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Abstrakt

Vétsina hernich algoritmi je speci-
ficky navrhovana tak, aby byly schopny
hrat velmi dobre jednu hru. Tyto pro-
gramy neni mozné pouzit pro hrani
her jinych. Naproti tomu je hrani obec-
nych her (tzv. GGP - general game
playing) konceptem, ktery predpoklada
hrani velkého mnozstvi her v jednot-
ném hernim prostiedi. Tento vznikajici
obor vSeobecné umélé inteligence dobre
slouzi jako vhodnd testovaci platforma
pro vyzkum doménové nezavislych al-
goritmtt vypocetni teorie her. Pokud
bychom dokéazali navrhnout algoritmus
schopny hrat uspésné vice nez jednu
hru, pak by takovy systém mohl byt po-
uzit v pripadech, které si zadaji obecné
nezavislé rozhodovani v realném case,
napt. béhem tizeni patracich a zachran-
nych misi nebo v navigaci dalkovych
autonomnich robotickych jednotek po
nezndmém tzemi.

Hlavnim zamérem této prace je
zameérit se na vybér dedukéniho algo-
ritmu schopného rigorézné interpretovat
rizné hry a pouzit herni algoritmus,
ktery poskutuje dostatecné teoretické
zaruky pro teseni her s netplnou in-
formaci. Hlavnim vystupem této prace
je Shodan, jeden z mala GGP hraca
schopnych hrat hry s netdplnou infor-
maci. Shodan je postaven na algoritmu
prohleddvani hernich stromt Monte
Carlo (Monte Carlo tree search) s vy-
bérovym kritériem EXP3, a pracuje
s hrami predstavovanymi vyrokovymi
sitémi.

Kli¢ova slova: Hrani obecnych her;
extenzivni hry; hry s netplnou infor-
maci; Monte Carlo prohledavani; EXP3.

P¥eklad titulu: Hrani obecnych her
s netplnou informaci pomoci algoritmu
vypocetni teorie her

/ Abstract

Most game playing algorithms are
specifically designed to play one single
game.  Therefore, transferring such
programs into another context is not
possible. On the other hand, general
game playing (GGP) is a concept of
playing vast number of games within
a one concrete game environment.
This emerging field of general artifi-
cial intelligence proficiently serves as
a challenging testbed for research in
domain-independent algorithms of com-
putational game theory. If one can
design a general game playing system
capable to play more than one game
successfully, such algorithm can be used
in other areas which require a real-time
domain-independent deciding, such as
in providing intelligence for search and
rescue missions or navigating remote
autonomous robotic units in unknown
territory.

Uppermost intention of this work
is to focus on selecting the reasoner
capable to properly and rigorously in-
terpret the game; and employing the
algorithm which meets the theoretical
guarantees to work proficiently in the
imperfect-information games. The most
prominent outcome of this thesis is
Shodan, one of the few GGP agents for
playing general games with imperfect
information. Shodan is based on Monte
Carlo tree search with EXP3 selection
criterion, working with the games rep-
resented as propositional networks.

Keywords:  General game playing;
Extensive-form  Games; Imperfect-
information Games; Monte Carlo tree
search; EXP3.
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Chapter ].
Introduction

Since the origin of computer science, the conception of a machine playing a game
against a human has become one of the primary goals of Al research. In those days the
foundations of game theory have already been laid, thus providing sufficient methods
for computing rational responses in elementary games.

The first computer capable to play the game of Nim was created in 1941 at MIT
[1] and can be considered as an early Al agent. In the following years, several players
in games like chess or checkers were programmed, but they lacked the intellect to be
a worthy opponent even for a non-professional player. They didn’t actually become
successful in small games against human amateurs until 1960°. As the computational
power of computers arose, agents became intelligent enough to solve even more complex
games with large state space, including backgammon [2] or ghost!). However, such
ability was granted not only by ’brute force’ algorithms like backward induction, but
also due to numerous optimizations in the way the players searched the game tree,
reinforcement learning and insightful heuristics based on deep knowledge about the
game itself. In conclusion, the improvement of these expert systems in late 80’ finally
led to designing the famous computer Deep Blue [3], challenging world best chess player
between years 1996 and 1998.

Nevertheless, progress in this field demonstrated that better performance in game
playing requires focusing on the narrow task. These so-called weak Al systems are
being designed to solve one specific problem only, hence the transformation into another
context is not possible. In other words, an agent written to play chess is simply not
able to participate in the game of Go.

