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Abstrakt / Abstract
Cílem této práce je navržení metody

pro získání obrazových příznaků z pohy-
bující se látky. Tyto příznaky by měly
být dále využity pro získání parametrů
dynamického modelu látky.

Pro účely získání parametrů dyna-
mického modelu sledujeme dynamické
chování reálné látky. Toto dynamické
chování je vyvoláno krátkým a jedno-
duchým pohybem robotického manipu-
látoru, který drží tuto látku v chapadle.

Zaměřili jsem se převážně na získání
těchto parametrů z časové posloupnosti
dat z hloubkového senzoru a standardní
barevné kamery, jimiž je pohyb látky
snímán.

Vytvořené řešení by mohlo v kombi-
naci s modelem látky poskytnout lepší
možnosti simulace pohybu, plánování
pohybu a detekci kolizí při robotické
manipulaci s látkami.

V rámci této práce byla pořízena ob-
razová data sestávající se z čtyřiceti šesti
měření pro osm různých látek. Metoda
výpočtů byla ověřována na těchto da-
tech.

Provedené experimenty ověřily, že na-
vržená metoda má dostatečnou opako-
vatelnost.

Klíčová slova: dynamický model; mo-
del oděvu, textilie; extrakce příznaků;
3D obraz; silueta.

Překlad titulu: Získání příznaků z ob-
razu pohybující se látky

The point of this work is to design
a method to obtain image features
of the moving garment. This features
should be further used to estimate
the parameters of the dynamic model
of the garment.

For the purpose of obtaining the pa-
rameters of the dynamic model, we ob-
served the dynamic behavior of the real
garment. This dynamic behavior is
caused by a short and simple motion
of a robotic manipulator which holds
the garment in the gripper.

We concentrated mainly on the ob-
taining these parameters from time se-
ries of data from the rangefinder sensor
and from a standard color camera, by
which is the motion of the garment cap-
tured.

Designed solution could, combined
with a model of the garment, provide
better possibilities for motion simu-
lation, motion planning and collision
detection in robotic manipulation with
the garments.

As part of this work, I captured im-
age data consisting of forty-six measure-
ments for eight different types of the gar-
ment. The method of computation was
verified on that data set.

The experiments verified that the pro-
posed method has satisfactory repeata-
bility.

Keywords: dynamic model; garment
model; feature extraction; 3D image; sil-
houette.
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Chapter 1
Introduction

1.1 Motivations
This bachelor thesis is a part of Clothes Perception and Manipulation project (CloPeMa,
2012-2015) funded by the European Commision. CloPeMa is research project which
aims to advance the state of the art in the autonomous perception and manipulation
of fabrics, textiles and garments. The CLoPeMa robot will learn to manipulate, perceive
and fold a variety of textiles [1].

The CloPeMa project is based on the manipulation of clothes (garments). Simplified
dynamic physical model of real garment is useful for the manipulations e.g. for simu-
lating motion, motion planning or collision detection. There are lots of models that
could be used to create a virtual model of the garment1). The creating virtual model
depend on the garments parameters. We need to obtain model of a real garment, so we
need to create it based on the real parameters. To find parameters of a real garment,
some methods are used, which are mainly based on a mechanical stress studied textile
or clothing.

1.2 The State of the Art
The main sphere of using dynamic simulation of garment is computer graphic. These
simulations are mainly for a realistic look, but not for real dynamic physical behavior
of the garment [2] (including modern metod of simulating like [3–4]). A lot of methods
have been developed in the field of simulation models of garments (especially fab-
rics) [5–11]. Some of these tools or methods of simulation use for construct model
a parameters of real garments (fabrics) [9, 11].

In the science and industry exist several measuring techniques which is used to find
elementary parameters of fabrics e.g. KESF, FAST or FAMOUS. Kawabata’s Evalua-
tion System of Fabric (KESF) is used to get the mechanical properties of the clothes.
KESF contains a several equipments for measure these properties. KESF was developed
for mass-spring method (from [12]). The method need a piece of fabric (size depends
on the current implementation) for the measurement. On this sample is applied a force
in the different directions. The KESF produces graphs of change dimensions depend-
ing on the applied force. The KESF instruments test with high accuracy following
parameters: compression, pure bending rigidity, roughness, shear, surface friction and
tensile [12–14].

Very similiar to the Kawabata’s System (KESF) is the most popular commercial
systeme - Fabric Assurance by Simple Testing (FAST). Both systems were designed
to measure fabric mechanical properties at low-stress level, but both systems use dif-
ferent testing principles. KESF system measure deformation depending on the in-
creasing and decreasing applied force while FAST system determines deformation level
1) Create a dynamic physical model of the garment is not the point of this work.
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1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
at a single point on the deformation curve, therefore FAST system cannot measure
hysteresis [14]. Another differences are that the KESF use different equipment for
each property. The FAST measure more properties on one equipment, so the number
of equipments are reduced [13].

The other method Fabric Automatic Measurement and Optimisation Universal
System (FAMOUS) is faster method of measurement based on mechanical stressing
of the garment than KESF or FAST. A complete suite of measurement take less than
five minutes [13].

All these measuring techniques were designed for using in textile and clothes industry,
but also are used for computer graphics simulation of garments. These techniques
measure e.g. flexural rigidity, shear, surface, compression or tensile properties, but
need tens of measurements equipments and process to acquire parameters. Process
takes from a few minutes (FAMOUS) up to units of hours (KESF) [12, 15–16, 13].
While existing methods give excellent results and detailed description of the garment
fabric, but do not tell us anything about the whole garment. Moreover, these methods
are slow and expensive.

There are also methods of estimating cloth simulation parameters based on extraction
features from video (e.g. [17]). This method is based on the fabric projected a struc-
tured light pattern of horizontal stripes. A perceptually motivated metric based on
matching between folds is used to compare video of real cloth with simulation. This
metric compares two video sequences of cloth and returns a number that measures the
differences in their folds [17].

