
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
Fakulta elektrotechnická

Katedra kybermetiky

Diplomová práce 

PDA home-care support

Bc. Jiří Doležel

Vedoucí  práce :  Ing. Jaromír Doležal

Květen 2009



Acknowledgements

I would like to thank to Ing. Jaromír Doležal for leading my diploma thesis, to Ing. 

Petr Aubrecht Ph.D for valuable technical advices, Ing. Pavel Šťastný for help with initial 

application and technical advices, and to medical experts Prof. MUDr. Martin Haluzík, DrSc, 

MUDr. Lenka Bošanská, and MUDr. Tomáš Roubíček for their collaboration in the design 

and development of the PDA application.



Manifest

Prohlašuji, že jsem svou  diplomovou  práci vypracoval samostatně a použil jsem pouze 

podklady ( literaturu, projekty, SW atd.) uvedené v přiloženém seznamu. 

V Praze dne ………………… ……………………………...

                                                                 Podpis                     





Abstrakt
Tato  práce  realizuje  podpůrné  prostředky pro  služby domácí  péče  (home care)  na 

mobilních zařízeních typu PDA. Práce je součástí pilotní studie EU,  která je zaměřena na 

vývoj systému pro mobilní elektronickou podporu home care. Pacientům se dostává poměrně 

široké spektrum služeb,  jako třeba návštěvy zdravotnického personálu,  lékařů a sociálních 

pracovníků.  Problémem  bývá  předávání  informací,  které  se  týkají  zdravotního  stavu, 

předepsaných  vyšetření  a  jejich  změn,  mezi  těmito  pracovníky.  K4CARE  je  webová, 

elektronicky  přístupná,  platforma,  která  integruje  zdravotní  záznamy pacientů,  plánovaná 

vyšetření a služby. K záznamům lze přistupovat přes webový prohlížeč, či bezdrátově pomocí 

mobilních PDA zařízení, či mobilních zařízení obecně.

Abstract
The thesis  is  focused  on  project  of  a  pilot  study,  which  is  implementing  services 

supporting work of care professionals in the area of home care and running on PDA device. 

This work is part of K4CARE EU project, which is focused to develop system for home care 

support, using mobile electronics devices, like PDA. Patients are receiving various services, 

for  example  nurse  visits,  physicians  or  social  workers.  The  issue  might  be  the  flow  of 

information among them, which involves patient's health status, prescribed examinations and 

its  changes.   K4CARE  is  web  based  platform,  which  integrates  patient's  health  record, 

planned visit and services, which can be accessed with web browsers or with PDA, or mobile 

devices generally, connected to the Internet.



Table of Contents
 1 Introduction...........................................................................................................................10
 2 Aim of the project..................................................................................................................11
 3 Current solutions – State of the art........................................................................................12
 4 Application design (architecture)..........................................................................................14

 4.1 Requested and desired functionalities...........................................................................14
 4.2 Hardware (PDA device) requirements..........................................................................15
 4.3 Software requirements...................................................................................................16
 4.4 Used devices..................................................................................................................17

 5 Implementation.....................................................................................................................18
 5.1 Application description – programmers view...............................................................18

 5.1.1 XML Document description..................................................................................18
 5.1.2 Packages and classes description...........................................................................21
 5.1.3 GUI structure.........................................................................................................30
 5.1.4 Localization...........................................................................................................31
 5.1.5 Communication.....................................................................................................31
 5.1.6 Storage model........................................................................................................32

 5.2 Application description – end user view.......................................................................32
 5.2.1 Screens description................................................................................................33
 5.2.2 Scenario – Logging in, filling the document, saving.............................................35

 5.3 Implementation issues, constructions to mention..........................................................41
 5.3.1 Data processing......................................................................................................41

 5.3.1.1 Parser..............................................................................................................41
 5.3.1.2 DocHandler class...........................................................................................43
 5.3.1.3 Element (Tag) class........................................................................................43
 5.3.1.4 Document model class...................................................................................43

 5.3.2 GUI........................................................................................................................48
 5.3.3 Photo documentation.............................................................................................50

 5.4 Portability......................................................................................................................50
 6 Conclusion............................................................................................................................52
 7 Citation and references..........................................................................................................53



Abbreviation list
ICT Information and Communication Technology

HCP Home Care Professional

EHR Electronic Health Record

PDA Personal Digital Assistant

IZIP Internetový přístup ke Zdravotním Informacím Pacienta

CFH Connection For Health

OS Operating System

Java ME Java Micro Edition

J2SE Java2 Standard Edition

SHA Secure Hashing Algorithm

DOM Document Object Model

DoM Document Model



Illustration Index
Illustration 1: Sequence diagram – typical use case.............................................................15
Illustration 2: Part of XML document representing info about visit and patient and piece of 
history...................................................................................................................................20
Illustration 3: Part of XML document with pieces of document, that are showing measure 
form......................................................................................................................................21
Illustration 4: GUI schema...................................................................................................30
Illustration 5: Login screen...................................................................................................33
Illustration 6: Patients screen...............................................................................................33
Illustration 7: Patient photo screen.......................................................................................34
Illustration 8: List of measurements screen. Currently is focused Blood pressure 
measurement.........................................................................................................................34
Illustration 9: Single measurement screen – input fields.....................................................35
Illustration 10: Single measurement screen – radiobuttons, 1st page..................................35
Illustration 11: Single measurement screen – radiobuttons, 2nd page.................................35
Illustration 12: Patients listing, clicking on “Patient card” of Will Timer............................36
Illustration 13: Patient card. Clicking on “Measure modification”, to select measurements 
to be performed....................................................................................................................36
Illustration 14: Set of possible measurements. Checking it will select it to be performed. 
Clicking the view button displays the measurement(Consciousness)..................................37
Illustration 15: Displaying measurement (Consciousness)..................................................37
Illustration 16: Clicking “Submit” icon after setting the login info.....................................38
Illustration 17: Data processing............................................................................................38
Illustration 18: Downloaded list of patients.........................................................................38
Illustration 19: Photo panel. Shows after pressing the examination button. This one is 
empty, with no photo............................................................................................................38
Illustration 20: Clicking on “start” (top left) and selecting the camera to take a new picture.
..............................................................................................................................................38
Illustration 21: Taking a picture (of the computer mouse, as an example). ........................38
Illustration 22: Clicking the “Load picture” button to load the photo recently taken..........38
Illustration 23: Clicking the “Continue” button after loading the picture............................38
Illustration 24: Group of measurements, presented by buttons............................................39
Illustration 25: Filling the measurement. Pop up window is showing to enter numbers.....39
Illustration 26: Saving the filled measurement.....................................................................39
Illustration 27: Group of measurements with first measurement filled (green color). ........39
Illustration 28: Looking through the second measurement, 1st page of two.......................39
Illustration 29: Looking through the 2nd page of measurement and saving empty 
measurement.........................................................................................................................39
Illustration 30: Clicking on 3. measurement. 2. measurement is not filled, signalizing with 
red color of button. h) Saving the filled, third measurement...............................................39
Illustration 31: Saving the filled, third measurement...........................................................39
Illustration 32: Returning to the second (not filled) measurement.......................................40
Illustration 33: Selecting an option on 1st page...................................................................40
Illustration 34: Selected an option on 2nd page and saving.................................................40
Illustration 35: Group of measurements, all filled. Saving all for the current patient..........40
Illustration 36: List of patient. For Will Timer indicating, that the document is filled........40
Illustration 37: Saving (and updating) data of filled patients (only) to the server................40



Illustration 38: Saving in progress........................................................................................40
Illustration 39: Login screen after saving process is finished..............................................40
Illustration 40: Example algorithm of searching children elements, in Pseudo-code..........45
Illustration 41: Example document, hierarchy tree when parsing, resulting array in 
memory, subsidiary arrays....................................................................................................47
Illustration 42: searching a child of a element on position 2. The result are elements with 
indexes 3 and 7.....................................................................................................................48
Illustration 43: Comparing benchmarks of parsing  and building document using an old 
(org.w3c.dom) and new tools (average of 3 test, varying about 0.5 second).......................48



 1 Introduction

The K4CARE project brings together 13 academic and industrial institutions from seven 

countries for a period of three years starting March 2006.