Unlike in applied AT systems, artificial general intelligence (AGI) aims at performing
broad range of intelligent tasks, instead of excelling at a single one. General game
playing (GGP) is a concept of playing vast number of games within a concrete game
environment with just one agent, which makes it a part of AGI in the field of games [4].
This concept was originally introduced by J. Pitrat back in 1968, who pointed out that
the intelligence of Al researchers is actually the reason why the Al systems are that
dumb [5]. The main principle of playing general games is that the rules of each game
are not known before the match starts. It means, that the player cannot rely on the
preprogrammed domain-dependent heuristics closely related to the game itself. The
goal is to create an agent capable of recognizing specific aspects of individual games
and their incorporation into a general solving algorithm [6].

Many processes in the human society can be efficiently formalized as games. For
example politics, economics or social interactions, among other things, form the partial
games in the immense environment of the human world. Building a reasonable general
deciding algorithm can help solve some of the important problems in these areas and
find several interesting common elements. However, while e.g. in the game of Shogi
the game board is fully observable for each player, a tremendously important aspect
of many genuine real-world problems is the fact that numerous features of the game

1) http://en.wikipedia.org/wiki/Ghost_(game)
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environment may not be known. Such problems can include, but are not restricted to,
the examples like [7-8]:

s Financial Markets. In financial markets the borrower possesses much better infor-
mation about his finances than the potential lender. From the lender’s point of view,
the likelihood the borrower will bring back the money is uncertain. The lender might
try to solve this situation by looking at past credit history and evidence of salary,
but this can provide only partial information. Consequently, the lenders will charge
higher rates to compensate for the risk.

m Monetary Policy. The individuals react according to the monetary policy of a certain
country, which influence the inflation and growth. In response to a change in the
exchange rates, a central bank has to decide about the money supply and thus alter
its monetary policy.

m Insurance. When insuring a certain property the insurer has only limited infor-
mation about how well the customer will look after a piece of good. To overcome
this uncertainty in insurance, insurers provide considerable discounts for 'no claims
bonuses’. This is the best way of gaining better information about ’careful’ and
‘unlucky’ clients. The fact is, insurance may even alter a person’s behavior.

m Entry into Markets. The companies make decisions whether to enter a particular
product market, which products to promote and how to set the prices. They know
their own cost, but not the costs of their rivals. Such decisions are most likely to
influence a future development of the market.

s Employment. Workers are aware of their skills, industriousness, and productivity.
Conversely, employers face a lack of information about the qualities of prospective
workers. Usually the employers first sign the workers to a contract, the bonuses or
the promotions are then decided after the employer is more acknowledged about the
worker’s skill.

m Research and Development. The companies have to decide, how much will they
invest into the research and the technologies. These choices are made according to
the current knowledge about the market and similar projects of other competitors,
so as the forecast about the future trends.

Agents in these game examples can possess only limited amount of information, mak-
ing their situation even more challenging. Their decision are made under uncertainty,
trying to maximize an expected potential profit.

Games of imperfect information form one part of a broad range of games with the
incomplete information. In these games the player is required to be aware of the whole
game description, but as the game progresses, he is not capable of identifying the actions
performed by his opponents. The main goal of this thesis is to create a general deciding
system which is able to make reasonable decisions in games of imperfect information
and under a strict time limit.

I 1.1 Related work

General game playing is an emerging Al field in which the research is more deeply
conducted for the last 8 or 9 years. The research groups are concentrated on several
universities, primarily on Stanford, University of New South Wales, University of Al-
berta and University of Reykjavik. So far more than 150!) publications were published
and the community regularly gathers on a workshop at [JCAI conference since 2009.

1) According to the list at http://general-game-playing.de/literature.html
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There have also been annual General Game Playing competitions held at the AAAI
Conference. Although main stream of research is focused in the field of games with
complete information, the incomplete-information games are becoming the center of
interest more recently.

Even though the community is relatively small and one cannot expect it to produce
a large amount of textbooks for the newcomers to this field, a great introduction into
the theory of general game playing was written by Michael Genesereth and Michal
Thielscher [9]. The book covers the vast background of GGP, including game design
and specification, reasoning about game rules, GGP server protocols, and even the
basics of efficient game playing. Although it focuses on the perfect-information games,
it is an excellent start and I am grateful that I could use it.

Competitions between an imperfect-information GGP agents have been organized
since 2011. The first one took place in Berlin, Germany, in conjunction with the
KI 2011 conference. The German Open in General Game playing!) was organized
by Peter Kissmann and Tim Federholzner of the University of Bremen and embraced
the tournament in playing general imperfect-information games as well. Three agents
participated in the contest.

