epipolar geometry verification; we want
the graph to be connected as tightly as possible. In Tab. 4.8 we show the total number of
matched image pairs and we see that our proposed approach outperforms the standard
one. In Fig. 4.4 we observe how the graphs based on our matches are more connected
than those of the standard approach. For capturing the connectivity of a graph, we
propose to use the graph diameter, i.e. the maximum length of all shortest paths.
Intuitively, a graph’s diameter is the largest number of vertices that must be traversed
in order to travel from one node to another. We provide the diameter in Tab. 4.9 for all
connected components of size larger than four. A diameter of connected components
is measured as if the component were regular graphs. According to the diameters, we
conclude that graphs created from our matches are more connected or have the same
level of connectedness than those of the standard approach.

4.2.2 Qualitative evaluation

Consider again a graph where nodes represent images and an edge exists if an image
pair was matched and accepted by the epipolar geometry verification. It is impossible
to reconstruct a whole data set if its graph contains multiple connected components
instead of a completely connected graph. Hence, our goal is to reduce the number of
connected components to a minimum. Our proposed approach is able to address this
problem. See Fig. 4.4(b) for a graph which contains 7 connected components when
matched by the standard procedure and 6 when utilizing our method.

Having shown that our method outperforms the standard approach, we next show
some typical examples.

In Fig. 4.5(a) we show image pairs with verified matches obtained by our proposed
approach. The standard procedure could not find matches good enough so they would
not be rejected by the verification process. This is not surprising considering the large
transformations between the images. For completeness we enhance the figure with the
estimated room layouts.

In Fig. 4.5(b) we visualize images connected by verified matches found by the standard
procedure and compare them to our method improving the indoor matching. We see
that even when the scene estimation failed, our proposed approach utilizes matches
originated from the standard matching and thus does not fail.

In Fig. 4.6 we show reconstructions of the data set 15 done by the standard and
our approach, both utilizing sba bundle adjustment package. We see how the standard
method recovered only 9 cameras all of which viewing one wall whereas our approach
reconstructed 55 cameras situated all around the scene. Next, we present the data set
12 which contains repetitive structures. That is why some of the additional matches
provided by the indoor extension are mismatched. Nevertheless, in this case, sba deals
with the mismatches and provides much better reconstruction with the extra matches.
This is shown in Fig. 4.7. The top view nicely visualizes how the shape of the recon-
structed room looks like. On the other hand, in Fig. 4.8 we see how the Ceres based
bundle adjustment was affected by the mismatches and provided worse reconstruction
than without the additional matches.
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4 Experiments

(a)

(b)

Figure 4.5 The visualizations above show matched image pairs. The bright green lines depict
verified matches generated by our approach, the bright magenta lines symbolize verified
matches originated from the standard method and the dark green and magenta dots represent
locations of related keypoints. The cyan color illustrates detected scene layout. All of the
image pairs in (a) could not be matched by the standard approach at all whereas we have
found 94, 190, 91 and 38 matches respectively. The image pairs in (b) located on the same row
show the same image pair, only matched by different methods. We observe how our approach
exploits knowledge of the scene if it is estimated correctly and retrieves more matches (the
standard approach found 19, 17, 17 and 159 matches and we obtained 100, 344, 78 and 174
respectively).
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4.2 Indoor reconstruction

(a)

(b)

Figure 4.6 The top view of reconstructed indoor scenes. (a) visualizes reconstruction done
by the standard method and (b) the one done by our proposed approach. The package sba
bundle adjustment was utilized to get both of the results. What we see are reconstructed 3D
points colored according to the input images. Additionally, we visualize recovered cameras.
A camera is represented by a pair of green and yellow dots. We show only the top view
because the sparse reconstructions of these indoor scenes do not give a visually appealing
model when zoomed in. The top view illustrates how well was a room reconstructed. For
instance, perpendicular walls indicate a good model. This particular example shows the
reconstruction of the data set 15.
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4 Experiments

(a)

(b)

Figure 4.7 Visualizations of reconstructed indoor scenes similar to Fig. 4.6. The visualizations
are reconstructions of the data set 12.
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4.2 Indoor reconstruction

(a)

(b)

Figure 4.8 Reconstructions of indoor scenes similar to Fig. 4.6 with the only difference being
that the Ceres based bundle adjustment was used to obtain the results. This figure shows
reconstructions of the data set 12.
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5 Conclusion

This work describes a well-known 3D reconstruction pipeline and builds upon this ex-
planation to detail the implementation of our own pipeline which uses different modules
and introduces three notable improvements to the reference pipeline. Firstly, we pre-
sented an approach that automatically detects a reasonable number of keypoints in an
image based on a resolution of the image. Next, we introduced our implementation of
Progressive Sample Consensus (PROSAC) which is employed instead of the standard
Random Sample Consensus (RANSAC) for estimating an epipolar geometry of an im-
age pair. Finally, we proposed an improvement for sets of images for which a focal
length cannot be estimated for any image of a set. Then, we showed that our pipeline
performs just as well as the reference pipeline, and in some cases even better.

Furthermore, this work details, as the title suggests, an improvement of 3D recon-
struction for indoor scenes. We have proposed employing scene understanding to im-
prove image matching. Importantly, we followed a human-like approach of firstly re-
constructing a global scene representation before matching details which are commonly
represented via features that focus on image transformations. We demonstrated that
our method outperforms the standard matching procedure on challenging indoor data
sets. Nevertheless, we note that two problems have to be addressed to fully exploit
the benefit of our pipeline since our method can reinforce mismatches or match only
keypoints located on a single plane. First, matches have to be verified by an algorithm
which does not estimate a degenerate epipolar geometry from matches located on a
single plane. Sendond, the Structure from Motion (SfM) algorithm has to address the
problem of dealing with repetitive structures.
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