In modern societies, the care of chronic disabled and elder patients at home involves life 

long treatment under continuous expert supervision that saturate European national health services 

and increase related costs.

K4CARE aims to combine the healthcare and the ICT (Information and Communication 

Technology) experiences of several western and eastern EU countries to create, implement, and 

validate a knowledge-based healthcare model for the professional assistance to senior patients at 

home.

This new healthcare Model for home care will contribute to achieve a European standard 

supported by the new technologies that  improves the efficiency of the care  services for all  the 

citizens in the enlarged Europe [1].

The  goal  is  to  create  a  new ICT Sanitary Model  (K4CARE model)  for  assisting  HCPs 

(Home Care Professionals) in Europe, which will be provided through an intelligent web platform 

and provide e-services to health professionals, patients and citizens in general.

CTU responsibility in this project is to create a web interface for health professionals which 

enables them to operate with and evaluates patient's EHR (Electronic Health Record) and to collect 

patient data taken through PDA (Personal Digital Assistant) from patients at home.

PDA Application, which is goal of this work, is aimed for HCPs to examine patients in their 

home, collect their EHR and cooperate with web platform, which delivers tasks for HCPs to PDA 

and upload data taken from patients.

10



 2 Aim of the project

Target of this work is to create an application for PDA, which is going to be used by home 

care personnel. The main scenario is that a doctor, through a web module,  checks the forthcoming 

visit data, which contains patients and what kinds of examinations are needed to be performed. A 

home care personnel, like nurse, download pre-selected data to a PDA device. In a PDA device, 

program automatically parse and process the data and create GUI (Graphical User Interface) for 

nurse. It contains all needed informations about patients and their examinations, that needs to be 

performed and represents the examination forms itself.  When examinations are done,  the nurse 

sends the collected data back to a server, where it is further processed.

The final application should be intuitive, quick and possibly portable to another platforms, 

not only the one, where it is developed. It should minimalize the amount of input actions to PDA 

device for a nurse, since it is not very comfortable, due to a limited input choices and small display 

size. Also, receiving, processing and sending data should not require any action from personnel, 

except the initial login and “single click“.

11



 3 Current solutions – State of the art

Currently, there are a few projects implementing and using EHR. In the Czech Republic, 

there is the IZIP system [2]. It stores complex patient health documentation. It is shared over the 

Internet and it represents some sort of electronic book, where are all medical related data of patient 

stored. There are, so far, about 1 million patients registered. Quite similar project CFH (Connection 

For Health) was launched in Great Britain, to unify three existing solutions into the one [3]. There is 

also implementation of EHR in the USA. It is called the Veterans Health Information Systems and 

Technology Architecture system (VistA). Part of this is VistA Imaging system [4], which integrates 

clinical images, scanned documents, and other non-textual data into the patient’s electronic medical 

record.

Except  EHR implementing  systems,  there  are  quite  many commercial  companies  doing 

business  in  a  home care service.  These are  offering various  of  services,  like  sanitary services, 

rehabilitation, domiciliary services, etc. 

The home care is considered as one of the most emerging medical technology, that increases 

the patient's  comfort  and allows more financial  effective care (since it  is  cheaper,  than placing 

patient to a hospital). There are several specialized projects, that is being currently developed. Some 

of these projects are targeted to work with PDA devices as well. One has been developed on AGH 

University of Science and Technology in Poland. It is called “PDA-based system for cardiology 

home  care  and  pregnancy  monitoring”  [5].  It  is  focusing  on  remote  cardiac  monitoring  and 

pregnancy related health issues. PDA device is used for its computational power and storage space. 

It  communicates  with  interpretation  center  (which  interprets  many various  signals)  and  is  can 

modify the communication protocol and processing routines online. Then, the device may be used 

for various monitoring tasks including ECG tracking, sleep monitoring of patients with apnea of 

sleeplessness, muscle fatigue assessment during training or physical exercise, uterine contraction 

detection based on abdominal potentials in patients at risk of premature delivery. The project shows, 

that it can deliver monitoring of various body signals with quite cheap and powerful device, like a 

PDA.

Another interesting project has been launched by Danish company CSC Scandihealth, which 

is provider of healthcare IT products and services in Scandinavia. The system is called VITAE Care 

PDA [6]. It provides care workers with access to relevant client informations before or during visit 

to the client's home. Care workers has overview of all kinds of patient relevant informations, like 

health information, accessibility of the patient home, current medication, latest notes, and total list 

12



of the services the client receives. The care worker can see current medication registrations, notes, 

focus areas, next of kin, own doctor, pharmacy, etc. The care worker is able to send notifications, 

register medication or document in notes and focus areas. 

Another project, which is part of work of HealthForceOntario [7], is to achieve the goal of 

ensuring right mix of healthcare providers [8]. It provides nurses with PDA devices with instant 

access to a range of clinical tools that allow them to quickly diagnose and counsel patients at the 

point of care with a few simple clicks. PDAs are loaded with information about drug databases, 

medical dictionaries, best practice guidelines and reference material related to care and service.

So, there exists several solutions, some are implementing EHR, then, there are companies 

ensuring home care services and then, there are several specialized projects. K4CARE is integrating 

EHR, home care services and basics examinations.

13



 4 Application design (architecture)

 4.1 Requested and desired functionalities

The application has to provide graphical interface for home care personnel. It needs to be 

intuitive,  transparent  and  quick.  It  must  realize  the  typical  use  case  Illustration  1.  Desired 

functionalities are:

● Obtaining requested (by a doctor) examinations plan from existing web server.

● Protecting the application and data access from non-authorized personnel access.

● Parsing and storing the data from server to be able to do the examinations offline. Sending 

the data (after examination done) back to server, when the connection is available.

● Creating  the  interface  for  listing  patients  and  displaying  measure  forms  and  managing 

examinations. 

● Allows doctor to send custom message to a personnel managing an examination and vice 

versa.

● Displaying historical values from past examinations.

● Checking, whether the document is filled completely.

● Managing the photo documentation.

14



 4.2 Hardware (PDA device) requirements

 There are several important requirements for the device:

● Wireless adapter – This is suppose to be the main way to access the Internet and server 

respectively,  to download and upload data.  It  is possible to connect to the Internet over 

another PC, but it requires PC with the Internet connection, installed software and set the PC 

to enable connection for PDA. And, of course,  there is  needed presence in the PC area 

during the work.

15



● Hardware keyboard – This feature can be fully substituted with software keyboard (as it is 

always presented and the most common), but during the filling of the document, there will 

be some text writing as well and hardware keyboard could be very handful. Also, software 

keyboard occupies some space on the screen, thus, covering part of document.

● Camera – To be able to take images of patient.

● CPU speed – Since there is interpreted language used (Java), it is needed to have as fast 

CPU as possible. Though, it is not the key feature. CPU speed of currently selling devices 

are about the same and fast enough.

● RAM memory – As in CPU speed feature, it is needed, though not the key feature. It is 

always good to have a lot of available RAM, but several MBs is needed for the application 

to run.

● LCD display – The greater display, the better. Since the forms are going to be presented in 

the GUI form,  like Labels,  Buttons,  Check Boxes,  etc.,  then the  small  screen  could  be 

limiting for final comfort, impression and experience.

● GSM – Mobile phone could be useful, when concerning health issues.

● GPS (Global Positioning System) – For future use. Could be implementing some sort of 

navigational software and visit organization.

 4.3 Software requirements

 The device with OS (Operating System) based on Windows Mobile platform was chosen, 

since it belongs to one of the most common environments.

  There were few possibilities for software platform to be used for the development. First, and 

obvious, is C based language, like high level C# language. This was just considered and rejected, 

since open source platform is desired for such an academic project. Other possibility was Java, or 

Java ME (Micro Edition) to be more specific. It is a limited version of Java, to be used on mobile 

devices like mobile phone, PDA, etc. Since the hardware equipment and advancement of destined 

devices varies a lot, there are  several versions of Java ME, but still, all versions are quite restricted, 

since each versions has to fit for quite wide group of devices with various equipment. There was 

first substructure of an application created using Java ME. Yet, it showed, that user interface was 

16



not as desired and the interaction possibilities as well. 

