
Bachelor thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Two Arm Robot Manipulation
with Garments

Jan Vítek
Cybernetics and Robotics

May 22, 2014
Supervisor: Ing. Vladimír Smutný

České vysoké učení technické v Praze
Fakulta elektrotechnická

Katedra kybernetiky

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

Student: Jan V í t e k

Studijní program: Kybernetika a robotika (bakalářský)

Obor: Robotika

Název tématu: Manipulace s oděvy dvourukým robotem

Pokyny pro vypracování:

1. Seznamte se s operačním systémem ROS, s robotem Clopema a s existujícími přístupy
 k manipulaci s oděvy.
2. Seznamte se s nástroji, které již byly vytvořeny v projektu Clopema.
3. Navrhněte a implementujte nástroje pro manipulaci s oděvem pro projekt Clopema.
4. S vytvořenými nástroji proveďte experimenty a vyhodnoťte je.

Seznam odborné literatury:

[1] Stephen Miller, Jur van den Berg, Mario Fritz, Trevor Darrell, Ken Goldberg, Pieter Abbeel:
 A Geometric Approach to Robotic Laundry Folding. In the International Journal of Robotics
 Research (IJRR), first published on December 20, 2011.
[2] Ping Chuan Wang, Stephen Miller, Mario Fritz, Trevor Darrell, Pieter Abbeel: Perception for
 the Manipulation of Socks, In the proceedings of the IEEE/RSJ International Conference on
 Intelligent Robots and Systems (IROS), 2011.
[3] https://portal.fnpconnect.com/documents/10113/4412513/Garment+Folding+Methods
[4] Li Sun, Gerarado Aragon-Camarasa, Paul Cockshott, Simon Rogers, J. Paul Siebert:
 A Heuristic-Based Approach for Flattening Wrinkled Clothes (to be published).

Vedoucí bakalářské práce: Ing. Vladimír Smutný

Platnost zadání: do konce letního semestru 2014/2015

 L.S.

doc. Dr. Ing. Jan Kybic
vedoucí katedry

 prof. Ing. Pavel Ripka, CSc.
děkan

V Praze dne 10. 1. 2014

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

BACHELOR PROJECT ASSIGNMENT

Student: Jan V í t e k

Study programme: Cybernetics and Robotics

Specialisation: Robotics

Title of Bachelor Project: Two Arm Robot Manipulation with Garments

Guidelines:

1. Get familiar with the ROS operating system, Clopema robot, existing approaches to the
 garment manipulation.
2. Get familiar with already implemented tools within the Clopema project.
3. Design and implement the tools for garment manipulation within Clopema project.
4. Make experiments and evaluate results.

Bibliography/Sources:
[1] Stephen Miller, Jur van den Berg, Mario Fritz, Trevor Darrell, Ken Goldberg, Pieter Abbeel:
 A Geometric Approach to Robotic Laundry Folding. In the International Journal of Robotics
 Research (IJRR), first published on December 20, 2011.
[2] Ping Chuan Wang, Stephen Miller, Mario Fritz, Trevor Darrell, Pieter Abbeel: Perception for
 the Manipulation of Socks, In the proceedings of the IEEE/RSJ International Conference on
 Intelligent Robots and Systems (IROS), 2011.
[3] https://portal.fnpconnect.com/documents/10113/4412513/Garment+Folding+Methods
[4] Li Sun, Gerarado Aragon-Camarasa, Paul Cockshott, Simon Rogers, J. Paul Siebert:
 A Heuristic-Based Approach for Flattening Wrinkled Clothes (to be published).

Bachelor Project Supervisor: Ing. Vladimír Smutný

Valid until: the end of the summer semester of academic year 2014/2015

 L.S.

doc. Dr. Ing. Jan Kybic
Head of Department

 prof. Ing. Pavel Ripka, CSc.
Dean

Prague, January 10, 2014

Acknowledgement / Declaration
I would like to thank my thesis su-

pervisor Ing. Vladimír Smutný for the
guidance of my work and his advices
about the computer vision and 3D
stereo image reconstruction procedures.
A special thanks goes to Ing. Libor
Wagner for the priceless answers on my
questions about CloPeMa and ROS and
assistance with implementation of the
outcome of my thesis to the CloPeMa
systems.
The thesis could not have been created
without the support of my girlfriend
Jana, my family and their under-
standing for spending my nights with
MATLAB and OpenNI.

I hereby declare that this thesis is
my own work and I have quoted each
source I have used in compliance with
”Metodický pokyn o dodržování etick-
ých principů při přípravě vysokoškol-
ských závěrečných prací”.

In Prague, May 22, 2014

Prohlašuji, že jsem předloženou prá-
ci vypracoval samostatně a že jsem
uvedl veškeré použité informační zdroje
v souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

V Praze dne 22. května 2014

. .

vii

Abstrakt / Abstract
Tato bakalářská práce se zabývá ka-

librací 3D senzorů založených na tech-
nologii vyvinuté firmou PrimeSense. Ke
kalibraci je použit postup, který byl již
dříve navrhnut a popsán Ing. Janem
Smíškem, pro kalibraci senzoru Kinect
od firmy Microsoft. Tento postup byl
v rámci práce upraven pro použití se
senzory ASUS Xtion a PrimeSense Car-
mine. Pro aplikaci kalibračních dat bylo
nutné upravit zdrojový kód open-source
ovladače OpenNI a vytvořit balíčky
pro linuxové distribuce a platformy
používané v rámci projektu CloPeMa.
Výsledná kalibrace senzorů byla ověřena
jak teoreticky, tak prakticky.