The work [17] follows an experimental work using a MOCAP system with twelve
cameras [18]. The method uses the mass-spring system is described in the [8]. The
Kawabata Evaluation System (KESF) is used to obtain mass and springs parameters
and the damping parameters are computed from free fall motion of the garment. This
method is the most precise method of the aforementioned. However, this method uses
KESF and MOCAP, thus is expensive and slow. Moreover, this method is primary used
for animation realism [18].

1.3 Goals
Our goal is to get the parameters of the model behavior of the garment. Detailed
examination of the garment is technically and time-consuming, which is unsuitable
for estimating the model of the garment in handling, in our case.

Therefore, we propose which parameters we will need for build a simple dynamic
physical model and we propose easiest way to obtain these parameters. To do that, we
need the real garment track and simply describe it so that it can be compared with the
model of the garment. At the same time we want from this comparison to determine the
parameters of the garment. The point of this thesis is to tracking the behavior of real
garment. The behavior (i.e. the motion) of the garment will be in the limited case under
controlled conditions using for a description of features. This motion causes the robot
and we will capture the motion according to available equipment of robot (chap. 2.1),
thus we use the RGB camera and rangefinder.

2



Chapter 2
Description of Manipulator

2.1 Workplace

2.1.1 Manipulator

The testbed is composed of two robotic manipulator arm Motoman MA1400 (showed
in the figure 2.1). First arm is called as r1 (or also appears as R1). Second arm is
similarly marked r2 (R2). The arms r1 and r2 are placed on the turntable. The
turntable is marked as external axis (or Ext. or possibly as axis 13). Location
of arms and Ext. axis of turntable can be better seen from (figure 2.2).

Figure 2.1. Manipulator of CloPeMa project location at CTU

Each arm of manipulator has 6 rotation axes. The axes are labeled according to the
manufacturer with the letters S, L, U, R, T and B (figure 2.3). This is the description
of single arm of robot. Numeral is added to identify the arms e.g. S axis located
on the arm r1 will be called S1, etc. Similarly to the designation of arms we can meet
even using small letters (eg.: s1).

3



2. Description of Manipulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 2.2. Identification of arms and location of external axis (from [19]).

Figure 2.3. Description of a robotic arm Motoman MA1400 - axis (from [20]).

4



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Workplace

2.1.2 End Effector
Each of arms r1 and r2 are ended with eletricly controlled grippers (figure 2.4). Grip-
pers are designed for grasping garment. The prototype of gripper was developed espe-
cialy for CloPeMa project by the colleagues from University of Genoa. The gripper is
composed of two flexible fingers. Flexible fingers are used for lifting garments from the
table. Gripper has a tactile sensor at the ”finger tips” to sense the garment material
using little rubbing motions between the ”gripper finger” [1].

Figure 2.4. End effector (gripper). a) gripper, b) sensor Asus Xtion, c) end of arm on which
the gripper is mounted.

2.1.3 Sensors
The robot has been equipped with a variety of sensors:

Robot Binocular-Vision Head
. The robot head comprises two Nikon D5100 DSLR cameras. The cameras are

mounted on pan and tilt units. The head provides the robot system with high
resolution 3D points clouds [1].

Photometric Stereo Gripper-Mounted Sensor
. The photometric stereo sensor is a small scale close range camera sensor. The

sensors captures at 1280×800 px resolution and has software support to do 3D
reconstruction of close-range garment surface [1].

Wrist Force-Torque Sensor
. ATI Mini45 FT six-axis force/torque sensor is integrated in the wrist of one gripper.

It is used to sense for contact of the gripper with table and for feedback for the
robot system when stretching out a held-up piece of clothing [1].

Xtions
. Asus Xtion Pro Live sensor is able to record RGB images and depth maps. The

resolution of RGB images is up to 1280×1024 px and resolution of the depth images
is up to 640×480 px with 30 fps [21]. The robot has three these sensors — one
on the each arm [1] and one on the turn table. Sensor location on the manipulator
arm shown in figure 2.4.

Xtion sensor is for our purposes the most suitable. Xtion has sufficient rosolution
of RGB image and depth map. In addition, Xtion has a sufficient number of frames

5



2. Description of Manipulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
per second (compared to slower stereo-pair). Xtion mounted on the arm r1 is called
xtion1 and Xtion mounted on the arm r2 is called xtion2. Position of cameras is shown
in figure 2.4.

2.2 Software
Robot is operated using Robot Operating System (ROS). ROS is an open-source sys-
tem. ROS is not an operating system in the traditional sense of process management
and scheduling. Rather, it provides a structured communications layer above the host
operating systems of a heterogenous compute cluster [22]. In CloPeMa project is used
Ubuntu (Debian-based Linux OS) as a host operating system.

2.2.1 Robot Operating System
A system built using ROS consists of a number of processes, potentially on a number
of different hosts, connected at runtime in a P2P topology. The fundamental concepts
of the ROS implementation are nodes, messages, topics, and services.

Nodes are processes that perform computation. ROS is designed to be modular.
A system is typically comprised of many nodes. In this context, the term ”node” is
interchangable with ”software module”. Nodes communicate with each other by passing
messages. A message is a a strictly typed data structure. Standard primitive types
(integer, floating point, boolean, etc.) are supported. Arrays of primitive types and
constants are supported too. Messages can be composed of other messages, and arrays
of other messages, nested arbitrarily deep. A node sends a message by publishing
it to a given topic. A node that is interested in a certain kind of data will subscribe
to the appropriate topic. There may be multiple concurrent publishers and subscribers
for a single topic, and a single node may publish and/or subscribe to multiple topics.
In general, publishers and subscribers are not aware of each others existence [22].