Finally,  Mysaifu  [9]  software  was  found.  It  is  a  Java  Virtual  Machine,  which  runs  on 

Windows Mobile, yet,  working with J2SE (Java2 Standard Edition). It  is a open source project 

under the GPLv2 license, which has an objective to make a Java Virtual Machine which conforms 

to the J2SE. It's not implementing all functionalities of J2SE, yet, it implements most of them and 

fits for this project.

 4.4 Used devices

First device obtained was HTC P3300. Main hardware specifications are [10]:

● Processor – TI's OMAP™ 850, 201 MHz 

● Memory – ROM: 128 MB, RAM: 64 MB, expansion slot for microSD memory card

● Display – 2.8'' TFT-LCD, resolution 240x320, 65,536 colors 

● Connectivity – GSM/EDGE, GPS, Wi-Fi, Bluetooth, mini-USB 

● Camera – 2 Megapixels

Initial  application was created and tested with the device and some findings showed up 

(summarized  in  chapter  4.1.2  Hardware  (PDA device)  requirements).  The  most  important 

equipment, among other, is hardware keyboard, Wi-Fi, camera, overall speed and Windows Mobile 

OS. There are not many such a devices. Final chosen was HTC Touch Pro. The key specifications 

are [11]:  

● Processor – Qualcomm® MSM7201A™ 528 MHz 

● Memory – ROM: 512 MB, RAM: 288 MB , expansion slot for microSD memory card

● Display – 2.8'' TFT-LCD, resolution 480x640

● Connectivity – GSM/GPRS/EDGE, GPS, Wi-Fi, Bluetooth, mini-USB 

● Camera – 3.2 Megapixels

● Other – Hardware keyboard

17



 5 Implementation

 5.1 Application description – programmers view

The data format for storing and interchanging information with the application had to be 

chosen. Finally, the XML format was chosen for all data and communication as well, since it has 

several advantages. First, it is widely accepted, portable and universal format. The other is, that it is 

used in the K4CARE project as well.

There are existing several standards, that should application implementing and working with 

her follow, to ensure interoperability of the application. One of the most important standards, that is 

K4CARE to  follow,  is  HL7  standard.  HL7 has  goal  to  create  the  best  and  most  widely  used 

standards in healthcare [17]. And HL7 standard is working with a XML technology for documents 

representing and exchanging.

 5.1.1 XML Document description

  Part of XML document related to user and patient can be seen on Illustration 2 and another 

part, related to a measure itself on  Illustration 3. The root element of the document is  visit and 

contains  parameters  loginName and  loginPass,  which  is  encrypted  with  SHA (Secure  Hashing 

Algorithm). Children of visit element tag are: 

● userinfo – Contains series of elements with info about application user.

◦ id – Numerical ID of user.

◦ loginName –  Login  name,  which  is  used to  log  in  a  application  and to  a  server  to 

download data.

◦ loginPassword – Password, for application and server.

◦ entityType – Role of user.

◦ fullName – Full name of user.

● root – Root element of single patient examination. Has an attribute patientid which hold ID 

18



(numerical value) of examined patient. Is presented as many times as many patients are set 

for the Visit.

◦ patientinfo – Contains series of elements with info about a patient.

▪ PublicIdentifierXML – Some common used ID, birth number in our case.

▪ contactPhoneNumber – Contact phone number of patient.

▪ electronicAddressXML – Email address.

▪ fullName – Full name.

▪ contactAddress – Contact address.

◦ history_documents – Contains historical values from previous measurements.

▪ history – This is a root element that contains all measurements of single patient from 

a single visit. It may be presented repeatedly.  It has an attribute date. Children nodes 

has the same structure as a regular measurement, which will be explained later.

◦ group – Represents an elemental  measurement.  Is contained as many times as many 

different  elemental  measurement  is  required.  It  has  attribute  label,  which  is  sign 

displaying at the top of the screen with a form, attribute name, that is used by system to 

distinguish between different  group measurements  and attribute checkDate,  which is 

date, when is this elemental measurement finished – it is captured, when the save button 

on form screen is pressed. 

▪ info – This element is just one for single patient measurement. It has an attribute 

value, which contains info from doctor about a patient.

▪ radiobuttons – Contains items to select  from (just  one option).  Has an attributes 

label and name, which has the same meaning, as in group element.

• item – Represent a single item – a single choice. Has attributes label, name (same 

as  previous)  and  selected,  which  is  boolean  value  representing,  whether  the 

option is checked or not.

▪ checkboxes – Exactly the same (also the child-elements) as  radiobuttons element, 

except multiple-choice is allowed.

▪ num_radio –  The  same  as  radiobuttons element,  except  it  contains  in  addition 

attribute value, which is displaying a value of selected child-element.

19



• item –  The  same element  as  in  radiobuttons,  except  it  contains  an  attribute, 

which represents a numerical value of this choice. 

▪ input – Allows to input some written (text or numerical) value. Attributes and child 

elements are the same as in radiobuttons element.

▪ image_paint  –  Represents  an  image  to  be  displayed.  It  is  used  for  home  care 

personnel  to  draw some points  related to a  patient.  For  example,  on image with 

human body, a home care personnel would mark several points, where patient suffer 

pain.  Element has attributes  name,  which identify the image to be displayed and 

coords, which contains coordinates of points drawn into that image.

20



 5.1.2 Packages and classes description

1. ESIADoM (Element Stored In Array Document Model) – Contains classes for manipulation 

with  XML documents.  As told  earlier,  original  org.w3c.dom package  performance  was 

unacceptably slow. Therefore, custom DoM (Document Model) was created, that uses for 

XML file parsing an event based QDParser [12], which is distributed under GPLv2 license. 

Classes in this package are: 

◦ ESIADocument –  Represents parsed XML document,  contains  basic methods and 

21

Illustration 3: Part of XML document with pieces of document, that are showing 
measure form.



various subsidiary arrays for boosting the speed of working with the document.

◦ QDParser – Simple parser, calls class implementing DocHandler interface.

◦ DocHandler – Interface, that specifies methods for QDParser to “talk to” document. 

The  methods  are  startElement(String  tag,  Hashtable  h),  endElement(String  tag),  

startDocument(), endDocument(), text(String str).

◦ SSPDocHandler –  This  class  is  building  the  document  model.  Implements 

DocHandler interface.

◦ SSPElement – Represents the XML tag in ESIADocument. It contains info about tag 

type (element, attribute, text, value), position of element in a model and info related to a 

text value and attributes, all based on primitive type int addressing.

2. client – Contains interfaces and classes that  defines fundamental  functionalities that  are 

required for certain data types, or their roles respectively. Classes are:

◦ ClientObject – Represents the client object which is parsed from servlet response, 

contains methods init(Element el) and store().

◦ CommunicationSupport – Interface, that represents utility class which allows to 

communicate with server. Contains methods getVisit and postVisit.

◦ CommunicationSupportFactory –  Singleton  class,  that  specifies  some  other 

possibilities for communication, or data source respectively. It is communication over 

the HTTPS with server, or offline mode, when stored data is used.

◦ CommunicationSupportListener –  Interface,  that  declares  methods  used  to 

listen about connecting status.

◦ History –  Interface  to  declare  methods  working  with  historical  values  (from past 

measures/visits). Methods specify ID of related patient, date of measure and historical 

data itself. Extends ClientObject.

◦ HistoryImpl –  Class  implementing  History  interface  and  ClientObject 
interface.  Historical  data  are  stored  in  a  HashMap with  key created  form name of 

measurement.

◦ NoSuchVisitException – Class inherits from Exception class. It is fired, when 

there are problems downloading data for the visit, like when the visit is not defined for 

the current login info, or if the authentication fails.

◦ Patient – Interface, extends ClientObject, represents one patient, thus declaring 

22



functionalities related to name, id, patients images, history, state of document (whether it 

is filled, not visited, half filled,...) and some subsidiary variables to DoM.

◦ User – Interface, extends ClientObject interface, representing an application user. 

Contains functions relevant to login name, password and ID.