First player (and the winner) is called Fluxii, programmed by Stephan Schiffel from
Reykjavik University. The player was derived [10] from the original perfect-information
game-playing agent FluxPlayer [11]. For reasoning about possible actions the player
uses Fluent calculus and its Prolog-based implementation FLUX [12]. The search is then
performed using non-uniform depth-first search with iterative deepening and general
pruning techniques. The player is able to recognize structures in game description for
automatic construction of evaluation functions. Non-terminal states are then evaluated
by the rules of fuzzy logic by the constructed heuristic. Second player named StarPlayer
(UNSW) is a project by Timothy Cerexhe, Michael Schofield and Michael Thielscher
from University of New South Wales. Although it was not stated anywhere, I suppose
the player was based on HyperPlay technique adapted for use with a Monte Carlo
decision making process, introduced by the same authors [13]. Hyper-Play technique
is able to translate the description of an imperfect-information game into the format
which is acceptable by the players of perfect-information games. The state space of the
imperfect-information game is sampled to resemble a game with perfect information.
Individual rounds are played in each of these games and then the separated results are
assembled together again.

Finally, the last player was TIIGR, an agent designed by Tomas Motal from Czech
Technical University in Prague as a part of his Master’s thesis [14]. The player is
based on Monte Carlo tree search using the UCT selection criterion and overconfident
approach. Palamedes?) JavaProver is used for reasoning about the game specification.

Second competition among several players capable to play games with imperfect
information was carried out during the AI'12 General Game Playing Competition?),
organized by Marc Chee and Michael Thielscher of the University of New South Wales.
The tournament was held in conjunction with the AI’12 conference and was attended
by 3 players.

The winning player was CadiaPlayer by Stephan Schiffel, Hilmar Finnsson, Stefan
Freyr Gudmundsson and Yngvi Bjérnsson from Reykjavik University [15]. The deciding
core of the CadiaPlayer is based on modified Monte Carlo tree search with the UCT

1) http://fai.cs.uni-saarland.de/kissmann/ggp/go-ggp/
?) http://palamedes-ide.sourceforge.net/
3) http://ai2012.web.cse.unsw.edu.au/ggp. html
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criterion and Gibbs sampling [15]. The player benefits from several extensions of MCTS,
such as its ability to prematurely terminate the simulations when the result seems
unreliable; or to apply a speculative knowledge. CadiaPlayer managed to win the
competition mainly thanks to his ability to process even a more complicated games and
continue playing in complex situations.

Second, according to the score, was Nexusbaum by Tim Federholzner and Stefan
Edelkamp from TZI University of Bremen; and Peter Kissmann from Saarland Univer-
sity [10]. Their player operates on partial belief states, which correspond to a subset
of the set of states building a full belief state. To search for a partial belief state the
agent uses the UCT-based Monte-Carlo method.

Third player was LeJoueur by Jean-Noél Vittaut, but it is stated here just for com-
pleteness — I couldn’t find anything more specific about this particular one.

These are the only successful attempts to build and examine a general imperfect-
information player I am aware of and which have served as an inspiration to me.
However, all these approaches have not proved to converge to a solution, which is
theoretically guaranteed to be the contemplated one.

I 1.2 Approach of this thesis

This thesis aims at designing a game-playing algorithm based on one of the state-of-
the-art algorithms, which have been introduced over the last years. In the following
chapters, the thesis first presents the backgrounds of general game playing, focusing
mostly on theoretical basics of game theory. Then it discusses various possible ap-
proaches in building the whole GGP agent playing the games of imperfect information
from scratch, its advantages and disadvantages and technical aspects of their imple-
mentation.

Uppermost intention of this work is to focus on selecting the reasoner capable to
properly and rigorously represent the game and apply the algorithm which meets the
theoretical guarantees to work proficiently in the imperfect-information games.

The design of the player is finally examined over the real games of imperfect-
information and against another player, specifically TIIGR and a simple random
player.

B 1.2.1 Overview

The thesis is organized in the following structure:

s In Chapter 1 is stated the motivation for writing this thesis, the work related to its
topic and the chosen approach.

m The game theory provides the necessary theoretic background for playing general
games. The basics of its mathematical formalism are formulated in Chapter 2.

m Chapter 3 presents various state-of-the-art algorithms for finding sensible responses
in games; and their properties.

s The introduction to GGP is given in Chapter 4. This chapter also includes the
methods for reasoning about game descriptions and learning in general games.

m The process of building a working GGP player and the description of player Shodan
are presented in Chapter 5.

= Chapter 6 contains the experimental results achieved with the player.

= Finally, the general information about the achievements of this thesis is announced
in Chapter 7, which also includes the possibilities in the future development of this
player.



Chapter 2
Game Theory

In this chapter are laid out the foundations of game theory. At the beginning it formal-
izes the basic definitions, which are necessary to be able to correctly speak about games
and game-plays. Consecutively it presents the standard representations and data struc-
tures. Finally, this chapter summarizes relevant aspects of games. The background in
game theory is essential for finding rational responses and also for general reasoning
about games.

A mathematical formalization of game theory in this chapter is inspired by [16].