Although the topic-based publish-subscribe model is a flexible communications
paradigm, its ”broadcast” routing scheme is not appropriate for synchronous transac-
tions, which can simplify the design of some nodes. In ROS, we call this a service,
defined by a string name and a pair of strictly typed messages: one for the request and
one for the response [22].

In the ROS are designed a large number of tools e.g. for get and set configuration
parameters, for plotting or visualisation. For this project is important a rosbag tool.
This is basically a set of tools for recording from and playing back to ROS topics [23].
Using this tool we can record all or just some chosen topics. The chosen topics are
passed as parameters to the rosbag tool. The rosbag tool records all published mes-
sages from chosen topics, including timestamp. The tool stores timestamped messages
to a specially formatted *.bag file (also bagfile or rosbag-file). The rosbag tool
can later replay these messages from rosbag file.
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Chapter 3
Capturing data

3.1 Goals of measurement
The requirement on the measurement is to obtain mathematical features by which
could be used to estimate the parameters of the dynamic physical model of garment.
These features we determine by tracking hanging garment. Motion of hanging garment
will be caused the motion of the manipulator gripper that holds garment. We have
chosen the simplest motion, which could give us the necessary data. Data that could
be used to obtain the features of the dynamic model of garment. We use the motion
of garment in a plane, ideally excited by moving gripper of a garment in a straight
line (line segment) in the plane. Based on the sensors that we have available, we have
choose types of motion capturing. We decided capture the motion of garment in two
ways. We use both possibilities of Xtion sensor:
a) Standart RGB video camera captures a silhouette of the garment against the constant

background when garment is moving perpendicular to the optical axis.
b) Standart rangefinder captures the garment when garment is moving along the optical

axis.

3.2 Realisation
Both arms of manipulator are used for the experiment. One arm causes a motion
of garment that is held by the gripper of this arm. Xtion sensor, located on the second
arm, is used for capturing the motion.

Motion of the gripper along a straight line or line segment (chap. 3.1) requires syn-
chronous motion of the all manipulator axes. This motion is ensured that so the end
of gripper moves on the selected points on the line segment. If robot is controlled
by ROS, we found that the dynamics of the manipulator is not fast enough to perform
the desired motion of the gripper with garment necessary speed.

However, it is possible to achieve the required speed when the motion is based
on a motion of a one axis. The synchronous motion of all axes was replaced by a motion
a one axis, which may not be synchronous with the other. Thus the motion of gripper
along line segment is approximated by moving the gripper on the part of the circle.

Another limitation is a workspace, such that it is not possible to place the camera
xtion in the appropriate position to capture RGB images (ie, the position where the
gripper with garment moves perpendicular to the optical axis) and then the camera
xtion move to position suitable for capturing depth maps (ie, the position where the
gripper with garment moves along the optical axis). These restrictions are solved via
camera xtion position (ie the position of the arm with the camera) which is fixed in the
same position for record RGB videos as well as for sensing depth maps. Instead, the
arm with garment makes a move of gripper with two different ways so that the motions
fulfilled the conditions for sensing with each sensors (perpendicular position vs. along
the optical axis whith is shown it the figure 3.1).

7



3. Capturing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 3.1. Position of arm with camera. a) optical axis of camera xtion1, b) camera
xtion1, c) arm r1, d) arm r2, e) gripper of arm r2, f) ext. axis.

3.3 Capturing of RGB

3.3.1 External Axis

Figure 3.2. Suggestion of motions of gripper with garment perpendicular to optical axis.
a) mooted of field of vision of camera xtion1, b) garment, c) arm r1, d) arm r2.

Ext. axis (axis 13) is rotated so that in the background of captured garment is as least
as possible disturbing objects. The best is single color flat surface. The ext. axis is
stationary during the measurement.

3.3.2 Arm with Xtion Sensor

8



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Capturing Background Image

The record is captured with camera xtion1 mounted on the arm r1. The arm r1 moves
into position where the optical axis of the camera heads horizontally. Simultaneously
is the optical axis of the camera oriented towards arm r2 (figure 3.1 ). The arm r1 is
stationary during the measurement.

3.3.3 Arm with Garment

Garment is held by gripper mounted on arm r2. The arm r2 is in a height at which
camera xtion1 can capture motion of garment. The arm r2 is in a position which
it can perform motion required for the experiment (chap. 3.1). The arm r2 makes
motion so as garment moved perpendicularly to the optical axis. The arm r2 makes
a desired motion with the garment so that it rotates about an axis B certain angle and
will return back to initial position. For better describe of the motion is motion mooted
in the figure 3.2.

3.4 Capturing Background Image
This position is used for capture a reference image of background, for improve results
of the experiment. We need background subtraction for processing RGB images. Back-
ground subtraction needs RGB image without garment on foreground. The captured
image is used for filtering background (background substraction) from RGB image.
More to background substraction is deal in the chapter 5.2.1. The turntable (Ext. axis)
is rotated as in the case of capturing of RGB (chap. 3.3.1). The arm r1 is into same
position as in case of capturing of RGB (chap. 3.3.2). The reference image of back-
ground is captured that the arm r2 (in which gripper is not held garment in this case)
change position so that the arm r2 is completely out of captured area of xtion1. In this
position is performed the capture of background and the arm r2 with the garment was
returned to the position of measurement.

3.5 Capturing of Depth maps

3.5.1 Manipulator and sensor position

The turntable (Ext. axis) is rotated as in the case of capturing of RGB (chap. 3.3.1).
The arm r1 is into same position as in case of capturing of RGB (chap. 3.3.2).

3.5.2 Arm with Garment

Garment is held by the gripper mounted on arm r2. The arm r2 is in a height at which
camera xtion1 can capture motion of garment. The arm r2 is in a position which it
can perform motion required for the experiment (chap. 3.1). The arm r2 makes motion
so as garment moved along to the optical axis. The arm r2 makes a desired motion
with the garment so that it rotates about an axis R certain angle and will return back
to initial position. For better description of the motion is motion mooted in the figure
3.3.