◦ Visit –  Interface,  extends  ClientObject interface.  Represent  one  visit,  which 

contains multiple patients and some related info to a visit. Contains patients involved in 

the current visit,  and their  histories  of measurements (both stored in an array).  Also 

contains a user currently logged in and currently examined patient.

3. client.impl –  Implementing previously declared interfaces for roles and communication. 

Classes:

◦ PatientImpl – Implements the Patient interface (and therefore ClientObject 
interface).

◦ UserImpl –  Implements  the  User interface  (and,  therefore  ClientObject 
interface).

◦ VisitImpl –  Implements  the  Visit interface  (and,  therefore  ClientObject 
interface).

◦ HTTPCommunicationSupportImpl –  Implements  the 

CommunicationSupport interface.  Holds info needed to  connect  to a server for 

downloading  a  Visit  data  and  handles  connection  errors.  Also  contains  algorithm to 

encrypt text, which is, currently, used for password encoding. 

◦ OfflineCommunicationSupport – Implements the CommunicationSupport 
interface. Used to work with an offline mode. It loads a Visit data already downloaded 

and parsed, from a local storage. Local storage is set to a user's personal folder.

4. client.utils – Contains just a utility classes.

◦ DOMUtils –  Used  for  manipulation  with  a  XML  document,  and  its  memory 

representation. It is used to print prolog of XML document, set a document to a buffer 

for data  transfers.  Then,  it  contains  methods for history processing and methods for 

digging the text value of an element.

◦ FileUtils – Works with storage system. Checks, if the folder structure exists, and 

creates it, if it doesn't. It deletes files after uploading it to a server, overwrites and stores 

saved documents. Stores downloaded and parsed data from server. Moves images taken 

from embedded camera and moves them to an appropriate folder. The FileUtils Also 

23



contains  methods  to  work  with  file  names  and extensions  to  ensure  no  images  and 

documents will overwrites other. 

◦ MemoryUtils –  Used  only  to  determine  free,  total  memory (the  total  amount  of 

memory in the Java virtual machine) and maximum memory (the maximum amount of 

memory that the Java virtual machine will attempt to use).

◦ SizeOF – It evaluates the size of data structures in a running application.

5. forms – This package contains classes that represents the GUI forms. Contains methods, 

that are parsing such parts of a XML document, which are representing measure forms, and 

builds the GUI based upon its content. Package also contains logic to display patient list, 

traverse between patients and their measure forms and saves data inserted by home care 

personnel and stores it to a solid memory. Classes:

◦ AbstractComponentPane – Abstract class. extends Panel class. Declares abstract 

methods to initialize (create component and fill it with context) and stores data collected 

during a Visit.  Contains component's  name, label,  getters and setters  and patient ID. 

There  is  a  list  of  components  that  belongs  to  this  component,  an  ArrayList of 

components for focus traversing. Then, there are some variables, arrays and methods to 

point  to  a  document  model  for  easy  and  fast  storing  and  manipulating  with  the 

document. It contains methods, that are filling the document with historical values (from 

previous measures). This class also defines a type, that is used to keep track of the state 

of filling of all parts of the document. It's being used from the smallest (elemental) parts 

of GUI form to the whole document.

◦ MainGenericContainerPane – Extends Panel class. Contains all the components 

of a single patient represented by a group element and list them as a buttons.

◦ SimpleComponentFactory –  Singleton  class,  which  is  used  for  creating 

components  from parsed   XML document.  Contain  method  mainPanes,  which  is 

called  by  an  instance  of  MainGenericContainerPane class  and  returns  an 

instances  of  a  GroupComponent class,  that  are  listed  over  there  in 

MainGenericContainerPane.  Also contains method  createPane called from 

instance of GroupComponent class and returns parsed components which are placed 

in a GroupComponent panel.

◦ GroupComponent – Extends AbstractComponentPane. Holds the structures and 

24



logic of a single page displayed and relevant functions. It represents  the group element 

from the XML document and parses related parts of the document (subtree of group 

element). A group element represents a single measurement, or a few measurements that 

are  related.  It  contains  a  Button,  which  is  displayed  in  a  different  context  (in  the 

MainGenericContainerPane), when displaying all types of measures represented 

by a group element. The button brings up the content of this panel. The panel contains 

top sign with page count and arrows to roll over pages (if more pages – measurements – 

are presented in the group element). Arrows are represented by inner class, which has 

method paint overriden and has 2 different images, depending on whether the arrow is 

pressed or not. Then, it contains the main (elemental) measure form itself. On the last 

page, there is a button to save all the measurements. Also, switching to and from a full 

screen  mode  is  implemented  through  a  PopupEnabledWindow interface,  which 

contains method addToPopup. It also implements mouse listeners and key listeners to 

control the this part of application with stylus (over the touch screen) or hardware keys. 

Also,  the  state  of  filling  of  the  document  within  a  group element  is  evaluated  and 

indicated through a color of the group button. Then, it contains method to find out the 

size of panel representing single measurement and whether there is need for horizontal 

and/or vertical scrollbar.

◦ InputComponent – Extends AbstractComponentPane, one of components, that 

represents  the  measure  itself.  It  is  used  to  input  text.  This  class  also  implements 

PopupEnabledWindow through  addToPopup method,  which  is  used  to  display 

enumerator to input numbers quickly and easily.

◦ LabelComponent – Extends AbstractComponentPane, just to display signs and 

infos.  Leaves store method empty.

◦ CheckboxesComponent –  Extends  AbstractComponentPane,  represents 

multiple selection choice.

◦ RadioComponent –  Extends  AbstractComponentPane,  represents  single 

selection choice.

◦ NumRadioComponent – Extends  AbstractComponentPane. It is pretty much 

similar to RadioComponent class, but every item has a numerical value. Also, more 

of these components are usually presented in a one group component and sum of all is 

required (which is implemented in a GroupComponent class).

◦ FirstNote –  Extends  AbstractComponentPane.  Contains  a  message  from 

25



doctor for a  home care personnel,  who is  examining a patient.  Doesn't  contains any 

functionality  involving  history,  storing  and  determining  the  state  of  filling  of  the 

document.

◦ ImagePaint –  Extends  AbstractComponentPane.  It  is  used for  parts  of  the 

document,  where  are  attached  images,  that  requires  some  painting.  For  example, 

marking an area on image of body, where patient suffer pain. It contains functionalities 

to mark a point, delete the closest point (to a point on screen marked by personnel) and 

delete all points. It stores the coordinates of points marked within the document and 

sends these to a server (and not the whole image).

◦ LastPanel – Extends  AbstractComponentPane. Has bigger input window for 

Home care personnel to write down a note for a doctor, if needed or required.

6. localization – Package provides application with a logic and resources to select and use 

various language subsets. Implemented are Czech and English language. Classes:

◦ TranslateSingleton –  Extends  PropertyResourceBundle class,  manages 

resources  for  a  language  variations.  It  is  a  singleton  class  with  a  static  method for 

creating an instance of class, if none has been created yet. During initialization, it sets 

the language, that is set for OS environment. During the application run, user can switch 

the language to another subset.

◦ Vocabulary – Property files, containing resources for provided languages. 

7. painting –  It  contains  the  application  logic  relevant  to  work  with  patients,  application 

context,  GUI  screens  down to  displaying  list  of  patients  (which  is  login  screen,  list  of 

patients, saving data screen). Classes:

◦ ApplicationContext –  Singleton  class,  in  which  is  an  application  context  and 

some logic for switching screens. Context and methods are:

• Screen resolution. Covers width and height changes, when switching to portrait and 

landscape modes (on non-square displays), when it needs to calculate with Windows 

Taskbar height as well.

• Screen DPI (Dots Per Inch). Placing and sizing of graphical components is related 

with DPI.  Placing tend to  be relative,  though,  it  was  not  always possible.  Then, 

absolute (using coordinates in pixels) placing had to be used. Common DPI ranges 

from 72  up  to  192.  Our  devices  has  DPI  values  96  and  192.  That  means,  that 

26



graphical components (for example images) has half size on 192 DPI screen, than 

the same on 96 DPI screen. And also, the distance from up left corner (which is the 

point, from what are the positions counted) varies, depending on DPI. So, there is 

hold default DPI value (for which components are placed) and ratio of actual and 

default DPI.