Klíčová slova: ASUS; Xtion; Pri-
meSense; Carmine; OpenNI; kalibrace;
počítačové vidění; 3D senzor; CloPeMa;
ROS

Překlad titulu: Manipulace s oděvy
dvourukým robotem

The thesis deals with calibration
of 3D sensors using depth measuring
technology developed and patented by
PrimeSense. The calibration is based on
Microsoft Kinect calibration procedure
earlier developped by Ing. Jan Smíšek
and slightly modified to work with
ASUS Xtion and PrimeSense Carmine.
It was necessary to modify the OpenNI
drivers to accept the calibration data
and build packages for each Linux
distribution and platform used in the
CloPeMa project. The resulting calibra-
tion of sensors attached to the CloPeMa
robot was verified both theoretically
and in practice.

Keywords: ASUS; Xtion; Prime-
Sense; Carmine; OpenNI; calibration;
computer vision; 3D sensor; CloPeMa;
ROS; structured light range finder

ix

Contents /
1 Introduction .1
1.1 Devices .1
1.2 Device Drivers2
1.3 Robot Operating System

(ROS) .2
2 Calibration Description3
2.1 Camera calibration3
2.2 Range finder calibration4
2.3 Verification .5
2.4 Output .5

3 OpenNI. .7
3.1 Disparity vs. Depth.7
3.2 Shift to Depth table (S2D

table) .7
3.3 Original Configuration Op-

tions .7
3.3.1 OpenNI configuration.8
3.3.2 ROS OpenNI Wrapper

configuration8
3.4 Changes made to the driver9

4 Calibration Data Capturing 11
4.1 Capturing Program 11
4.2 IR Image . 11
4.3 RGB Image . 12
4.4 Disparity Map. 12

5 Running the Calibration Pro-
cedure . 13

5.1 Step by Step Description 13
5.2 Common Problems. 14

5.2.1 Different count of
chessboard corners in
RGB and IR images 14

5.2.2 Abnormally high error
in verification 15

6 Accuracy of the Calibrated
Sensor . 17

6.1 Practical Verification Method . 17
6.2 Verification Data Collection . . . 17
6.3 Verification Data Processing . . 18
6.4 Example of the Calibration

Results . 18
7 Conclusion . 21

References . 23
A Abbreviations . 25
B Examples of Files Used in the

Calibration . 27

B.1 Depth YAML File 27
B.2 Camera intrinsic parameters

configuration file 27
B.3 Custom S2D Table 27

C Content of the Enclosed CD 29

xi

Tables / Figures
2.1. Simple verification of the

camera intrinsic parameter
calibration. .3

6.1. Example of the calibration
results. 19

1.1. Image of PrimeSense
Carmine 1.09 .1

1.2. ROS RViz Environment.2
2.1. Width measurement scene4
3.1. Illustration of disparity mea-

surment. .8
3.2. OpenNI life cycle flowchart

illustrating loading of the
configuration files. 10

4.1. Example of IR and RGB cal-
ibration images. 12

4.2. Example of a disparity map.. . . 12
5.1. Scene set-up for the calibra-

tion data collection. 13
5.2. Example of a problematic

chessboard image. 15
5.3. Example of the abnormali-

ty caused by one corrupted
calibration image. 16

6.1. Projection of the scene to
the ROS visualization of the
robot. 18

6.2. Photo of the robot during the
verification. 19

6.3. The improvement of the pro-
jection to the ROS visualiza-
tion of the robot. 20

6.4. The verification data dis-
played in a 3D plot. 20

xiii

Chapter 1
Introduction

For fine manipulation it is good to equip a robot with some kind of vision. This
requirement gets more important if the object of manipulation changes its shape and
its initial position is not accurately defined. Then you need to find and identify the
manipulated object prior to the manipulation. In project CloPeMa 3D sensors made
by PrimeSense and ASUS are used for localization of a garment on a table or to find
a grasping point on the garment. Later, when the garment is grasped, the success
depends on the accuracy of the position measurement. My task is to improve accuracy
of the sensors and to make the garments manipulation more predictable and reliable.

To achieve the best results I will use a calibration procedure developed by Jan Smíšek
and described in [12, 8]. To calibrate RGB-D sensor (color camera and range finder)
the procedure takes a set of RGB and IR camera images and disparity map of the scene.
Jan Smíšek used libfreenect driver which does not support our sensors therefore I
need to discover whether our drivers are configurable as we need, otherwise modify
them for our needs.

Figure 1.1. Depth sensor PrimeSense Carmine 1.09

1.1 Devices
CloPeMa robot uses two types of 3D sensors branded by ASUS and PrimeSense. The
ASUS Xtion Pro Live sensor is made to be used for longer distance measurements
— returns depth values from 46.6 cm — while the PrimeSense Carmine 1.09 sensor
returns depth values starting at 25.8 cm. Both of them use technology developed
by PrimeSense (also used by Microsoft Kinect[13]) and OpenNI2 drivers. The sensor
projects IR pattern on the scene, captures IR image and triangulates the 3D data. [6]
A detailed description how do the sensors work is in [12, 15].

The disparity (inverse depth) data are computed in the device using PrimeSense
PS1080 SoC. These data are related to the IR image and if we want to colorize the
scene we need to assign RGB picture pixels to the proper IR pixel. This feature is
also implemented in the PS1080 SoC and it is called the hardware registration. It
means that the sensor returns pre-processed data and I am not able to modify the

1

1. Introduction .
disparity calculation if it is inaccurate. On the other hand, the hardware registration
could be turned of, and replaced by ROS openni2_camera software registration, if it
was necessary.

1.2 Device Drivers
OpenNI are open-source drivers developed with participation of PrimeSense, currently
in version 2.2.0.33. It is the officially recommended API for Xtion sensors by ASUS[4].
The drivers are discussed in chapter 3, where I present the basic structure and function
of the drivers, and my modifications of the code.