9



3. Capturing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 3.3. Suggestion of motions of gripper with garment along to optical axis. a) mooted
field of vision (xtion1 sensor), b) garment, c) arm r1, d) arm r2.

10



Chapter 4
Data Structure

We decided to use offline processing for development of method and experiments. There-
fore, it is important to store the measured data to data structure and then calculate
the parameters that are important for the experiments (chap. 5).

4.1 Recording Data

Required data are stored using rosbag tool (chap. 2.2.1). Rosbag tool stores the data
in the format .bag to the folder, which is set in the local_options.py file 1).

The CloPeMa robot can produce over two hundred topics (chap. 2.2.1) when running.
Due to the saving disk space and capacity of the transmission channel are recorded only
topics which are important to the evaluation of the experiments. Selected topics are
set in topics.txt 2) and contains these choosen topics:

/joint_states
/tf
/xtion1/depth/camera_info
/xtion1/depth_registered/camera_info
/xtion1/rgb/camera_info
/xtion1/depth/image_raw
/xtion1/rgb/image_raw
/feedback_states
/r2_ee_to_depth
/r2_ee_to_rgb

4.2 Measured Data Set of the Garments

4.2.1 Structure of Data Set

Within experiments was prepared a data set. The data set is used to validate the
methods for estimation of the model parameters. The set contains garments with
different shapes, colors, sizes and weights. The measured garments are described in the
chapter 4.2.2 and are shown in the figure 4.1. The data set is stored on the CloPeMa
project server.

1) path_to_workspace/clopema_cvut/clopema_collect_model_data/src/local_options.py
2) path_to_workspace/clopema_cvut/clopema_collect_model_data/matlab/topics/topics.txt
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a) blue t-shirt b) gray t-shirt

c) red skirt d) green towel

e) black shorts f) black&white shirt

g) red pullover h) white pullover

Figure 4.1. The garments used in the experiments.
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4.2.2 Description of the Garments
In the table 4.1 are described some parameters of the garment. The parameters were
determined using external measuring instruments (scale, measuring tape). These pa-
rameters are used only as additional parameters for construct model of the garment
and its verification. The additional parameters could be obtained by sensors of robot
as well. Apart from the cases when is in the gripper held garment in the random
point (in the figure C.1-a), are also captured special cases of holding garment in the
gripper. One of this cases is holding the corner of the garment (in the figure C.1-
b), collar (in the figure C.1-c) or belt (in the figure C.1-d) of the garment . Second
special position is the position ”on the ruler” where the garment is straightened and
outstretched (in the figure C.1-e and f). These special cases are only for simplify the
simulating and virtual modeling of the garment at the beginning. The special cases are
shown in the figure C.1.

type of the garment color size [cm] weight [g] picture
t-shirt blue 47×58 72 a
t-shirt gray 60×54 105 b
skirt red 44×62 108 c
towel green 60×36 45 d
shorts black 50×60 173 e
shirt black&white 69×120 137 f
pullover red 65×120 446 g
pullover white 54×76 184 h

Table 4.1. Description of the Garments. Last column refers to the figure 4.1.

4.2.3 Format of Names of Recorded Files
Each measurement of the garment produce two rosbag files. One with captured RGB
images when garment is moving perpendicular to the optical axis, and one for captured
depth maps when garment is moving along the optical axis. Recorded files are stored
under different names accord to the form shows in the table 4.2.

name speed AX.bag
name choosen file name by user
speed choosen speed of manipulator

A axis, which was executed motion R or B (figure 2.3)
X number of the topics file

Table 4.2. Explanation of format file name.

A robot operator selects a name of the file and speed of the moving garment. The
name of the file stored in the prepared data set is chosen from type of the garment,
color and name of the type of holding the garment. If the garment was measured and
stored multiple times, the numeral was added. The list of the measured garments is
described in the tables B.2 and B.3.
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Chapter 5
Data Processing

5.1 Load Data to the MATLAB

The data are processed offline in MATLAB. The offline procesing is only for research
purposes. We suppose that the methods will be implemented directly into the ROS
and processed online in the future.

Data format bagfile are read using the matlab_rosbag tool (from [24]). The
matlab_rosbag is a library for reading ROS bags in Matlab and it is licensed un-
der the BSD license, making it suitable for use in CloPeMa project. The tool (library)
can also read only selected topic, which is used in this case. The chosen topics are read
from the same file 1) which is used for definition of recording data (chap. 4.1). After
loading the data into MATLAB, data are grouped into cells by topic. Next steps in the
case of RGB images and depth maps are different.

5.2 Extraction of Features from RGB images

The sequence of RGB images is captured with the xtion camera (chap. 2.1.3). Images
have resolution 640×480 px (width×height). RGB images are stored in the bagfiles
as single row vector. After loading data into MATLAB (chap. 5.1) data are converted
from row representation to three-dimensional RGB intensity representation Iu,v of im-
ages with dimensions 640×480 px (m × n), where Iu,v = [ r(u, v), g(u, v), b(u, v) ],
u ∈ {1, 2, . . . ,m}, v ∈ {1, 2, . . . , n}. r(u, v), g(u, v) and b(u, v) are function of bright-
ness of pixel on the coordinates u, v and each of r(u, v), g(u, v) and b(u, v) represents
relevant intensity of single color from the RGB color-space. Unless specified otherwise,
the computations are always carried for each r(u, v), g(u, v) and b(u, v) separately. Raw
RGB data are shown in the figure 5.1.

1) path_to_workspace/clopema_cvut/clopema_collect_model_data/matlab/topics/topics.txt
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RGB image of the garment at time t = 4.624 s
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RGB image of the garment at time t = 5.060 s
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RGB image of the garment at time t = 5.597 s
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RGB image of the garment at time t = 6.435 s
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Figure 5.1. RAW RGB images.