I 2.1 Introduction

Game theory is a part of applied mathematics that studies a strategic decision mak-
ing. It uses mathematical models to formulate interactions between intelligent rational
decision-makers [17]. These interactions are called games.

B 2.1.1 Game

Games are played within a game environment!) (also called world) and are composed
of system of rules, which defines the players, the actions and postulates the dynamics
of the game. The game is called a puzzle, if there is no more than one agent involved.
Otherwise it is a conflict [18].

Definition 2.1. Player A player (or an agent) is an entity able to act. His activities
alter the world in which he exists.

The concept of game consists of active and passive elements. Passive elements rep-
resent the information, i.e. which actions are feasible for a particular agent in a given
state, or how the game will evolve under certain conditions and actions taken. Active
elements in the game form the players. Without the players, the game remains static.
Only their actions can manipulate the game.

Definition 2.2. Action An action (or a move) is a change in the game caused by a
player in a particular situation.

A valid game environment enables all agents to act and be immediately aware of
their actions. Their activity can lead to changing current situation as a consequence of
their decision making. Different situations which can occur before the game terminates
are called states of the game.

1) The difference between games and game environments is sometimes omitted. Although, it is useful to
distinguish them, especially in the context of general game playing. This problematics is further explained
in chapter 4.
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Game
Environment

Figure 2.1. Games are played within a game environment.

Every game begins in a root state and then progresses according to the game dy-
namics, as participating agents make their decisions. All rational players select their
actions to achieve their goals. Theory of utility was established to recognize the effects
of their behavior and evaluate the situations in which the agents are located. Utility is
a value which measures the usefulness of the current state of the game for each player.

Definition 2.3. Utility Let S be a set with weak ordering preference relation <. Utility
(or outcome) is a cardinal element e € S, representing the motivation of players. The
function u: S — R is said to be utility function IFF Vz,y € S: u(x)<u(y) < x =< y.

All together, a mathematical game is a structure, which conclusively defines the
whole game and its development.

Definition 2.4. Game Game is a tuple G = (P, A, u), where:

s P ={p1, po,..., P }') is a set of players;
m A ={A, As,..., Ap} is a set of sets of available actions for each player; and
m u is a utility function, u: (@ € A1X ag € AsX...Xa, € Ap) — IR™.

This general definition of game expects all players to act simultaneously in just one
round and then it ends. Nevertheless, the end of a game in finite time is guaranteed
only in the so-called finite games. It signifies that at some point they will terminate
and the utilities are assigned. All finite games have starting and terminal states. In
these games the number of players is finite, as well as the number of permitted actions
for each player. An agent can face only finitely many situations in finite game, and the
game-play cannot go on indefinitely [19].

B 2.1.2 Agents’ strategies

When there is more than a single agent in the environment, the whole game changes in
accordance to the activity of all players. In this setting the outcome depends not only
on actions of one particular agent, but on the behavior of all of them. Strategies can
be seen as plans contingency or policy for playing the game. In every situation, agent’s
reaction is defined by his strategy.

A strategy of an agent in the game is said to be pure, if in every possible attain-
able situation an agent can face, his strategy determines the one move the agent will
make. For example in Figure 2.2 the set of pure strategies of agent Kevin is a set
{(grab, feed); (grab,bask); (hold)}.

1) A set P with respect to player p; is sometimes denoted as P = {pi,p—i}, where p—i denotes a set P
without player p;.
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Figure 2.2. A possible development of a simple game.

This approach is certainly rational enough in puzzles, where there is only one agent
to set the course of the world. In contrast, in the environments with greater number of
other players it is preferable to rather randomize over the set of pure strategies, following
selected probability distribution.!) This kind of strategy is called mixed. Playing a
mixed strategy ensures that every agent can only guess what will happen; and compared
to the pure strategies, the outcome is now less predictable.

Definition 2.5. Mixed strategy Given a game G = (P, A, u), for agent p; a set of
all pure strategies I1(p;) and denote A(Z) a set of all possible probability distributions
over arbitrary set Z. Then ¥(p;) = A(l(p;)) is a set of mized strategies for agent p;.

It is obvious, that even if the player can follow finitely many pure strategies, because
of the continuity of probability distributions the set of mixed strategies is always infinite.
Furthermore, a set of agent’s pure strategies is a subset of his mixed strategies.

Playing the mixed strategy, the player can gain a various range of outcomes. To
evaluate his strategy, he can use the expected payoff.

Definition 2.6. Expected utility of mixed strategy Let G = (P, A, u) be a game
and o be a list of mized strategies for all players. Then expected utility for player p; is

wi(0) = e st (W12 o (pj.05).

By o(pi,a;) is denoted a probability of player p; taking action a;.