1.3 Robot Operating System (ROS)
The CloPeMa robot and its peripherals are driven by the Robot Operating System. It
solves basic robotic tasks like inverse and forward kinematics, path planning, collision
avoidance etc. The whole system is not driven centrally by one piece of software but it
is divided to many subsystems called ROS Nodes.[2] These nodes do its own job (i.e.
compute trajectory, distribute camera images) and communicate with each other using
publish-subscribe pattern managed by the ROS Master. [7, 1]

The openni2_camera package provides us with nodes which publish information
about the sensors itself, raw sensor data and processed data — depth registered images
— set of points with their coordinates in the space and its color assigned from RGB
camera.

Figure 1.2. View of the CloPeMa robot model in RViz — the ROS visualization tool.
RViz lets you manipulate with the robot and visualize RGB-D data captured by the depth

sensors that are mounted on the robot’s arms.

2

Chapter 2
Calibration Description

In this chapter I will summarize chapter 4.1 of [12]. I will introduce you the facts that
are necessary to be understood to be able to perform the calibration. The calibration
uses Jan Smíšek’s algorithm which I have slightly modified so that the usage is more
comfortable.

2.1 Camera calibration
For the calibration it is necessary to find intrinsic (focal length, distortion, principal
point and pixel size) and extrinsic parameters (respective position of IR and RGB
camera). Pixel size is given by the resolution and the size of the CMOS[15] and other
parameters are approximated using images of the calibration chessboard.

For the actual run of the 3D measurement only intrinsic parameters are passed to the
driver. However I have found this as a very important part of the calibration because
default focal lengths are noticeably inaccurate. The default values according to the
ROS openni2_camera package configuration files are 575 px for both IR and RGB
lenses although the RGB camera DoF is visibly wider than the IR camera field of view.
This lets the RGB camera see the most of the IR camera DoF and it guarantees that
there will be RGB data for the whole depth image. So the smaller focal length of the
RGB lens is intentional but it is not reflected in the calculations.

The other thing that is completely omitted is the image distortion. It has been
found that the radial distortion can cause displacement up to 10 pixels in the image
corners[12]. This results in inaccurate measurements if the object (or a part of it) is
close to the edge of the image.

After the camera calibration I have made a series of simple measurements to see
whether it has any effect on the scene reconstruction. I have measured the width of 26
cm wide box and the distance to it using the PrimeSense Carmine 1.09 sensor. You can
see how did the scene look like in Fig. 2.1. The data are summarized in the Table 2.1
and you can see significant improvement of the accuracy of the short range (∼40 cm)
measurement. When the measured object was moved to the greater distance distance
(∼1.7 m) the accuracy of the measurement decreased however the effect of the camera
calibration is still observable.

distance width [mm] depth [mm] width error [mm]
[mm] before after before after before after
355 245.3 260.1 361 362 147 0.1
421 244.1 258.5 427 427 159 1.5
488 244.2 259.2 493 493 158 0.8
172 235.4 248.7 1670 1670 246 113

Table 2.1. Simple verification of the camera intrinsic parameter calibration. A box 26 cm
wide was measured in different distances to verify whether the camera intrinsic parameter

has an effect on the measurements.

3

2. Calibration Description .

Figure 2.1. A simple camera intrinsic parameters verification scene as seen by the sensor.
The 26 cm wide box was measured using the RGB-D sensor to prove an effect of the camera

intrinsic parameters calibration.

2.2 Range finder calibration

The structured light 3D sensor measures disparity values which are converted to the
depth values in millimetres using equation (1)[12]. This value is later used to calculate
x,y,z coordinates of the captured points.

d = fb

c1r + c0
(1)

d . . . depth in mm
f . . . focal length in mm
b . . . baseline between IR camera and IR projector (75 mm)
r . . . raw disparity value

c1, c0 . . . coefficients of the model

The MATLAB range finder calibration algorithm from [12] uses the RGB and IR
camera images and disparity map of the scene. The IR and RGB images are used
for a stereoscopic reconstruction. The coordinates of chessboard corners are extracted
from the reconstructed 3D data and their depth is calculated. The stereoscopic depth
values are the ground truth data for the depth calibration. Now the program finds a
corresponding disparity value for each chessboard corner. This way we will get one
or more disparity values for various depth values. The program uses the least-square
method to fit the values to equation (1).

When the data are fitted, we can use equation (1) to calculate a depth in millimetres
for each disparity value that sensor can return. The results are stored to a .csv file
which can be loaded by the OpenNI drivers. Meaning of the file and its structure is
described in 3.2.

4

. 2.3 Verification

2.3 Verification
The MATLAB calibration script automatically verifies the results it has calculated. It
takes the disparity values on the positions of calibration chessboard corners, calculates
the depth using the calibrated model and compares the results to the measurements
computed using the stereoscopic scene reconstruction. The output of the verification
are two graphs that show the error size according to the depth.

2.4 Output
Here is the list of files which are produced by the MATLAB calibration script. The
meaning of the files is discussed in respective chapters and their structure is shown in
Appendix B.

1. depth_PS1080_PrimeSense.yaml
The file holds intrinsic parameters of the IR camera. It is used by the ROS
openni2_camera wrapper and the usage is described in 3.3.2.

2. rgb_PS1080_PrimeSense.yaml
Similar to the previous file with the intrinsic data for the RGB camera.

3. depth_model.txt
There are two numbers which can be substituted for c0 and c1 in equation (1).

4. S2D_table.csv
The Shift to Depth table which is described in 3.2.

5. kin_residues.eps & kin_residues_hist.eps
The verification results.

5

Chapter 3
OpenNI

This chapter describes the function of the OpenNI driver for the PrimeSense sensors and
my modifications to its source code. Although the official website of the OpenNI was
closed in April 2014 the source code is still accessible on the OpenNI GitHub page[5]. I
have used the code from the OpenNI2 repository which supports the sensors based on
the PS1080 SoC.

The OpenNI consists of more drivers for various depth sensing devices. Both Asus
Xtion and PrimeSense Carmine sensors use the PS1080 driver. The driver itself is mod-
ular and initializes just the part of the sensor that is used. There are some restrictions
such as you cannot access the color and the IR stream simultaneously so it is good to
initialize just the modules you really need.