• Fonts  for  entire  application,  evaluates  DPI  so  the  size  of  a  certain  font  is  DPI 

dependent.

• Colors – For indication of state (usually on/off state) of components. Used for arrows 

released/pressed state and for indicating un/checked state of checkboxes and radio 

buttons within forms. Color of screen's background.

• Image icons for arrows and logic to load it.

• Paths of destination, where embedded camera stores taken pictures.

• Boolean value, which stands for debug mode, in which case a richer and detailed 

output to console is turned on.

• GUI components, like frames, used to determine the size of panel, or as a container 

for screens. To display patient's photo before performing the examination of patient.

• Logic for creating screens with relevant context.

• Logic for determining size of measure forms to find, whether a scrollbars are needed.

• Logic for determining state of application during events, which are pressing login 

button and state of login process and data processing after successful login. 

• Setting traversal system for entire application.

• Closing application with finishing and saving appropriate data.

◦ FocusChange –  It  is  used,  because  focus  system is  nor  working  with  all  of  the 

components.  It contains a list  of components to work with, focus traversal  rules and 

actions to perform, when focus is gained or lost.

◦ LoginPane –  Extends  JPanel class and  implements 

CommunicationSupportListener interface. Represents  login  screen.  Contains 

methods to start communication and loading data from storage. Graphical components 

are placed absolutely, so it overrides paint method and computes coordinates of inner 

components.

◦ PatientComponent –  Extends  JComponent class, represents list of patients set 

for the Visit. The list is represented by awt.List class, Paint method is overridden 

and absolute positioning of graphics components implemented.  Other methods are to 

27



determine what patient to set focus on, who is a currently selected patient and to set the 

status of filling the document for every patient. That is represented with text form, since 

awt.List is able to work just with string types. 

◦ PatientPhotoPane – Extends  JPanel class, displays bigger patient picture and 

contains buttons to return to a list of patient, continue to examine the patient or loading 

new picture, which was recently taken by an embedded camera. 

◦ PopupEnabledWindow – Interface,  contains method  addToPopup(PopupMenu 
popupMenu). For components to add context to be displayed in a Pop-up window. 

◦ PopupCreate – Extends  PopupMenu class. Realize the Pop-up menu for  classes, 

that impements  PopupEnabledWindow interface. Used in measure forms to toggle 

full screen mode and to input numbers into an input form.

◦ SavingComponent – Extends JComponent class, overrides paint method. Makes a 

screen that is being displayed while sending filled data back to the server. 

◦ Main – Contains  method  main,  which starts  the application.  Create  a  Frame class 

instance  for  LoginPane screen,  sets  MenuBar for  it  and  creates  instance  of  the 

ApplicationContext class and calls its method to initialize login screen.

28



8. painting.rsc –  Contains locale non-dependent images. Just an arrows to switch between 

pages of a measure form.

9. painting.rsc.cz – Contains images for Czech language subset (Images containing text info, 

like icons with connecting or saving process state).

10. painting.rsc.en – The same as above, but for English language subset.

11. painting.threads –  Updates  screen  during  process  of  sending  data  back  to  the  server. 

Classes:

◦ SavingRefreshThread – Extends Thread class. Periodically sleeps and wakes up 

and calls  paint  method of  SavingComponent instance to  refresh current  status of 

saving process on screen. Also checks, if the saving process doesn't take too long and 

after some time, it forces to end the saving process.

◦ ExecuteThread – Extends  Thread class. Initialize the saving process (posting the 

Visit to the server). When it is over, stops the SavingRefreshThread instance.

29



 5.1.3 GUI structure

The schema of GUI is displayed on Illustration 4 and described below.

Group  Frame is  frame  declared  in  a  GroupComponent  class.  GroupComponent 
class contains a list of related measurements (which are displayed as a Form Component). North 

Panel displays group measurement label (name) and also arrows (L. Arrow,  R. Arrow) , if more 

measurements are involved. GroupComponent is GroupComponent class, that extends Panel 
class, or  AbstractComponentPane class respectively. Before showing the form, method from 

ApplicationContext class is called and as a parameter gets  Form Component and does 

some adjustments related to  sizing.  This  method checks  the size of  a  Form Component.  If  it 

overlaps the parent components borders in width or height (or both), it creates horizontal scrollbar 

30



SH, or vertical scrollbar  SV, or both. It implements listeners of these scrollbars, track its changes 

and sets bounds of  Form Component, thus scrolling the panel. To avoid counting “pixel exact” 

size of panel on a new position, the Form Component is placed into another panel called Form-

wrap Component. Otherwise, the panel would be covering scrollbars (or components placed on the 

same or lower level generally) when moving up or right direction. But this way, the scrollbars are 

always above the Form Component, which is sliding below scrollbars and not above. And all this 

structure is put into another single Result Component panel and returned to a GroupComponent.

If the Form Component fits into its parent, no panels and modification are made and Form 

Component is returned.

 5.1.4 Localization

Localization is solved with a Singleton class  TranslateSingleton, which extends 

PropertyResourceBundle, and contains one method  getInstance. The language is set 

the same, as the environment language. The default language is set to English. So, when placing 

text, or image (that is locale dependent), it looks like this:

TranslateSingleton.getInstance().getString(msg);

In the case when placing an image, there are more images (one for each language subset), 

that differ by name for each language subset, so name of appropriate language variation is returned.

So far, English and Czech language are supported.

 5.1.5 Communication

Communication is made by calling servlet with parameters:

● loginName – User login name.

● loginPass – Password, encrypted with hashing algorithm.

● type – Upon its string value is decided, what action is to be performed. Available choices are 

to download the visit data, upload filled visit data, upload taken images.

31



Response codes are processed in the case of error. The error cases distinguished are wrong 

login info, connection error.

 5.1.6 Storage model

The application checks, if folder structure exists during the start and creates if it is not. It is 

located in user's home folder. In a future, it  will be probably moved into the application folder. 

Since function  mkdirs() is not working, each folder has to be checked and created from top 

down. The top folder name is k4care and contains sub-folders:

● images – Contains sub-folder doc_images, which is for images involved in forms. Used, for 

example,  to  paint  on  image  of  a  body,  where  patient  suffers  pain.  Then,  there  is  the 

patient_images sub-folder, which contains images, that involves a photo documentation – 

images of a patient taken during the examination.

● measurement – Contains downloaded and parsed XML files, that contains info for patient 

examination.  One patient is  stored in a single file.  Then, files with historical  values are 

presented. Each historical examination is in a single history XML file.

● service – Contains an application related informations. Like encrypted password to login, 

user info, etc.

 5.2 Application description – end user view
  

Most of the application can be handled with keyboard keys up, down, enter. There are a few 

swing  components,  because  of  its  advanced  functionality,  though  it  doesn't  support  focus 

subsystem. On solution is being worked on (probably by creating generic components).

32



 5.2.1 Screens description

  Login screen: Contains input fields for user name and password, to log into the application 

and authorize to the server as well. There is also check box, that is to set the offline mode, which is 

used, when the data are already downloaded and patient is examined. Then, there is an icon in the 

bottom right corner to log in. The data for offline mode is stored in a XML files on solid storage. 

Illustration 5.

Patients screen: Contains the list of downloaded patients with photo of selected patient in 

the upper right corner. There is an icon in bottom right corner to start the examination of a patient. 

Also, there is menu defined, that contains items finish to quit the application and Save result … to 

upload already performed examinations to the server. Illustration 6

Patient photo screen: Screen with big patient photo over the whole screen. Also contains 

buttons  continue, to continue to examination,  back to return to a patients list and load picture, to 

load picture recently taken from embedded camera. Illustration 7

33

Illustration 5: Login screen. Illustration 6: Patients screen.