5.2.1 Background Subtraction

In the chapter 3.4 is described a way of capturing background image. Essentially,
was not captured a single image, but was captured a sequence of N images Fi =
{F1,F2, . . . ,FN} in the time i ∈ {1, 2, . . . , N}, where Fi

u,v = [r(u, v), g(u, v), b(u, v) ].
The sequence of background images Fi

u,v is averaged to Fu,v = [r(u, v), g(u, v), b(u, v)]
according to (5.1). Together with mean value Fu,v of RGB background images, is com-
puted corrected sample standard deviation σu,v = [ σR(u, v), σG(u, v), σB(u, v) ] (5.2),
whith is used as a intensity threshold.

∀u, v : Fu,v =
N∑

i=1

Fi
u,v

N
(5.1)

∀u, v : σu,v =

√√√√ 1
N − 1

N∑
i=1

(
Fi

u,v − Fu,v

)2 (5.2)
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From the RGB image I is computed a binary silhouette image s(u, v) according

to (5.3),where α > 1 is a threshold coeficient.

∀u, v : s(u, v) =

 1, if


∣∣r(u, v)− FR(u, v)

∣∣ > ασR(u, v);
or

∣∣g(u, v)− FG(u, v)
∣∣ > ασG(u, v);

or
∣∣b(u, v)− FB(u, v)

∣∣ > ασB(u, v);
0, otherwise.

(5.3)

Silhouette images are shown in the figure 5.2.

Subtract background of RGB image at time t = 3.385 s
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Subtract background of RGB image at time t = 3.820 s
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Subtract background of RGB image at time t = 4.357 s
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Subtract background of RGB image at time t = 5.195 s
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Figure 5.2. Binary silhouette images - background subtraction.

The figure 5.2 shows that background subtraction is not perfect. This imperfection
has two main reasons. First reason is that the the gripper of arm r1 and the surrounding
of monochrome background are partly seen in the image. This would not be a problem
for our method, if these objects have not a shiny finish, which reflects the garment when
the garment is moving. By experimental results, we found that the garment moves only
against a monochrome background and not enter the background surroundings during
the entire motion. This imperfection is removed with help of a clipping mask, which
cover gripper and monochrome background surrounding.

Second reason is a noise on the RGB image and tiny changes of brightness of pic-
tures, which is caused by the garment motion. This imperfection is removed with help
of morphological operation opening. Because this imperfection may occur in reverse
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too, i.e. so that the point of the garment is detected as a background thus closing op-
eration followed opening operation (mean of these morpholigical operation is explained
in [25] p.667-669). We use for this operations the MATLAB functions imopen() and
imclose().

Silhouette after morph. operations at time t = 3.385 s
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Silhouette after morph. operations at time t = 3.820 s
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Silhouette after morph. operations at time t = 4.357 s
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Silhouette after morph. operations at time t = 5.195 s
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Figure 5.3. Background subtraction of RGB images after morphological operation.

5.2.2 Finding Major Axis of the Garment and Remove Gripper
After applying the previous steps we can assume that the garment is represented
by the largest connected region in the image. Therefore, we focuse on the largest
region. We use MATLAB functions bwconncomp(), which finds all objects in an image.
For these object is individually calculated their size. Subsequently, according to these
sizes determine the largest object and take out the rest. The detailed explanation
of these region identification is described in the [25] (p.332).

In the next step we found major and minor axis of the garment. Befere we can
find these parameters we have to remove from the image a showed end of the gripper.
We have captured images without measured garment in the gripper, thus we can find
an area in which the gripper is. Then this part of the image is removed from the image
of the measured garment. A better way would be to compare the captured image data
with a simulated robot model in an environment of ROS.

After the garment was removed from the gripper, the major and minor axis could
be found by using the spatial moments (described in [26] p.74,658). This method
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5. Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
describes finding major and minor axis for an ellipse (reasons are described below
in the chap. 5.2.3). The axes are found using MATLAB functions regionprops() which
gave us center of the object, lenght of major and minor axis and clockwise orientation
of the major axis. Found major and minor axes of the silhouette of the garment and
subtraced images without the gripper are shown in the figure 5.2.

Major and minor axis of the garment at time t = 3.385 s
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Major and minor axis of the garment at time t = 3.820 s
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Major and minor axis of the garment at time t = 4.357 s
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Major and minor axis of the garment at time t = 5.195 s
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Figure 5.4. Major and minor axes of the silhouette of the garment and subtraced images
without the gripper.

5.2.3 Finding Central Curve of the Garment
To obtain the garment position, we decided to track a central curve of the silhouette.
During this project we have tried various methods of finding the curve, for example, the
average pixel with respect to the rows of image region, or find a skeleton of the silhouette
image ([25], p.365). Searching a skeleton of the silhouette image seemed as the most
promising at the beginning, but then there was a problem in the form of determining
the curve at the ends of the garment.

Finally, we chose finding of the central curve so the search for the centers of the cor-
responding cuts, which are perpendicular to the major axis of the silhouette.

The first step to obtain the central curve of the silhouette is finding the outline
of the silhouette. I used the another property of the MATLAB function regionprops(),
which contains an edge pixels of the garment. Edge of the silhouette is shown in the
figure 5.5. For the next processing is important to convert pixels coordinating the edge
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of the garment to the border curve. For this conversion we use inner boundary tracing
algorithm (which is described in the [25] p.191). In our case, the MATLAB function
bwboundaries() is used as the implementation of this algoritm.

Edge of the silhouette at time t = 3.385 s
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Edge of the silhouette at time t = 3.820 s
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Edge of the silhouette at time t = 4.357 s
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Edge of the silhouette at time t = 5.195 s
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Figure 5.5. Edge of the silhouette of the garment.

The final step is to find the central curve. The point of the central curve is founded
with help of the corresponding cut line as it is described earlier in this chapter. The
center of the silhouette is represented like midpoint of the points, which are computed
as an intersections of the border curve and corresponding cut line. For computing this
curve intersections are used as the fast and robust curve intersections algorithm [27].
Found center curve of the silhouette is shown in the figure 5.6.