B 2.1.3 Optimal strategy

The whole game theory was originally established to solve a simple question. What is
an optimal reaction? How should an agent react to be the most likely to win the game?
The answer is that the fundamental advantage for a player can be an information about
the strategies of his opponents. In other words, once an agent is able to guess the next

1) This concept is being disputed since its origin in 1980s, because it lacks a reasonable behavioral support
[20]. Sometimes rather than a strategy, randomizing the decisions can be seen as a belief of an agent, that
he can profit from playing such action [21].
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action of any other agent, he can deliberately follow a strategy which maximizes his
terminal utility. In conclusion, the set of all optimal strategies (meaning the strategies
with the highest equal expected utility) ¥*(p;) C ¥(p;) of a rational well-informed agent
pi is then absolutely decided by the strategies o(p_;) € X(p—;) of the others.

Definition 2.7. Best response Agent’s strategy o* (p;) in game G = (P, A, u) is a best
response to strategies o (p—;) IFF No (p; )€X(p;): ui(o(pi),0(p-i)) < w(c*(p;),0(p-i)).

Unfortunately, in most cases the information about the opponents’ strategies is out
of reach, or obtaining is impossible in sense of computational complexity. Another
possibility would be to estimate the strategies, e. g. from the previous actions of other
players, and consecutively adjust his own one.

Cross a river\Dive deeper

Dive deeper [Cross ariver  [Dive deeper \Cross a river

33 22 22 44

9

Figure 2.3. A possible development of a simple game with highlighted Nash equilibrium.

As every player intends to do his best to achieve victory and considers the decision-
making of his opponents, behavior of all agents playing the same game over and over
again is evolving. At a certain point of finding their best responses, players realize that
changing their strategy would not lead to earn more than with their current decision
plan. This concept of balance is called an equilibrium.

Definition 2.8. Nash equilibrium (NE) Given a game G = (P, A, u) and strategies
o € 3, players P are in Nash equilibrium IFF i € [1,...,|P|]: o(p;) is a best response

to o(p—;).

If the stage of the world allows no one to benefit from changing his strategy, the
situation remains stable. It has been proved, that in every game with finitely many
players and with finite set of pure strategies, there is at least one Nash equilibrium
profile, although it might consist of mixed strategies [22].

An example of two Nash equilibria is depicted in Figure 2.3. It can be seen, that
there are two sets of strategies, which produce the balance. Playing these strategies,
neither Phil nor Gloria shall intentionally change his opinion. It would only decrease
their final utility.

I 2.2 Game representations

There is a number of various representations of games. The most simple one was pre-
sented at the beginning of this chapter. Although the general definition is sufficient
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enough for the mathematical apparatus, for concrete game examples it is more con-
venient to establish standard forms and structures for working with the game data.
Different representations extend the general definition, thus allowing various games to
express their specific aspects in more suitable form. Algorithms for finding Nash equi-
libria can be adapted to a particular representation to reduce computational complexity.

There exist several representations of games, taking into account stochasticity, num-
ber of players and decision points, possibility of cooperation and other important char-
acteristics of the game. Presented forms are two fundamental non-cooperative repre-
sentations, where every player aims to maximize his own utility.

B 2.2.1 Normal form

Normal (or strategic) form is a basic type of game representation, G = (P, A, u). Each
player moves once and actions are chosen simultaneously. This makes the model simpler
than other forms and easier to solve for Nash equilibrium, but lacks any temporal
locality.

Gloria

dive cross
deeper ariver

| 2,2 | 4,4
el 3,3 2,2

Phil

Figure 2.4. An example of a game in normal form.

Utility function in normal-form games is usually visualized as a payoff matrix. For
example, consider a game presented in Figure 2.3. It is an example of a 2-player game in
which every player has 2 possible actions. Its representation in normal form is depicted
in Figure 2.4.

B 2.2.2 Extensive form

Extensive form models a multi-agent sequential decision making. Convenient represen-
tation of an extensive-form game is a game tree. Such structure allows to express even
complicated branching of the game, restricting actions in different game states to the
feasible ones only.

Definition 2.9. Game tree Every game tree is a tuple T = (S, Z, A, e, f, r), where:

m S is a set of game states;

m 7 is a subset of S of terminal states;

m A is a set of game actions;

m ¢ is an expander function, e : s € S — {a € A | a is executable in s};
m fis a successor function, f: (s € S x a € e(s)) - te€ S; and

m € S is a root state.

In a sense of graph theory, S are the vertices of rooted directed tree T, Z are the
leaves of T and elements of A form its set of edges.