3.1 Disparity vs. Depth
There are two formats of the depth channel output — disparity map (inverse depth)
or the real depth in millimetres. The sensor returns the disparity value and the driver
is by default configured to convert this value to the real depth. The disparity of the
pixel represents the shift of a point in two stereoscopic images[11] (analogically for
the pattern projected by the IR projector and captured by the IR camera). In the
PrimeSense terminology, the disparity is called a shift value.

3.2 Shift to Depth table (S2D table)
The conversion from Shift to Depth is implemented in the ShiftToDepth.cpp file. In
the initialization procedure there is created an integer array of 2048 values. The index of
the array refers to the shift value returned by the sensor and the corresponding value is
the depth value in millimetres. The metric values are computed during the initialization
and they are recomputed each time when the relevant configuration parameters changes.
When the disparity image comes from the sensor, the driver just finds the depth value
for each pixel in the table and it is not necessary to compute it each time.

This associative array is called the Shift to Depth table (abbr. S2D table). During
the calculation of the S2D table is also stored the Depth to Shift table which could be
used to get the disparity values from existing depth images which were saved with the
metric values. However I do not recommend to use such reconstructed shift values for
the calibration because the Shift to Depth is not an injective function.

3.3 Original Configuration Options
The processing of the calibration data can be configured using two types of configuration
files, each of them is determined to configure different part of sensing. First possibil-
ity is to configure the OpenNI using .ini files. The other possibility is to configure
openni2_camera wrapper using configuration files placed in ∼/.ros/camera_info/.

7

3. OpenNI .

CL CR

b

X(x,y,z)

XL

XR

z

f

isodisparity plane

Figure 3.1. Illustration of disparity depth measurement. The z value value is computed
based on the difference between XL and XR — the position of the same object in left and

right camera images. Figure is taken from [12].

If you have installed OpenNI using the package manager the configuration .ini files
are automatically created in /etc/openni2 directory. If you did not use the packages
to install the OpenNI, and you got the libraries with a program, the configuration files
must be placed in the same directory as the redistributable libraries [14].

3.3.1 OpenNI configuration
The openni .ini configuration files allows us to configure default settings for the device
and its streams. Each option in the file is well documented and you should not have a
problem with them. You can set for example resolution of the cameras, FPS rate, white
balance filter and so on. However the most important parameter for the calibration is
the output format of the Depth stream. Make sure it is set to 102 which means the
device will return disparity (shift) values of the scene. By default it is set to 100 and
the Shift values are converted to the depth in millimetres.

3.3.2 ROS OpenNI Wrapper configuration
The wrapper allows us to configure parameters important for the 3D scene recon-
struction. You can configure the intrinsic parameters of the IR and RGB cameras.
The configuration files are not created automatically with the installation of the
ros-hydro-openni2-camera package. I have not found any official documentation of
these configuration files. However I have found some files on a GitHub page of another
robotic project and I have used their structure of the configuration files[9].

By default the wrapper looks for files named depth_PS1080_PrimeSense.yaml and
rgb_PS1080_PrimeSense.yaml in ∼/.ros/camera_info/ directory. The file url can

8

. 3.4 Changes made to the driver

be different for each sensor and it can be configured as the depth_camera_info_url
and rgb_camera_info_url ROS Node parameters[3].

3.4 Changes made to the driver
Unfortunately the OpenNI drivers does not allow you to use different configuration
files for two or more sensors although the sensors parameters are stored separately
when they are loaded. I have made changes to the XnSensor class which repre-
sents the device and creates the data streams. The url to the PS1080.ini config-
uration file is stored in the m_strGlobalConfigFileName variable and it is resolved
by ResolveGlobalConfigFileName() function. I have changed this function to check
whether the /etc/openni2/PS1080-{serial#}.ini file exists, and if it does, to return
it as the global configuration file. Otherwise the /etc/openni2/PS1080.ini is used.
This is illustrated in Fig. 3.2

There is just one problem and it is that the global configuration file is common
for device and streams configuration and you cannot get the serial number of the
sensor unless the device is initialized. I have solved this by adding a second call to
the file resolving function after the device initialization. It means the device is ini-
tialized using PS1080.ini file and the streams are initialized with values from the
PS1080-{serial#}.ini file if it exists. This is sufficient for passing the unique param-
eters to the Depth stream.

The original OpenNI does not let you to change any parameters related to the Shift
to Depth calculation. I have decided not to load the constants for the conversion for-
mula but to load a pre-computed S2D table. This allows you to completely change
the formula without any changes to the driver. I have added CustomS2DTableID
paremeter to the Depth section of the PS1080.ini file. The parameter holds the in-
teger value used to distinguish between prepared S2D tables. The sensor tries to load
the /etc/openni2/PS1080-{CustomS2DTableID}.csv file which consists of semicolon-
separated Shift and Depth values. If such a file does not exist the S2D table is computed
the old way. The CustomS2DTableID value defaults to 0.

9

3. OpenNI .

Figure 3.2. OpenNI life cycle flowchart illustrating loading of the configuration files.

10

Chapter 4
Calibration Data Capturing

It is needed to get a set of RGB, IR and disparity data for various positions of the
calibration chessboard. The chessboard positions should be spread over the whole
camera field of view and the range of common distances in later application. There
are used 14 different poses in [12] with total number of 2205 calibration points. I
have used 18 poses of 7× 6 chessboard fields that made total number of 630 calibration
points which made an improvement in the sensor accuracy however the result was worse
(discussed in Chapter 6).

The input files for the calibration MATLAB script should be named iri_{i}.png
for IR pictures, rgb_{i}.png for color pictures and dep_00{i}.yml for disparity values
where i is a number between 1 and total number of image sets. It is not allowed to
skip a value. The .yml file has a strict format of its header and it has to look the same
as the example in Appendix B.