List of measurements: On the top of the screen, there is label, which contains the name of 

currently focused measurement, the main (and the most) space occupies buttons, that represents 

measurement. The state of filling the single measurement is indicated with a background color of 

each button separately. On the bottom of the screen, there is the save button to save current work 

and move one level up, into the list of patients. Illustration 8

Single measurement screen – Contains name of measurement  in the middle top of the 

screen and page number, if the measurement had split into more pages respectively. If more pages 

presented, there are arrows to switch between pages. The most space occupies the measurement 

34

Illustration 7: Patient photo screen. Illustration 8: List of measurements  
screen. Currently is focused Blood 
pressure measurement.



itself. On the last page bottom, there is the  save button, that saves changes and move one level 

higher, displaying measurements screen. Illustration 9, Illustration 10, Illustration 11

 5.2.2 Scenario – Logging in, filling the document, saving

Typical scenario of the project is going to be described in this chapter. On the server side [3], 

a doctor selects measurements for each patient. A home care personnel selects some patients from 

the list of patients to be examined (since there are suppose to be more HC personnel, splitting all the 

patients among them).

35

Illustration 9: Single  
measurement screen – input  
fields.

Illustration 10: Single  
measurement screen – 
radiobuttons, 1st page.

Illustration 11: Single  
measurement screen – 
radiobuttons, 2nd page.



         

Illustration 12: Patients listing, clicking on “Patient card” of Will Timer.

          

Illustration 13: Patient card. Clicking on “Measure modification”, to select  
measurements to be performed.

36



           

Illustration 14: Set of possible measurements. Checking it will select it to be 
performed. Clicking the view button displays the measurement(Consciousness).

           

Illustration 15: Displaying measurement (Consciousness).

37



Now, the HC personnel can start using PDA, which is to  log in, download data and then do 

the examinations:

The data is downloaded, lets  process to an examination. It start with big patient photo. If it 

is not presented, it can be taken on the place.

38

Illustration 16: Clicking 
“Submit” icon after setting the 
login info.

Illustration 17: Data  
processing.

Illustration 18: 
Downloaded list of  
patients.

Illustration 19:  
Photo panel.  
Shows after  
pressing the  
examination  
button. This one 
is empty, with  
no photo.

Illustration 20: 
Clicking on 
“start” (top 
left) and 
selecting the 
camera to take 
a new picture.

Illustration 21:  
Taking a picture  
(of the  
computer  
mouse, as an 
example). 

Illustration 22:  
Clicking the  
“Load picture” 
button to load 
the photo  
recently taken.

Illustration 23:  
Clicking the  
“Continue” 
button after  
loading the 
picture.



After the initial photo screen, the measurement itself follows.

   

39

Illustration 24: 
Group of  
measurements,  
presented by 
buttons.

Illustration 25:  
Filling the 
measurement. Pop 
up window is  
showing to enter  
numbers.

Illustration 26: 
Saving the filled 
measurement.

Illustration 27: 
Group of  
measurements with 
first measurement  
filled (green color). 

Illustration 28: 
Looking through the 
second 
measurement, 1st  
page of two.

Illustration 29:  
Looking through the 
2nd page of  
measurement and 
saving empty  
measurement.

Illustration 30: 
Clicking on 3.  
measurement. 2.  
measurement is not 
filled, signalizing 
with red color of 
button. h) Saving 
the filled, third 
measurement.

Illustration 31: 
Saving the filled,  
third measurement.



Now, lets finish the measurements not yet done and save it and upload to the server.

   

40

Illustration 32: 
Returning to the 
second (not filled) 
measurement.

Illustration 33: 
Selecting an option 
on 1st page.

Illustration 34:  
Selected an option 
on 2nd page and 
saving.

Illustration 35:  
Group of  
measurements, all  
filled. Saving all for  
the current patient.

Illustration 36: List  
of patient. For Will  
Timer indicating,  
that the document is  
filled.

Illustration 37: 
Saving (and 
updating) data of  
filled patients (only) 
to the server.

Illustration 38:  
Saving in progress.

Illustration 39:  
Login screen after  
saving process is  
finished.



 5.3 Implementation issues, constructions to mention

Some issues and their solutions are going to be mentioned in this chapter. These are  result 

of used hardware and software combination. Usually, it is when standard object-oriented approach 

couldn't be used, classes and methods, that are defined in J2SE didn't work properly on Mysaifu [9], 

or at all. So, the solution was to program these functionalities from scratch.

 5.3.1 Data processing

Method  parse from class  javax.xml.parsers.DocumentBuilder  was  originally  used  for 

processing  the  XML  data.   It  returns  DOM  (Document  Object  Model)  as  an  instance  of 

org.w3c.dom.Document class. But performance on PDA device was too low. Parsing approximately 

100kB XML file, which had contained very little data of 9 patients, lasted around 60 seconds. Such 

a low speed is  a result  of  that  Mysaifu,  as a JVM for PDA, is  designed to work with limited 

resources (especially little RAM, and CPU speed as well).   Thus, missing a lot of techniques and 

robustness to speed up its run, which are implemented in J2SE.

So, the idea to speed up parsing and building DOM, is to restrict creating or using objects, 

restrict  the  size  of  objects  to  work  with,  by  removing  unnecessary  methods  and  unneeded 

functionalities. 

 5.3.1.1 Parser

For parsing, already done solution was used. It's called QDParser [12], which is fast, event 

driven, non-validating parser. The source code, with comments, is just above 300 lines. It has some 

restricted functionalities, like:

● cannot read custom entity definitions. Only the standard ones available are:  &(&amp;), < 

(&lt;), > (&gt;), ' (&apos;), and “ (&quot;).

● doesn't support conditional sections, <![INCLUDE[ ... ]]> or <![IGNORE[ ... ]]>.

● since it doesn't process any attribute declarations, all attribute types to be CDATA. Thus, a 

41



simpler  java.util.Hashtable storing  key/value  information  is  used  to  hold  an  element's 

attribute list, instead of org.xml.sax.AttributeList.

But  all  the missing features  is  possible  to  handle with document  preprocessing.  So,  the 

parser itself is able to:

● It recognizes all the elements' start and end tags.

● It lists attributes, where attribute values can be enclosed in single or double quotes. 

● It recognizes the <[CDATA[ ... ]]> construct.

● It  recognizes  the  standard  entities:  &(&amp;),  <  (&lt;),  >  (&gt;),  '  (&apos;),  and  “ 

(&quot;) as well as numeric entities. 

● It  maps  lines  ending  in  \r\n and  \r to  \n on  input,  in  accordance  with  the  XML 

Specification, Section 2.11 [13].

The source code contains just one class with one public static method parse(Reader r) 
and one interface DocHandler, that declares 5 methods, called by parser. The methods are:

• startElement(String tag, Hashtable attributes)

• endElement(String tag)

• startDocument()

• endDocument()

• text(string elementValue)

The names of methods are self-explaining.

So,  to  process  a  XML  document,  it's  required  to  create  a  class,  that  implements 

DocHandler interface and builds a memory representation of a document.

42



 5.3.1.2 DocHandler class

Most of its  logic is  in  method  startElement.  For each tag it  always creates a class 

instance with an appropriate  info (tag type,  depth,  attributes  (for element  type tag),  indexes  to 

subsidiary arrays – will be explained later).

 5.3.1.3 Element (Tag) class

The document itself is stored in a java.util.ArrayList (from now on, I will refer to 

it as “ArrayList<tags>”) class, tags are represented by a generic class, which contains following 

data types and their getters only:

● int type – Tag type (element, text, attribute, attribute value).

● String value – Value/name of a tag.

● int attributesCount – Number of attributes.

● int depth – Depth in a document hierarchy.

● int address –  Index this  tag  in  an  subsidiary array of  element  indexes  (which  are 

indexes to ArrayList<tags>). If the tag is not an element, then it contains an  address of the 

element it belongs to.

● int addressInvTXT – Index this tag in an subsidiary array of element indexes and text 

values indexes.

 5.3.1.4 Document model class

The document is represented by  ESIADocument class. It contains the ArrayList<tags> 

with  stored  tags  and  some  subsidiary  arrays,  that  holds  indexes  of  elements  for  easy  access 

(Illustration 41):

● int[]  elementOpenArray,  elementAndTXTOpenArray – Addressing 

43



elements only and elements with its text info in an ArrayList<SSPElement>.