Using the notion of a game tree, now it is possible to define an extensive-form game.
This representation consists of a game tree with a set of players, who are assigned to the
states of the tree; and a utility function, which determines the utility in every terminal
state, i.e. in every leaf of the game tree.
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Definition 2.10. Extensive-form game Game in extensive form is a tuple G = (P, T,
b, u), where:

® P =p1, po,..., pm is a set of players;

m T isagame tree T = (S, Z, A, e, f, r);

m b is a player belonging function) b: s € S — p € P; and
m u s a utility function u: z € Z — R™.

Extensive form was originally designed for sequential games, where players take their
actions one by one. Game trees in these games provide a suitable way to visualize the
game-play. This representation is also more complex than normal form. It is able to
describe games with chance nodes or imperfect information more conveniently.

Figure 2.5. An example of a game in extensive form.

Although normal and extensive form are suitable for defining different kinds of games,
it is possible to convert one form into another [23]. It is guaranteed that for every
extensive-form game exists an equal corresponding normal-form game, however the
procedure of transformation can be computationally impractical?). The mapping is not
injective [24], meaning that multiple extensive form games can correspond to the same
normal form.

I 2.3 Decisive game aspects

Games can be divided into several categories according to some of theirs prominent
properties. Each class in some way specifies the game and its properties significantly
influence the game-play. If an agent is aware of it and is able to recognize and utilize
all factors of the game, he can use it for his own advantage.

W 23.1 Utility

The utility of terminal states of the game is a dominant aspect, which affects the
way agents behave in the environment. The goals of the agents can be independent,
i.e. by achieving his goal, a player p; won’t affect the possibility of other players to
achieve theirs. Conversely, in some games to gain more, opponents are required to lose

1) Usually b(r) = p1, unless stated otherwise.
2) More precisely, it can lead to an exponential blowup.

10
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more. From the economical point of view, it is a clear example of preserving amount
of resources, which is at one time always constant.

Definition 2.11. Zero-sum game The game G = (P, A, u) is said to be zero-sum IFF
Ya, €4q,..., a)p| €A|p| N Ziillui(al,..., G‘P|):0.

When playing a zero-sum non-cooperative game, each player knows that in every
terminal state, his utility is dependent on the utilities of his opponents. As a result,
the optimal strategy of the player necessarily profits from exploiting the strategies of
his opponents. By using their weaknesses the player can gain more.

A variant of a zero-sum game is a constant-sum game. In constant-sum games the
sum of utilities for respective players is equal to a constant. Since the outcomes of
the player can always be normalized, the constant-sum game can be represented by an
equal corresponding zero-sum game?).

However, there exists a class of games in which there is no correlation between the
utilities of the players like in the zero-sum games. For example, the trade is by definition
a positive-sum game, because when two players (in this context companies or traders)
agree to realize an exchange, each subject must consider the received merchandise to
be more valuable than the merchandise traded off. The profit of both parties will differ,
when they use a different amount of goods. This is a clear example of a general-sum
game.

Definition 2.12. General-sum game The game G = (P, A, u) is said to be general-sum
IFF Jay,a} €Aq,..., a|p‘,aip‘ €Aip - Zl.illm(al,..., ap|) #zgllui(a’l,..., aip‘).

It means the game is general-sum, if there exist 2 action profiles leading to terminal
states with non-equal sum of utilities per each player.

B 2.3.2 Move sequencing

The way the players are making their moves is also an important aspect. In
simultaneous-move games the players effectively take their actions at the same
time. Actually, they don’t have to make the moves at the exactly same time as long
as each of them is not aware of the others’ choices when he chooses his own strategy.
In these games players select their moves only by evaluating the utility of possible
terminal states. Slightly different are repeated simultaneous-move games with multiple
turns, in which agents can assess opponents’ patterns of behavior from their previous
activity. Simultaneous-move games are more conveniently represented in the normal
form.

An example of the simultaneous-move game is the Prisoner’s Dilemma [25]. In this
game two imprisoned criminals decide, whether they should betray the other prisoner
or try to cooperate and stay quiet, without the prior agreement between the two of
them. Although the prisoners might not be interviewed at the precisely same moment,
they both do not know what is the strategy of the second prisoner. In brief, their final
decision should depend on what the police offers them, i.e. what sanctions they face.

Unlike in games with simultaneous moves, in common model of games like chess,
Go or checkers; players take their actions one by one, taking into account sequence of
moves made by agents acting before them. When they are making their moves, they
can use that information to alter their strategy. These so-called sequential games are

1) One can argue, that zero-sum game is a variant of constant-sum game and not vice-versa, but because
zero-sum and constant-sum games are equal, it doesn’t really matter.

11
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time-dependent and thus often represented in extensive form. In sequential games it is
important to know which player is going to move first, as it can be either an advantage
or a disadvantage.

Definitions of sequential games vary from relatively easy games with small game trees
like in Tic-Tac-Toe, up to those particularly difficult games with exceedingly complex
trees and sophisticated rules, like some variations of chess. Such games are extremely
demanding for a human player and some of them unsolvable even for high performance
computers.