4.1 Capturing Program
I have created a simple C++ program which can be used to get the data required for
the calibration. It is based on SimpleRead program which comes with OpenNI and
reads the depth value in the centre of a view. I strongly recommend to have just one
sensor connected to the PC where you run this program because it takes the data from
a random sensor connected to the system. The program captures IR, RGB and depth
data in this order and waits for a button press after each type of measurement.

I have found it is not good to capture pictures right after the sensor initialization.
The reason was clearly visible in the case of the RGB camera. If I took the first picture
after the sensor initialization the auto white balance filter has not been applied yet,
and that resulted in less contrast of the checkerboard pattern. Thus the program waits
1 second after the initialization and then captures the picture.

The program uses OpenNI API for communication with PrimeSense sensor and
OpenCV for saving the data. The data are saved in .png and .yml formats. The
captured images are also shown on the screen during the process.

4.2 IR Image
To get a clear IR image it is necessary to cover the IR projector and illuminate the
scene with a lamp with high IR emission (e.g. halogen lamp). [12] Then you will get
16 bit output image from the IR camera. The image seems to be all black but the
information is there and the chessboard corners extraction works well. The image is
saved to the 16 bit iri_0.png file. For immediate preview I save and display the image
stored to the 8 bit png which is on the other hand not suitable for the corner detection.

11

4. Calibration Data Capturing .

a) RGB image b) IR image
Figure 4.1. Example of an RGB and IR image pair. The calibration procedure uses these
image to get the ground truth data based on a stereoscopic reconstruction of the scene.

4.3 RGB Image
The RGB image is saved to 3×8 bit rgb_0.png image. The RGB image capturing does
not need any other adjustments to the sensor however it is good to keep the halogen
lamp illuminating the chessboard to get high contrast and low noise image.

4.4 Disparity Map
To reduce the noise in the depth channel it is recommended to take at least 5 pictures
and use median for each pixel in the picture[12]. The program does so and produces
the output of 5 pictures as taken from the sensor and the 6th picture as the median
value for each pixel. This relevant file is saved as dep_000.yml. The other files are
stored as depth_(0-4).{png,yml}. The .png files are good for a visual preview if you
raise the brightness.

Important: It is necessary to uncover the IR projector and turn off (point away) the
halogen lamp prior to taking the depth images.

Figure 4.2. Disparity map correspoding to the camera image pair from Fig. 4.1. The
depth sensor returns 11 bit values where the maximum value is used for pixels where the

device was not able to compute disparity.

12

Chapter 5
Running the Calibration Procedure

The calibration procedure consists of 3 parts — data collection, MATLAB script ex-
ecution and application of the output files. In this chapter I will describe the way
how go through the calibration procedure and avoid the mistakes I have made before I
have found the correct way. I assume you will use my data collecting program and Jan
Smíšek’s MATLAB calibration script modified by me to directly provide configuration
files for OpenNI and openni2_camera ROS Node.

Figure 5.1. Calibration of the Asus Xtion sensor mounted on the arm number one, while
the second arm is holding the chessboard. The halogen lamp is used as a source of an

infra-red light.

5.1 Step by Step Description

1. Data Collection

1. Make sure you have just one sensor connected to the system.
2. Cover the IR projector and light up the chessboard with a halogen lamp.
3. Run the DataCollection program.
4. Wait until you will see two windows on the screen — 8b and 16b IR image.
5. Press any button and wait for the RGB image.
6. Uncover the IR projector and point away the halogen lamp.

13

5. Running the Calibration Procedure .
7. Press any button and wait until you will see the disparity images (the images seems

to be all black because they are 16b .png images with maximum value 2047).
8. Press any button to terminate the program.
9. Change the checkerboard position and repeat the procedure unless you think you

have enough data.

2. MATLAB Calibration

1. Change indexes of iri_0.png, rgb_0.png and dep_000.yml files to be ascending
from 1 to n (number of images) and place them all in one directory.

2. Run the MATLAB script: kinect_calib_2(’path_to_data’, ’./’)

3. Output usage

1. Find out the serial number of your sensor (it is printed on a sticker on the sensor
or on the box, use just the part after the dash)

2. Move the rgb_PS1080_PrimeSense.yaml file to
∼/.ros/camera_info/rgb_{serial#}.yaml (e.g. rgb_1206040264.yaml)

3. Move the depth_PS1080_PrimeSense.yaml file to
∼/.ros/camera_info/depth_{serial#}.yaml

4. Copy the /etc/openni2/PS1080.ini to /etc/openni2/PS1080-{serial#}.ini
5. Move the S2D_table.csv file to /etc/openni2/PS1080-{random#}.csv
6. Edit the /etc/openni2/PS1080-{serial#}.ini file and set CustomS2DTableID

parameter to the random number value from the previous step.
7. Edit your ROS .launch file to load the calibration data:

<arg name="rgb_camera_info_url"
default="file://${ROS_HOME}/camera_info/rgb_{serial#}.yaml" />

<arg name="depth_camera_info_url"
default="file://${ROS_HOME}/camera_info/depth_{serial#}.yaml" />

5.2 Common Problems
5.2.1 Different count of chessboard corners in RGB and IR
images

Sometimes happens that a part of the chessboard is covered for one of the cameras
or there can be a shadow on the chessboard. Then the chessboard detected in the
IR and RGB images can be different (a row may be missing in one image). When
this happens you can see error message like the one below. To fix this use MATLAB
Details window to check dimensions of x_{i} matrices in files Calib_Results_IR.mat
and Calib_Results_RGB.mat. Then you can remove the affected images from the
calibration set or fix them in graphics editor. The sample situation is shown in Fig 5.2.

Gradient descent iteration: 1...Error using -
Matrix dimensions must agree.