● int[] elementDepthArray, elementAndTXTDepthArray – Holds the info, 

how deep in the document hierarchy these elements are.  

After parsing is done, method childrenIdent is called to initialize arrays with indexes. 

The method goes through tags stored in the ArrayList<tags> and detecting element tags and text 

tags  (passing over  attributes  and attribute  values  with no action)  and copies  its  indexes  in  the 

ArrayList<tags> to an subsidiary arrays. Then, parsing and building the document model is done. 

Arrays are useful for methods, that works with the document, which are:

● int[] getRootChildren() – Returns indexes (addressing to the ArrayList<tags>) 

of children of the root element.

● int[]  getChildren(int  parent)  – Returns  indexes  of  children  of  parent 

element, parent is passed as a parameter.

● int[]  getChildrenWithTXT(int  parent)  – Return  indexes  of  children 

elements and also their text values indexes.

● String getTexContent(int element) – Returns text value of the element.

● String getAttribute(int element, String attrName) – Returns value 

of the attribute tag.

● int getAddrAttrValue(int index, String attrName) – Returns index to 

the attribute value.

● int[] getAttributes(int element) – Returns  indexes  of   attributes  of  the 

element.

● String getAttributeVal(int attribute) – Returns value of the attribute tag. 

● SSPElement  getSSPElement(int  element)  – Returns  element  object 

(generally, it can be any tag – element, text value, attribute, attribute value. But it is used 

only for elements).

● String getSSPElementName(int element) – Derived from previous method, 

return only name of the element.

● void setSSPElementName(int element, String value) – Stores value of 

44



a tag generally. Used to store element text value, or attribute value.

● int getSSPElementType(int element) – Returns the type of the tag. It can be 

element, text value, attribute, attribute value.

The main idea of such a organization is, that when getting data out of it (children, attributes, 

etc.), all needed to do, is to go through the subsidiary arrays, or the ArrayList<tags> and reading 

types of tags and checking theirs depth. Most of it are int based operations.

This can be done, because when parsing the document, passing through a document has 

order of DFS (Depth First Search) algorithm, in terms of graph theory. And the same order has the 

resulting ArrayList<tags>. So, the algorithm needed to return children of a parent looks something 

like this:

The above algorithm works well, because elements following the parent are all members of 

its subtree, until it reaches a tag, that has the same depth, or lower depth (thus, its on the same level 

or  higher  in  the  document  hierarchy).  This  is  because  of  DFS  order  of  the  document  in  an 

ArrayList<tags>,  and  other  subsidiary  arrays  has  the  same  order,  as  well.  So,  the  algorithm 

Illustration 40 does the following:

● line 1 – Int address of parent is used to get element from ArrayList<tags> and its index 

(address) in subsidiary arrays elementOpenArray and elementDepthArray. 

● Line 2 – Remembers the parent's depth. 

● Line 3 – Reads the first element following the parent.

● Line 4 – Reads its depth. 

● Line 5 – Starts a cycle, which runs for all elements in parent's subtree (for all consecutive 

45



elements with depths lover than parent).  From this point,  the algorithm searches through 

elementOpenArray until it reach the end depth condition. 

● Line 6 – Checks, if the depth is bigger just by 1 from the parent's depth. If it is so, then it is a 

child element, so will add it to a result array (line 7).

● Line 7 – Adds element to a result. 

● Line 8 – Moves to next element, just by moving to next  index in elementOpenArray.

There  is  no  need  to  check  a  tag  type,  because  all  tags  are  elements,  since 

elementOpenArray contains element indexes only. It's fast, because only indexes from int[] 
are read and compared. Only disadvantage is,  that during searching, it  needs to go through the 

whole subtree, and not only children. So, the worst case performance is linear (when the parent is 

the root element of a document, because it needs to go through all elements) dependent on elements 

(not tags), the best case performance is constant (hitting the leave).

Getting text values, attributes, attribute values works on a similar principle. Only,  there is 

not subsidiary int[] array available (like for element type tags), so ArrayList<tags> is searched 

and tag type validation needs to be performed for each one. But, it's searched only a few following 

consecutive tags, not the whole subtree, because attributes and values are just behind the element.

The representation of the document and getting children elements is showed on Illustration

41 and Illustration 42.

46



47



Some benchmark results with original and new solutions are in Illustration 43

 5.3.2 GUI
  

With Mysaifu, there were two main possibilities, what widget toolkit  (graphical elements to 

be used for designing the application) to use, which are AWT or Swing. Swing has nicer look, 

allows  advanced  functionalities  and  effects,  while  AWT is  simpler,  faster,  needs  less  memory. 

Several things were programmed using swing. It uncovered a few defects:

● Reaction time on click – Clicking on swing component, like a button, invokes a response 

after a split second, which is noticeable and annoying.

● JScrollPane - Component, which acts as  JPanel class, but if components placed 

into it occupy more space, than the available space on JScrollPane, then scrollbars will 

48

Illustration 42: searching a child of a element on position 2. The result are 
elements with indexes 3 and 7.

Illustration 43: Comparing benchmarks of parsing  and building document  
using an old (org.w3c.dom) and new tools (average of 3 test, varying about 0.5 
second).



appear. The scrolling is very slow and with lugging.

● The focus subsystem is missing – it is possible to do it manually, like always remember, 

what button is selected and listen for input from keyboard and do the action. But there is still 

missing appearance of focused component.

So,  after  this  experience,  swing was thrown away.  There were also some attempts  with 

mixing both toolkits, but it bring up some troubles. When mixing swing-lightweight and  AWT-

heavyweight  components  [14],  a  lightweight  components  might  have  transparent  pixels,  while 

heavyweight is always opaque. On PC, some functional fragments of code worked, but it was not 

working on PDA.

After this, the application was switched to AWT, which is performing well enough. Though, 

there  were  also  problems  with  the  auto-scrolling  component  ScrollPanel  –  similar 

functionality  like  JscrollPane.  Scrolling  is  fast,  but  it  is  not  updating  new context  during 

scrolling and old positions remains and are add to new ones, thus, resulting in indistinguishable 

mixture of all previous screens and a new screen. Therefore, scrolling is implemented via scrollbars, 

listening their events and moving with given component (Panel). The size of component movement 

is dependent on size of scrollbar movement. The need for scrollbars is determined during the setting 

of GUI for  the patient and is determined for each  GroupComponent separately.

Then, there are various problems concerning components aligning, components hiding, font 

changing, bad context overdrawing, etc. It doesn't really impact functionality, though it is annoying. 

It is result of combination such an experimental JVM and complex structure of the application. And 

the complex structure is result of demanded functionalities and some additive structures and code to 

speed up the application.

Another  problems  are  resulting  from  varying  DPI  on  different  devices  and  various 

resolutions. The common DPI values are ranging from 72 and 192 (our two devices, that we used, 

has a 96 DPI and 192 DPI). For absolute positioning, the position of the first one is twice as far 

from the beginning, as in the higher value case. Also, the sizes of icons proportionally changes. It is 

resolved by choosing the icons size to look naturally on all common DPI values. Also, resolutions 

of the display vary among devices. On PC, it doesn't really matter, because any application size can 

be set.  But  on PDA, size setting doesn't  work.  Impossibility to  set  the the size is  not  that  big 

problem, since the size would be chosen as big as possible anyway. So, it has the size of screen, 

restricted from top and  bottom by TaskBars. But it needs to be considered when doing absolute 

49



positioning. There is ahead known resolution of the display and sizes of icons, so icons are placed 

to have an absolute certain distance from corresponding border. Then, it looks good, because icon, 

which is,  for  example,  in  bottom right  corner,  will  always be in  bottom right  corner  (with the 

distance 10 pixels from bottom and right border of the screen).

 5.3.3 Photo documentation

The scenario is, that personnel turns on the camera anytime during patient examination and 

takes wanted photos. When the camera is closed, the application shows up. Loading is implemented 

as a part of measure form, in the last component (measure screen). It is a standalone Frame, which 

reads  images  from embedded camera  storage,  displays  it  and if  it  is  confirmed (by pressing a 

button) it is moved to a specified folder with an appropriate name,  (comprising from patient ID and 

incrementing number. Then, next image is read.