B 2.3.3 Information provided

A category of games in which the player possesses all the information about the game
description is called perfect-information games. The agents are able to perceive every
activity and alteration of the game states. In every situation, each player is completely
informed of what every other player has done up to now. The consequence is that the
players are capable to estimate all possible developments of the game and its termina-
tion. This concept of game is called perfect-information game.

Perfect-information games is a class of games in which everything is known and
any relevant information can be acquired. From the point of view of every agent, any
situation in the game environment is unique and distinguishable. Such idealism provides
some indispensable advantages. For example, in games with perfect information the
existence of pure-strategy Nash equilibrium is guaranteed [26]. Intuitively speaking,
since players are able to predict all potential future courses of the game, following a
mixed strategy is rather redundant.

Theorem 2.13. Let G = (P, T, b, u) be a finite perfect-information game in extensive
form. Then in G exists a Nash equilibrium in pure strategies.

However, as it has been said in the introduction, the complete knowledge of the game
is not always accessible. In some games, players are given only partial information about
their opponents, game rules or activity in the environment. The games in which the
player observe only a limited amount of all possible information are called incomplete-
information games.

In these games the player builds his own game tree, where he deals with the uncer-
tainty by creating information sets — sets of states which he cannot distinguish with his
current knowledge. An example of such game is depicted in Figure 2.6.

Definition 2.14. Information set Given an extensive-form game G = (P, T, b, u) and
game tree T = (S, Z, A, e, f, ), an information set I, ; C S is a set of states,
Vh, h' € I, ;:
m e(h) = e(h’); and
m b(h) = b(h’).

There may exist a large number of information sets for each player in the game. The
games where the incompleteness of information manifests itself through the player’s

hidden knowledge about his opponents’ moves; are the games of imperfect information.
In these games the rules are clearly defined and information about players is complete.

12
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Definition 2.15. Imperfect-information game in extensive form An imperfect-
information game in extensive form is a tuple G = (P, T, I, b, u), where:

m (P, T, b, u) is a perfect-information game in extensive form; and
ol =1,.,1,,...1,, , where I,, = 1, 1,1, 2,....1,, ,, is an appropriate set of information
sets for player p; satisfying U;lzl L,; ={se€ S| b(s) =p}.

Note that simultaneous-move games can be seen as imperfect-information games,
such as within one round, player cannot truly differentiate between his opponent’s
actions. Hence these actions are included into a single information set.

In Figure 2.6 is depicted an example of imperfect-information game. In this game
the game states which belong to one information set are within a rectangle. There is
also one chance node on the top of the tree, represented as a diamond.

X

=] B

. N
80

12 -1,1 2,-3

Figure 2.6. An example of a game with imperfect information.

For more precise classification of the states into the information sets, a player can
use the information obtained during his previous actions. If he is aware of the whole
history of his moves and observations he made up to now, such memory enables him
to evaluate every possible situation in which he might find himself more accurately,
stratifying the states into greater number of different information sets.

Definition 2.16. Perfect Recall Let G = (P, T, I, b, u) be a game with imperfect
information. Player p; is said to have perfect recall in G, if Vh, h’ € I, ;; and path (T,
ag, hi, a1, ha, ..., by, am, h) and (r, a’y, by, a’, b, ..., Ky, @', B):

mm=m

mVje (0,1, ..., m), b(hj) =p; : hj € L, ), and b’j € I, 1; and

ma =ayandVje (0,1, ..., m), b(hj) =p; : aj = a’j.

G is a game of perfect recall if every player has perfect recall in it.

Every perfect-information game is thus a game of perfect recall. This game feature is
especially important in techniques for computing Nash equilibria, because games with
imperfect recall are generally much harder to analyze.

13



Chapter 3
Computing Equilibria

Nash equilibrium (NE) is a fundamental concept in the game theory. There are two
reasons why. First, it is widely used to predict and describe what will happen in
strategic interactions between greater number of rational agents, like in wars or arms
races [27], prediction of the traffic flow [28], auction theory [29] or regulatory legislation
[30].

Second reason is stability. When looking for an optimal reaction, Nash equilib-
rium provides a strategy to which (by definition) the best response is the equilibrium.
That ensures that an expected outcome won’t be worse than an expected utility of the
equilibrium. An opponent who changes his strategy from NE is now playing a worse
strategy. The NE strategy cannot be exploited any further than by the opponent’s
Nash equilibrium strategy.

This chapter describes algorithms for finding Nash equilibria in both perfect-
information and imperfect-information games. It shows their advantages and disadvan-
tages and proposes some approaches to overcome some of their practical drawbacks.
From now on, games are being described exclusively in the extensive form.