Error in calib_stereo (line 343)
ekk(2*Nckk+1:end) = xrkk(:) - xr(:);

Error in kinect_calib_my (line 88)
calib_stereo;

14

. 5.2 Common Problems

a) problematic image b) simple solution
Figure 5.2. Example of a problematic chessboard image. Part of the chessboard is covered
by the gripper. The corner detection algorithm then does not detect the first line in the
rgb picture however the line is detected in IR picture with the covered point displaced.

The problem can be easily fixed in an image editor.

5.2.2 Abnormally high error in verification
If the result of the calibration verification shows high error (∼50 cm) it is likely caused
by presence of a corrupted image of in the calibration data. You need to identify the
image set containing the corrupted image. If you do not find anything unusual in the
data you need to remove the set from the calibration data. Example of the calibration
result when this error occurs is in Fig. 5.3.

15

5. Running the Calibration Procedure .

800 900 1000 1100 1200 1300 1400 1500 1600 1700
0

500

1000

1500

2000

2500

True distance to the target point [mm]

E
rr

or
 −

ge
om

et
ric

al
 d

is
ta

nc
e

fr
om

 g
ro

un
d

th
ru

th
 [m

m
]

Error between PrimeSense and Camera stereoscopic reconstruction (mean: 80.64 std: 103.19)

outlier

Figure 5.3. When one of the calibration images is corrupted, the result of the calibration
can look like this. Solution is removing the corrupted data set from the calibration data.

16

Chapter 6
Accuracy of the Calibrated Sensor

The accuracy can be verified theoretically and practically. The theoretical verification
is a part of the Jan Smíšek’s MATLAB calibration script and it is described in 2.3.
However the more important are the calibration results in practical measurements. I
have created a ROS script for collection of the verification data which are evaluated by
a MATLAB script.

6.1 Practical Verification Method
For the practical verification I have used the ROS model of the CloPeMa robot. The
depth sensors are included in the model and you can display the view of the sensor in
the virtual robot scene. ROS transforms coordinates of RGB-D data to the coordinate
system of the robot model. Then you can make measure the end effector position using
two different ways. The first way is to use the forward kinematics solver and the other
way is to find the end effector in the depth image. I assume the forward kinematics
solver is accurate and the position extracted from the depth sensor value should be
close to it.

The position of the end effector in depth image is selected manually. This is not a
good approach because in the distance where the measurement is made the width of
one pixel corresponds to few millimetres. Therefore it is hard to identify the right spot
and the measurement error is close to the error of the sensor itself. However it is precise
enough to show us whether the calibration has positive effect on the measurement. An
improvement of the verification procedure can be a subject of future research.

6.2 Verification Data Collection
The ROS script lets you control the robot using the interactive model and when the
robot is in a desired position the script stores the joint positions and end effector
position based on the forward kinematics and measurement of the sensor with default
calibration. To get the sensor measured value use ”Publish point” function of the RViz
environment and select the end effector position in the depth sensor point cloud. The
published point is caught by the script and saved. This way you can store as many
end effector positions as you need for the verification (I have used 10 positions). The
collected data are continuously stored to verification_data.json file in your home
directory.

When you have finished collecting the data measured by the sensor with default
calibration, you have to load your configuration to the sensor. Change the .launch file
of the sensor ROS node to load the camera intrinsic parameters and edit OpenNI.ini
file to make OpenNI load the custom S2D table. The script for data collection does not
need to be restarted. If you have stopped you can run it again and it lets you load the
previously collected data.

17

6. Accuracy of the Calibrated Sensor .

Figure 6.1. RGB-D data measured by the depth sensor can be displayed in the RViz
environment in the same scene as the robot model. Data are projected to the scene based
on the position of the sensor and you can compare the depth measurement with the virtual

robot model.

Now the script will move the robot based on the stored joint positions and will ask
you to select the sensor measured coordinates the same way, using the ”Publish point”
button, as you did before. When all the previously stored positions were reached the
script is stopped and the collected data can be found in the verification_data.json
file in the home directory.

6.3 Verification Data Processing
The output file of the collection script can be loaded by the verification.m MATLAB
function, which takes the path to the file as the first parameter. The data are loaded
using the JSONlab MATLAB toolbox[10] and displayed in a 3D figure. In the figure
you can check whether the collected data are correct because sometimes happens you
capture the wall behind the target instead of the end effector’s position.

To verify the calibration effect, distances between the actual position of the end
effector and the position measured by the depth sensor are computed and com-
pared. The output of the script is an average, minimal and maximal value of the
error for both measurements. If you would like to see the measured errors for each
point, you can call the function with parameter ’output’ set to ’verbose’ e.g.
verification.m(’./data.json’,’output’,’verbose’).

6.4 Example of the Calibration Results
For the illustration of the calibration capabilities I have calibrated one of the ASUS
Xtion sensors attached to the CloPeMa robot. The calibration and verification proce-
dure followed the technique described in this thesis. Table 6.1 shows the example values
of the calibration results and it should help you find abnormalities in you results.

18

. 6.4 Example of the Calibration Results

Figure 6.2. The verification data capturing. For better recognition of the end effector the
robot is holding a plate with a cross.

The calibration was made using 18 images chessboard with 6 × 7 fields placed in the
distance from 80 to 160 cm. The verification used 10 position of the end effector in a
similar distance range. According to the theoretical verification I have achieved depth
error mean value approximately 6 mm which is higher than 3 mm error achieved in [12]
but I think a better result can be achieved with more calibration points. In practice
the average deviation of the values measured by the sensor was decreased from 2 cm to
1.33 cm.

parameter value
intrinsic parameters
RGB camera focal length [px] 551.01445
RGB camera principal point [px] 315.09043; 241.21808
RGB camera distortion coefficients [0.06283, -0.16341, 0.00177, 0.00092, 0.00000]
IR camera focal length [px] 584.53120
IR camera principal point [px] 309.71607; 244.49387
IR camera distortion coefficients [-0.01008, -0.01601, 0.00286, -0.00004, 0.00000]
depth model parameters
c1 -1.2844266·10−3

c0 1.4065634
mean value of error [mm] 5.9066

Table 6.1. Simple verification of the camera intrinsic parameter calibration.