5.2.4 Finding Mathematical Features from RGB images
To estimate the parameters of the garment, we wanted to use the points of the central
curve of the silhouette over time. Unfortunately, the position of the points forming
the central curve is not influenced only by observed motion of the garment, initialized
by the robot. The silhouette and the central curve is influenced by the complex motion
of the garment. It is unsuitable for basic experiments. We decided not to use RGB
images to estimate the parameters of dynamic physical model of the garment.
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Center of the silhouette at time t = 3.385 s
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Center of the silhouette at time t = 3.820 s
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Center of the silhouette at time t = 4.357 s
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Center of the silhouette at time t = 5.195 s
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Figure 5.6. Found center curve of the silhouette.
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5.3 Extraction of Features from Depth Map
The sequence of depth maps is captured with the Xtion camera (chap. 2.1.3). Depth
maps are in a sufficient resolution 640×480 px (width×height). Depth maps are stored
in the bagfiles as single row vector. After loading the data into MATLAB (chap. 5.1)
data are converted from row representation in milimeters to depth map C(u, v) = z,
where z is a distance from the Xtion camera in meters, u and v are the depth map
image coordinates (u ∈ {1, 2, . . . , n}; v ∈ {1, 2, . . . ,m}). The depth maps are shown
figure 5.7.

Figure 5.7. Depth Map obtained by Xtion rangefinder.

5.3.1 Convert Depth Map to 3D points
Together with data depth map is also stored calibration parameters of the Xtion
rangefinder. From these calibration parameters comes calibration matrix K (eq. (5.4)),
where fx and fy are partial focal lengths and (cx, cy) is a principal point.

K =

 fx 0 cx

0 fy cy

0 0 1

 (5.4)

Using the calibration matrix K can be depth map C(u, v) converted into 3D point cloud
(set of points) M (eq. (5.5)), where Mi = [xi, yi, zi] is point represent by its euclidean
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coordinates. We use usually coordiate system of the Xtion sensor.

M = {M1,M2, . . . ,Mm×n} (5.5)

The point cloud M is constructed according to equation (5.6). Algorithm used for these
conversion was inspired by [28]. We obtain each point Mi ∈M from depth map C(u, v)
by:

zi = C(u, v)

xi = z · (u− cx)
fx

(5.6)

yi = z · (v − cy)
fy

where u ∈ {1, 2, . . . , n}, v ∈ {1, 2, . . . ,m} and i ∈ {1, 2, . . . , n ×m}. Example of data
from 3D points are shown in the figure 5.8.

Figure 5.8. Point cloud of the garment in different times.

5.3.2 End of the Gripper
In the figure 5.11 are not shown only points on the garment. The figure shows points
of the gripper of arm r2 2.1.3 too. As has been mentioned in the chapter 3.5 the
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motion of the garment is caused by this gripper. Localization of the coordinates
ee = [eex, eey, eez] of the end point of the gripper is important not only for resoluting
the gripper from the garment, but also for detecting excitation motion of garment.

The coordinates are found by information about robot position. The simple service
in ROS was written for this operation (chap. 2.2.1). This service subscribes to the topic
of /xtion1/depth/image_raw. This topic generates a message each time an depth map
image is captured. For every incoming message is computed a coordinates of ee — end
of the gripper with garment. To obtain these coordinates is used lookupTransform()
function from the ROS environment. The function uses the tf package of ROS which
contains the relationships between parts of manipulator in a tree structure and allows
to obtain a transformation between any two portions of the manipulator [29]. This co-
ordinates are not in the global coordinate system, but in the coordiate system of xtion1
camera. Then, the service publishes data as a new message in its own topic. So the
position of the end point of the gripper is captured for every depth map image. Located
gripper is shown in the figure 5.9.
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Figure 5.9. Filtred points of measured object with the gripper (gripper position shows a
red circle).

5.3.3 Filtering by Depth of Area
The figure 5.8 shows that the Xtion camera captured not only the points on the garment
but also captured the unnecessary surroundings. We decided filtering the 3D points
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according to distance from Xtion camera. We know that the gripper of the arm r2
with garment is located 1.06–1.07 m before the Xtion camera on the arm r1 at its
default measurement position. After several experiments, we found that the minimum
and maximum of z-axis values on the garment have values between 0.8 m to 1.16 m,
thus we know that the garment moves between these values.

If the deviation is known, point cloud M (from (5.6)) can be filtered to point cloud
M∗ (eq. (5.7)), to extract the garment shape (according to eq. (5.8)).

M∗ = [x∗, y∗, z∗] (5.7)

The filted data are shown in the figure 5.10. You can see the differences between
figures 5.7 and 5.10. Moreover, this method of ”background substraction” is much
robust than method of background substraction of RGB images 5.2.1.

M∗ ⊆M
M∗ = {Mi = [xi, yi, zi]; eez −∆z ≤ zi ≤ eez + ∆z} (5.8)

when ∆z is range of motion of the garment according to the gripper coordinates. We
chose a value of ∆z three times to value determine on the base of experimental results.
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Figure 5.10. Filtred point cloud of a garment.
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5.3.4 Finding Points
First of all is reduced the 3D points matrix. Points over the gripper endpoint ee (from
chap. 5.3.2) are not needed anymore. The points are filtred by the y-axis from point
cloud M∗ to the point cloud G.

We suppose a simple model usefull for parametric estimation. The model can
be imagined as a chain of connected segments pendulous vertically down. We need
to obtain the position of points on the garment vertically down from the gripper.
Vertical direction will be denoted as the direction parallel to the y-axis.