 5.4 Portability

The application is created in J2SE, thus, the code is runnable over many platforms, from 

PDA using the Windows Mobile 2003 higher, and on all platforms supporting J2SE. Though, there 

are a few limitations.

As  mentioned  in  chapter 5.3.2  GUI,  there  are  various  problems  with  focus,  aligning, 

covering and then problems with varying DPI and resolutions. None of these problems makes the 

application unusable, it is just unpleasant (and it is being worked on universal solution). 

Only the limitations are speed of CPU, or overall speed respectively. It is related to a XML 

document parsing but that is processed right after the document for all patients downloaded, and it 

shouldn't take more, than a couple of minutes. And this can be done on the way to the first patient. 

Another possible issue is the size and resolution of the display. But as mentioned previously, the 

application was tested on device with the display size 2.8” and resolution 240x320 pixels. That is an 

acceptable minimum for this application. Though, there are not many devices with lower resolution 

or display size. 

To sum this up, the application would run on any mobile device with screen size 2.8” and 

50



resolution at least 240x320 pixels and then on any platform supporting J2SE, which are Windows 

OS, Unix based OS, Apple Macintosh, etc.

51



 6 Conclusion

This work is part of ICT based system, which is integrating EHR and home care services for 

senior citizens (or generally any patient, that might need it) in a single system. That brings a great 

advantage, since health professionals can check patient's health status, drugs currently taken, their 

health status related images and all of that from past as well. Then, they can order and edit and 

request home care services to be done and  simple examinations as well.

A mobile device, like a PDA, plays an important role in this project. It is an electronic tool, 

that acts at the point of care. Currently, nurses use paper forms, which can grow a lot during history, 

their accessibility and selectivity is limited and complicated, when searching though past forms. 

The  paper  forms  contains  a  big  group  of  measurements,  though  only  few  of  these  (or  one 

measurement only) might be needed.  So, the PDA device brings great advantages. It allows home 

care professionals to easily accept tasks and notes from a doctor at one time and perform an actual 

examinations, capture photo documentation, add general notes for a doctor. Then, upload the data 

back by a single button click anywhere, where is an Internet connection.  

There  were  many  problems  during  the  application  development  with  the  experimental 

platform porting J2SE on PDA devices yet they were all solved successfully. Speed issues were 

addressed with custom solutions showing big performance grow. The look of the application and 

detail functionalities were consulted during the development with doctors from General Hospital in 

Prague in order to meet their needs and the desired changes were implemented. There is going to be 

a testing phase, when a few nurses from General Hospital in Prague are going to use this in a real 

environment, which should be launched during this summer.

Great advantage is, that it is developed in J2SE Java platform, therefore it is portable to 

many different operating systems and platforms.

52



 7 Citation and references

[1] K4CARE. [cit. 2009-05-17]. http://www.k4care.net/   

[2] IZIP. [cit. 2009-05-17]. http://www.izip.cz/

[3] HORA, Ivo, K4Home care Web Interface, Praha, 2009. Diploma thesis, Czech Technical 
University in Prague, Faculty of Electrical Engineering, Department of Cybernetics

[4] VistA Imaging Overview. [cit. 2009-05-17]. http://www1.va.gov/imaging/page.cfm?pg=3

[5] Augustyniak, Piotr. PDA-based system for cardiology home care and pregnancy monitoring. 
Krakov. AGH University of Science and Technology in Krakov, Institute of Automatics. [cit. 2009-
05-17]. http://home.agh.edu.pl/~august/pub/pdf/p66.pdf

[6] VITAE Care PDA. CSC Scandihealth A/S. Aarhus, Denmark. [cit. 2009-05-17]. 
http://www.scandihealth.dk/Losninger/Losninger_produktbl_pdf/VITAE_Suite_UK/UK-VITAE-
Care-PDA.pdf

[7] HealthForceOntario. [cit. 2009-05-17]. http://www.healthforceontario.ca/

[8] HealthForceOntario. Ontario, 2008. [cit. 2009-05-17]. 
http://www.homecareontario.ca/public/docs/releases/2008/ohca-applauds-personal-digital-assistant-
award-may-08.pdf

[9] Mysaifu JVM. [cit. 2009-05-17]. 
 http://www2s.biglobe.ne.jp/~dat/java/project/jvm/index_en.html

[10] HTC Corporation. HTC P3300. [cit. 2009-05-17].  http://www.htc.com/cz/product.aspx?
id=11684

[11] HTC Corporation. HTC Touch Pro. [cit. 2009-05-17]. 
http://www.htc.com/cz/product/touchpro/specification.html

[12] Brandt, Steven R. Java Tip 128: Create a quick-and-dirty XML parser. JavaWorld[online]. 31. 
May 2002. [cit. 2009-05-17].   http://www.javaworld.com/javatips/jw-javatip128.html?page=1

[13] W3C. Extensible Markup Language (XML) 1.0 (Fifth Edition).  W3C Recommendation 26 
Novemer 2008. [cit. 2009-05-17]. http://www.w3.org/TR/REC-xml/

[14] Fowler, Amy. Mixing heavy and light components. [cit. 2009-05-17].
http://java.sun.com/products/jfc/tsc/articles/mixing/

[15] JavaTM 2 Platform, Standard Edition, v 1.4.2, API Specification. Sun Microsystems.[cit. 2009-
05-17]. http://java.sun.com/j2se/1.4.2/docs/api/

[16] JavaTM 2 Platform Standard Edition 5.0, API Specification. Sun Microsystems. [cit. 2009-05-
17]. http://java.sun.com/j2se/1.5.0/docs/api/

53

http://www.k4care.net/d
http://java.sun.com/j2se/1.5.0/docs/api/
http://java.sun.com/j2se/1.4.2/docs/api/
http://java.sun.com/products/jfc/tsc/articles/mixing/
http://www.w3.org/TR/REC-xml/
http://www.javaworld.com/javatips/jw-javatip128.html?page=1
http://www.htc.com/cz/product/touchpro/specification.html
http://www.htc.com/cz/product.aspx?id=11684
http://www.htc.com/cz/product.aspx?id=11684
http://www2s.biglobe.ne.jp/~dat/java/project/jvm/index_en.html
http://www.homecareontario.ca/public/docs/releases/2008/ohca-applauds-personal-digital-assistant-award-may-08.pdf
http://www.homecareontario.ca/public/docs/releases/2008/ohca-applauds-personal-digital-assistant-award-may-08.pdf
http://www.scandihealth.dk/Losninger/Losninger_produktbl_pdf/VITAE_Suite_UK/UK-VITAE-Care-PDA.pdf
http://www.scandihealth.dk/Losninger/Losninger_produktbl_pdf/VITAE_Suite_UK/UK-VITAE-Care-PDA.pdf
http://home.agh.edu.pl/~august/pub/pdf/p66.pdf
http://www1.va.gov/imaging/page.cfm?pg=3
http://www.izip.cz/


[17] Health Level Seven. [cit. 2009-05-19] http://www.hl7.org/about/hl7about.htm

54

http://www.hl7.org/about/hl7about.htm

	 1  Introduction
	 2  Aim of the project
	 3  Current solutions – State of the art
	 4  Application design (architecture)
	 4.1  Requested and desired functionalities
	 4.2  Hardware (PDA device) requirements
	 4.3  Software requirements
	 4.4  Used devices

	 5  Implementation
	 5.1  Application description – programmers view
	 5.1.1  XML Document description
	 5.1.2  Packages and classes description
	 5.1.3  GUI structure
	 5.1.4  Localization
	 5.1.5  Communication
	 5.1.6  Storage model

	 5.2  Application description – end user view
	 5.2.1  Screens description
	 5.2.2  Scenario – Logging in, filling the document, saving

	 5.3  Implementation issues, constructions to mention
	 5.3.1  Data processing
	 5.3.1.1  Parser
	 5.3.1.2  DocHandler class
	 5.3.1.3  Element (Tag) class
	 5.3.1.4  Document model class

	 5.3.2  GUI
	 5.3.3  Photo documentation

	 5.4  Portability

	 6  Conclusion
	 7  Citation and references