19

6. Accuracy of the Calibrated Sensor .

a) before calibration b) after calibration
Figure 6.3. The improvement of the accuracy is visible on the position of the plate that
the robot is holding. The images shows the depth sensor data projected to the RViz

environment. The robot is in the same just the calibration data are different.

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

−1.4

−1.2

−1

−0.8

−0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

7

5

8

x [m]

2

10

6

1

3

4

9

y [m]

z
 [

m
]

forward kinematics

before calibration

after calibration

Figure 6.4. The verification data displayed in a 3D plot. Red points are the ground truth
points computed by forward kinematics solver. The green points are data measured by the
depth sensor before its calibration and the blue points are measured after the calibration.

20

Chapter 7
Conclusion

Although the PrimeSense sensors are used primarily for a human motion recognition
where the best accuracy is not required, with a custom calibration they can be used in
robotic applications as sufficiently accurate RGB-D sensors. My primary task was to
study the structured light range finder calibration method presented in [12] and to find
a way how to use it for the sensors used in project CloPeMa. To be able to perform
the calibration and apply the results I have studied principles of RGB-D sensors, ROS
environment and OpenNI API.

I have created a standalone program for the data collection. The program is written
in C++ and it helps you to collect all data needed for the calibration. With a basic
data set I was able to make experiments with the calibration script developed in [12].
I have slightly modified the script to make its use more comfortable and to produce
the output files in a format required by the other applications. I found it quite easy to
apply the camera calibration data however the more difficult it was to apply the range
finder calibration. I had to modify the source code of the OpenNI drivers in order to
make them configurable as I needed. Finally with all these adjustments I was able to
use computed calibration data within the ROS environment.

To find out whether the calibration was successful there is a verification algorithm
in the MATLAB calibration script. However it is good to make verification similar to
the real application of the sensor and so I did. I proved the accuracy of the sensor was
increased and I think better results can be achieved with more calibration data.

Further improvement of the accuracy is related to the future research which should
bring an ability of recognition other calibration patterns, not just chessboards. Also
the suitability of equation (1) could be discussed and with a large set of calibration
data it might be replaced by an associative array computed using only the calibration
data and not fitted to a function. There definitely are possibilities how to improve the
calibration procedure and resulting accuracy of the sensor and my thesis, which made
the sensor more configurable, enables the the future research in this topic.

21

References

[1] Ken Conley; Jostein Austvik. Understanding ROS nodes, February 2012. http://
wiki.ros.org/Master.

[2] Ken Conley. Nodes, February 2012. http://wiki.ros.org/Nodes.

[3] Piyush Khandelwal; Michael Ferguson; Austin Hendrix; Chad Rockey; Pattrick
Mihelich; Carlos Jaramillo; Yiping Liu; Ken Conley; Andrew Sommerville; Greg
Olmscheng; Stephane Magnenat; Tully Foote. openni camera, November 2013.
http://wiki.ros.org/openni camera.

[4] ASUSTeK Computer Incorporated. Support for Xtion PRO Live, December 2013.
http://support.asus.com/Download.aspx?SLanguage=en&m=Xtion+PRO+LIVE
&p=19&s=11.

[5] Open Natural Interaction. OpenNI, November 2013. https://github.com/
OpenNI.

[6] Michael J. Miller. Primesense: Motion control beyond the Kinect, May 2011.
http: / / forwardthinking . pcmag . com / gadgets / 282321-primesense-motion
control-beyond-the-kinect.

[7] Cory Cross; Chris Lalancette; Jack Thompson; Isaac Saito; William Woodal;
Dustin Webb; Chad Rockey; Thibault Kruse; Alex Bravo; Dereck Wonnacott;
Melonee Wise; Chris Alexander; Patrick Bouffard; Ken Conley; Tim Field; Steffi
Paepcke. Understanding Ros nodes, May 2014. http://wiki.ros.org/ROS/
Tutorials/UnderstandingNodes.

[8] Jan Smíšek; Michal Jančošek; Tomáš Pajdla. 3D with Kinect. Technical report,
Czech Technical University, 2011. ftp://cmp.felk.cvut.cz/pub/cvl/articles/
pajdla/Smisek-CDC4CV-2011.pdf.

[9] Andrew Price. Hubo head description, September 2013. https://github.com/
hubo/hubo_head_description/blob/master/launch/.

[10] PhD Qianqian Fang. JSONlab, February 2014. http://iso2mesh.sourceforge.
net/cgi-bin/index.cgi?jsonlab.

[11] Jay Rambhia. Disparity map, March 2013. http://www.jayrambhia.com/blog/
disparity-maps/.

[12] Jan Smíšek. 3D camera calibration. Master’s thesis, Czech Technical Univer-
sity, 2011. https://support.dce.felk.cvut.cz/mediawiki/images/1/18/
Dp 2011 smisek jan.pdf.

[13] Dean Takahashi. Beyond kinect, Primesense wants to drive 3D sensing into more
everyday consumer gear, 2013.