Because the motion is limited (described in the chap. 3.2), we can assume that the
point cloud G represents a some function z = f(y), where y is the vertical coordiate
of the point on the garment and for all z will be the xi constant and answer to the end
of the gripper position. This function can be obtained from the point cloud by sampling.
Sampling is chosen in the vertical direction down from gripper position. Sampling in-
tervals are chosen based on a raster which provides a sensor. The raster distances are
approximately (on our dataset) ∆yus = 2.5 mm. So we chose the sample region size
∆y = 5 mm, to which we almost always received at least one point in each sample.
We selected coordinates yi with equidistant step ∆yus. We also set the sample size ∆x,
between the points and vertical line, which is parallel to the y-axis and intersects end
of the gripper. We found sets Li, where i ∈ {1, 2, . . . , k} and k is number of sampling in-
tervals vertically down from the gripper to end of the garment. Let Li = {pi

1,pi
2, . . . ,pi

o}
is set of points, where o is number of points contains in Li, then the points pi

j (pi
j ∈ G)

meet the following conditions:

pi
j =

[
xi

j , y
i
j , z

i
j

]
∀i, j : (xi−∆x) < xi

j < (xi + ∆x)
∀i, j : (yi−∆y) < yi

j < (yi + ∆y) (5.9)

Then central point si = [xi, yi, zi] of set Li, where we know yi, is determined as:

si =

xi = 1
o

o∑
j=1

xi
j , y

i, zi = 1
o

o∑
j=1

zi
j

 (5.10)

where o is the number of elements of Li. According to the equation (5.10) we found the
chain of the sample points si, where si is sorted according to yi.

In the thesis [30] was made the requirement for location of measurement equidistant
points P = {P1,P2, . . . ,Pr} on the garment, where Pq = [xq, yq, zq] and r is number
of required points. According to the require points are located in the middle of equally
long segments and value of require points r is five in a presented experiment (but it is
changeable). Therefore, the next step is finding points based on constant length of the
garment.

First step is found lenght of the garment. The length l of garment is summarized
according to sample points si (eq. (5.11)).

∀si : l =
j−1∑
i=1
||si − si+1|| (5.11)

where j is the number of elements of s. The length l of the garment is divided by the
number of required points. With this dividing are made equally long segments. The
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required points P are in the middle of these segments. These points (with time stamps)
are forwarded for further processing. Found points are shown in the figure 5.11.
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Figure 5.11. 3D point cloud with points found on the garment.

5.3.5 Finding Mathematical Features from Depth Map

Points P (from chap. 5.3.4) are obtained from whole sequence of the measurement
of the garment. Because we found points P including timestamps, we can examine the
dependence of displacement on time or dependence of speed on time. The timestamps
for each depth map we obtained also from rosbag file.

The dependence of displacement ∆zk on the time is shown in the figure 5.12 and
dependence of speed of the points on the time is shown in the figure 5.13. Figures show
found points P (blue) and also they show position or speed of the end of the gripper
ee. Both figures show specified dependences to green towel captured in the special case
of holding of the garment straightened on the ruler.
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Figure 5.12. Motion of the garment, dependence of the position of points on the time.
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Figure 5.13. Motion of the garment, dependence of the speed of points on the time.
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Chapter 6
Results and Discussion

One of the results of our work is the data set. The data set contains forty-six ex-
periments with eight different garments (described in the 4.2.1), which are held in the
gripper in five different ways (described in the appendix C). The garments are described
in the appendix B. Overall, this data set represents 15 gigabytes of data. This is due
to the fact that for each motion are captured RGB video and depth maps simulta-
neously at full resolution and additional information about the position of the robot.
The large data is not part of enclosed DVD. So the enclosed DVD contains only selected
examples of the data. Selected examples are labeled in the appendix B.

The figures 5.12 and 5.13 are typical measurement from the dataset, it shows how
the garment moves. In the referenced example is shown the garment called green towel
(shown in the figure 4.1.d) which is held in its corner. Data in this example come from
the depth map sensor. You can see that the motion of the closest point of the gripper
is very similar to move of the gripper. Other points, further from the gripper, are
move with time shift. The further the garment is from the gripper the more its motion
resembles natural frequencies of the hanging garment. The shape of the time course
of changes, which may be declared to the expected result.

For the documentation repeatability of the results of experiments I chose this exper-
iment: In the case of the garment - green towel - I made five experiments repeatedly,
so I can compare if the behavior is stable under small changes in the experiment. The
figure 6.1 indicate the relative position to the static condition over time and in the
figure 6.2 is shows the speed of individual points. The length of hanging garment was
approximately 64 cm. The graph shows the 5 points and gripper that creates the mo-
tion. The first point is in the idle state 6.4 cm below the gripper and other points are
placed sequentially down from the gripper at intervals 12.8 cm.

Into the graphs are always plotted the results of all five experiments. The measure-
ment was carried out so that after the end of one experiment, the garment was allowed
to stabilize and then the experiment was performed again. It is seen that the waveforms
of these five experiments are very similar. Only points that are farthest from the gripper
have slight variations, which is due to the expected behavior of the garment. A same
behavior can be seen in both graps, position and speed. Such a similarity of waveforms
we expected.
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Figure 6.1. Dependence of the position of points and time. Experiment of several mea-
surements of one garment, which is held in the same way.
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Figure 6.2. Dependence of the speed of points and time. Experiment of several measure-
ments of one garment, which is held in the same way.
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Chapter 7
Conclusion

In the introduction of this thesis I have described the methods of obtaining parameters
of dynamic model of the garment, based on the mechanical stressing of the garment.
These methods are not suitable in our case, so I have developed a method using the robot
and the sensors that are available on the robot, which could be used for estimating
the parameters of the garment.

The method is based on extraction features from RGB images and depthmaps.
The capturing the motion of the garment was performed in two ways. Firstly, RGB
video camera captured a silhouette of the garment against the monochromatic back-
ground when the garment was moving perpendicular to the camera axis. Secondly,
rangefinder captured the garment when garment was moving along the rangefinder
axis. I designed an algorithm to compute the position parameters of the garment from
the captured data, which could be used for estimating the parameters of the dynamic
physical model of the garment.