23

http://wiki.ros.org/Master
http://wiki.ros.org/Master
http://wiki.ros.org/Nodes
http://wiki.ros.org/openniunhbox voidb@x kern .06em vbox {hrule width.3em}camera
http://support.asus.com/Download.aspx?SLanguage=en&m=Xtion+PRO+LIVE&p=19&s=11
http://support.asus.com/Download.aspx?SLanguage=en&m=Xtion+PRO+LIVE&p=19&s=11
https://github.com/OpenNI
https://github.com/OpenNI
http://forwardthinking.pcmag.com/gadgets/282321-primesense-motion-control-beyond-the-kinect
http://forwardthinking.pcmag.com/gadgets/282321-primesense-motion-control-beyond-the-kinect
http://wiki.ros.org/ROS/Tutorials/UnderstandingNodes
http://wiki.ros.org/ROS/Tutorials/UnderstandingNodes
ftp://cmp.felk.cvut.cz/pub/cvl/articles/pajdla/Smisek-CDC4CV-2011.pdf
ftp://cmp.felk.cvut.cz/pub/cvl/articles/pajdla/Smisek-CDC4CV-2011.pdf
https://github.com/hubo/hubo_head_description/blob/master/launch/
https://github.com/hubo/hubo_head_description/blob/master/launch/
http://iso2mesh.sourceforge.net/cgi-bin/index.cgi?jsonlab
http://iso2mesh.sourceforge.net/cgi-bin/index.cgi?jsonlab
http://www.jayrambhia.com/blog/disparity-maps/
http://www.jayrambhia.com/blog/disparity-maps/
https://support.dce.felk.cvut.cz/mediawiki/images/1/18/Dpunhbox voidb@x kern .06em vbox {hrule width.3em}2011unhbox voidb@x kern .06em vbox {hrule width.3em}smisekunhbox voidb@x kern .06em vbox {hrule width.3em}jan.pdf
https://support.dce.felk.cvut.cz/mediawiki/images/1/18/Dpunhbox voidb@x kern .06em vbox {hrule width.3em}2011unhbox voidb@x kern .06em vbox {hrule width.3em}smisekunhbox voidb@x kern .06em vbox {hrule width.3em}jan.pdf

References .
http: / / venturebeat . com / 2013 / 01 / 20 / beyond-kinect-primesense-wants
to-drive-3d-sensing-into-more-everyday-consumer-gear/.

[14] Tomoto Washio. Search path for redist files, 2012. http://community.openni.
org/openni/topics/search_path_for_redist_files.

[15] William Wong. How Microsoft’s primesense-based Kinect really works, March
2011.
http: / / electronicdesign . com / embedded / how-microsoft-s-primesense
based-kinect-really-works.

24

http://venturebeat.com/2013/01/20/beyond-kinect-primesense-wants-to-drive-3d-sensing-into-more-everyday-consumer-gear/
http://venturebeat.com/2013/01/20/beyond-kinect-primesense-wants-to-drive-3d-sensing-into-more-everyday-consumer-gear/
http://community.openni.org/openni/topics/search_path_for_redist_files
http://community.openni.org/openni/topics/search_path_for_redist_files
http://electronicdesign.com/embedded/how-microsoft-s-primesense-based-kinect-really-works
http://electronicdesign.com/embedded/how-microsoft-s-primesense-based-kinect-really-works

Appendix A
Abbreviations

ROS Robot Operating System
CloPeMa Clothes Manipulation and Perception
OpenNI Open Natural Interaction

RGB Red Green Blue (color image)
IR Infra Red

RGB-D Red Green Blue - Depth — 3D color model of a scene
S2D Shift to Depth
SoC System on a Chip
PS PrimeSense

API Application Programming Interface

25

Appendix B
Examples of Files Used in the Calibration

B.1 Depth YAML File

%YAML:1.0
depth_data: !!opencv-matrix

rows: 480
cols: 640
dt: w
data: [644, 644, 644, ... 2047, 2047, 2047]

B.2 Camera intrinsic parameters configuration file
The file structure was found in [9].

image_width: 640
image_height: 480
camera_name: rgb_PS1080_PrimeSense
camera_matrix:

rows: 3
cols: 3
data: [551.01445, 0, 315.09043, 0, 551.01445, 241.21808, 0, 0, 1]

distortion_model: plumb_bob
distortion_coefficients:

rows: 1
cols: 5
data: [0.06283, -0.16341, 0.00177, 0.00092, 0.00000]

rectification_matrix:
rows: 3
cols: 3
data: [1, 0, 0, 0, 1, 0, 0, 0, 1]

projection_matrix:
rows: 3
cols: 4
data: [551.01445,0,315.09043,0, 0,551.01445,241.21808,0, 0,0,1,0]

B.3 Custom S2D Table

1;324
2;325
3;325
4;325

27

B Examples of Files Used in the Calibration .
5;326
6;326
7;326
.
.
.
1050;7872
1051;8051
1052;8238

28

Appendix C
Content of the Enclosed CD

• /BP-2014-Vitek_Jan.pdf — digital version of this text
• /text_src/ — TEX sources
• /OpenNI/ — modified source codes of the OpenNI drivers
• /OpenNI/dist/ — Ubuntu packages of the modified OpenNI
• /DataCollector/ — source codes of the program for calibration data collection
• /SmisekCalib/ — modified version of files from [12]
• /ROS/ — source files for ROS
• /data/ — example of the calibration data set and results

29

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents/
	Tables/Figures
	Introduction
	Devices
	Device Drivers
	Robot Operating System (ROS)

	Calibration Description
	Camera calibration
	Range finder calibration
	Verification
	Output

	OpenNI
	Disparity vs. Depth
	Shift to Depth table (S2D table)
	Original Configuration Options
	OpenNI configuration
	ROS OpenNI Wrapper configuration

	Changes made to the driver

	Calibration Data Capturing
	Capturing Program
	IR Image
	RGB Image
	Disparity Map

	Running the Calibration Procedure
	Step by Step Description
	Common Problems
	Different count of chessboard corners in RGB and IR images
	Abnormally high error in verification

	Accuracy of the Calibrated Sensor
	Practical Verification Method
	Verification Data Collection
	Verification Data Processing
	Example of the Calibration Results

	Conclusion
	References
	Abbreviations
	Examples of Files Used in the Calibration
	Depth YAML File
	Camera intrinsic parameters configuration file
	Custom S2D Table

	Content of the Enclosed CD