Due to general use, we separated measuring data, storing data and subsequent pro-
cessing, so it would be possible to use other methods of processing of the captured
data. Data capture and storage is implemented in the robotic operating system ROS.
Reading data and extraction of image feautures is implemented in MATLAB.

Within this work, I have captured forty-six experiments with eight different garments.
Functionality of an algorithm is documented on selected examples of garments green
towel, which was held as shown in the figure 6.1 and 6.2. It turns out that, even when
repeating the experiment we were getting very similar data. This behavior corresponds
with our expectations so it can be concluded that the procedure is correct. Data was
forwarded for further processing (in the thesis [30]). Data are stored on the server
of the project CloPeMa, which this work was a part of. The selected data is appended
to DVD as described in the chapter 6.
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Appendix A
Content of Enclosed DVD

dictionary content
neoramic-bc.pdf this thesis

/dataset chosen set of measurements of the garments
/matlab MATLAB scrips of dataprocessing

/src Python scrips of manipulation with robot and services
Table A.1. Content of enclosed DVD.
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Appendix B
List of the Measured Dataset

In the tables B.2 and B.3 a column garment refers to the figure 4.1 and column holding
refers to the figure C.1. The means of these column could be read from the column
name of the file as well according to naming of files described in the chapter 4.2.3. The
last column dvd shows which of these measured data are stored on the enclosed DVD.

n name of the file garment holding dvd
1 BlackShorts Belt pi16 0.5 R1 e d no
2 BlackShorts Free pi16 0.5 R1 e a no
3 BlueShirt Collar pi16 0.5 R1 a c no
4 BlueShirt Free pi16 0.5 R1 a a no
5 FelShirt Collar pi16 0.5 R1 b c yes
6 FelShirt Free pi16 0.5 R1 b a yes
7 FelShirt Ruler pi16 0.5 R1 b e yes
8 GreenTowel Corner 01 pi16 0.5 R1 d b yes
9 GreenTowel Corner 02 pi16 0.5 R1 d b no
10 GreenTowel Corner 03 pi16 0.5 R1 d b no
11 GreenTowel Corner 04 pi16 0.5 R1 d b no
12 GreenTowel Corner 05 pi16 0.5 R1 d b no
13 GreenTowel Free pi16 0.5 R1 d a no
14 GreenTowel Ruler 01 pi16 0.5 R1 d f yes
15 GreenTowel Ruler 02 pi16 0.5 R1 d f yes
16 GreenTowel Ruler 03 pi16 0.5 R1 d f yes
17 GreenTowel Ruler 04 pi16 0.5 R1 d f yes
18 GreenTowel Ruler 05 pi16 0.5 R1 d f yes
19 RedPullover Collar pi16 0.5 R1 g c no
20 RedPullover Free pi16 0.5 R1 g a no
21 RedSkirt Belt pi16 0.5 R1 c d yes
22 RedSkirt Free pi16 0.5 R1 c a no
23 WhiteBlackShirt Collar pi16 0.5 R1 f c no
24 WhiteBlackShirt Free pi16 0.5 R1 f a no
25 WhitePullover Collar pi16 0.5 R1 h c no
26 WhitePullover Free pi16 0.5 R1 h a no

Table B.2. List of the measured dataset of depth maps.
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n name of the file garment holding dvd
1 BlackShorts Belt pi16 0.5 B1 e d no
2 BlackShorts Free pi16 0.5 B1 e a no
3 BlueShirt Collar pi16 0.5 B1 a c no
4 BlueShirt Free pi16 0.5 B1 a a no
5 FelShirt Collar pi16 0.5 B1 b c yes
6 FelShirt Free pi16 0.5 B1 b a yes
7 GreenTowel Corner 01 pi16 0.5 B1 d b yes
8 GreenTowel Corner 02 pi16 0.5 B1 d b yes
9 GreenTowel Corner 03 pi16 0.5 B1 d b no
10 GreenTowel Corner 04 pi16 0.5 B1 d b no
11 GreenTowel Corner 05 pi16 0.5 B1 d b no
12 GreenTowel Free pi16 0.5 B1 d a no
13 RedPullover Collar pi16 0.5 B1 g c no
14 RedPullover Free pi16 0.5 B1 g a no
15 RedSkirt Belt pi16 0.5 B1 c d yes
16 RedSkirt Free pi16 0.5 B1 c a no
17 WhiteBlackShirt Collar pi16 0.5 B1 f c no
18 WhiteBlackShirt Free pi16 0.5 B1 f a no
19 WhitePullover Collar pi16 0.5 B1 h c no
20 WhitePullover Free pi16 0.5 B1 h a no

Table B.3. List of the measured dataset of RGB images.

37



Appendix C
Cases of Holding of the Garment

a) Random point. b) Corner.

c) Collar. d) Belt.

e) With the ruler. f) Second example with the ruler
Figure C.1. Cases of the holding the garment.
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Appendix D
Abbreviations

1D,2D,3D,... One Dimension, Two Dimensions, Three Dimensions, ...
CTU Czech Technical University in Prague.

KESF The Kawabata Evaluation System for Fabric is used to measure the me-
chanical properties of fabrics.

FAMOUS Fabric Automatic Measurement and Optimisation Universal System.
FAST Fabric Assurance by Simple Testing.

fps Frame Per Second.
MOCAP MOtion CAPture is the process of recording the motion of objects or

people.
OS Operating System.

P2P A Peer-To-Peer it’s type of decentralized network.
PLMS Pucker Laser Measurement System.
RGB The aditive color model of using Red, Green and Blue colors of lights to

create or capture the required color.
ROS The Robot Operating System - an open source system is used for cotrol

robots.
URI Uniform Resource Identifier.
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