I 3.1 Perfect-information games

Under certain circumstances the Nash concept encounters several flaws, closely related
to the behavior of the agents. Although every player is assumed to act rationally,
the definition of NE enables the existence of non-credible threats. Non-credible threat
is a term describing the situation which would actually any intelligent player never
go through with. In the area of perfect-information games, such equilibria can be
eliminated, when considering partial subgames from which the whole game consist.

Definition 3.1. Subgame Given an extensive-form game G = (P, T, b, u) with game
tree T = (S, Z, A, e, f, r), the subgame G’ rooted at state t € S is the restriction of G
to the descendants of t.

Using the notion of subgame, subgame-perfect equilibrium can be defined as a Nash
equilibrium, which is also equilibrium in each possible subgame.

Definition 3.2. Subgame-perfect equilibrium (SPE) Agents playing strategies s, €
S in game G = (P, T, b, u) are in subgame-perfect equilibrium IFF ¥subgames G’ €
G, the restriction of s, to G’ is a Nash equilibrium of G’

In Figure 3.1 is depicted a simple sequential game of two players, as an example of
a crucial difference between Nash and subgame-perfect equilibria. The game contains
two NE, specifically (crush, gnaw) and (bite, chew). The first equilibrium is a subgame-
perfect equilibrium too, since gnaw is a best action for Fat in right state and crush is
an optimal action for Phil. Conversely, (bite,chew) is an equilibrium, because if Fat
knows that Phil will play bite, he would never gnaw for 0, since he can get 2 for chew.

14
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And respectively, Phil will always go for bite if he knows that Fat will chew. But the
truth is, that Phil would never go bite from the whole beginning — it is a non-credible
threat.The reason is that for going crush he can obtain a utility 2, which is more than
1 for bite; and thus (bite, chew) is not a subgame-perfect equilibrium.

Figure 3.1. The difference between subgame-perfect (blue) and Nash (orange) equilibrium.

The fact is that the existence of SPE is always guaranteed in every finite extensive-
form game [31].

Theorem 3.3. Every finite extensive-form game G = (P, T, b, u) contains a subgame-
perfect equilibrium.

Even more advantageous property of SPE is that it can be found using backward
induction algorithm. Backward induction algorithm is based on depth-first search and
it recursive form is shown in Figure 3.2. This algorithm goes from the bottom layer
of the game tree (line 8), considers at first all pre-terminal states and computes best
strategy (line 10) in each of them to obtain the best utility (line 9). Using the acquired
knowledge, it goes upwards through the game tree and evaluates each state separately,
ignoring non credible moves. At the end when the root state is assigned an optimal
action, the equilibrium is found.

1: function BACKWARDINDUCTION(node h)

2 if ISTERMINAL(L) then

3 return u(h)

4: end if

5: best_util < —o0

6 best_action < nil

7 for all a € e(h) do

8 util_at_child < BACKWARDINDUCTION(f(h, a))
9: if util_at_childyp,) > best_utily,) then
10: best_util < util_at_child

11: best_action « a

12: end if

13: end for

14: return best_util

15: end function

Figure 3.2. Backward induction algorithm.
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Backward induction finds only one pure-strategy SPE in linear time in the size of the
game tree. In zero-sum games of 2 players, the concrete form of backward induction
algorithm is well known since the beginning of game theory and its name is minimax
[32].

The negative of backward inductions is its need to traverse the whole game tree in
order to find the equilibrium. Fortunately, there exist a heuristic called a-8 pruning
[33]. This technique benefits from from the fact, that several branches of the game tree
evaluated by backward induction can be eliminated. The evaluation of a branch § of
subtree generated from a particular state terminates when at least one other branch
has been found that proves § won’t contribute to the equilibrium. There is no need
to evaluate such branch any further. «-f8 pruning applied to a standard backward
induction tree yield the same solution, but prunes all the unnecessary subtrees that are
certain to not influence the equilibrium. In the optimal case, a-f pruning decreases
the number of leaf nodes which are required to be evaluated in the game tree with
branching factor b in depth d from b¢ to Vbe. In the worst case the number is still b7
The algorithm is not essential for this thesis, so it won’t be explained in more detail.

I 3.2 Imperfect-information games

In games of imperfect information, using backward induction is not possible!), because
of the non-singleton information sets, so another approach has to be chosen. It turned
out [16], that besides pure and mixed strategies, games can be also played with a third
type of strategy, not discussed yet. This new kind of strategy is called behavioral and
its unique features enable to construct another game representation, which is based on
behavioral strategies.

Behavioral strategy is similar to a mixed strategy in a sense of repeated one-turn
games. Rather then randomizing over the set of pure strategies, behavioral strategy
randomizes independently over actions in each information set with preset probability
distribution.

Definition 3.4. Behavioral strategy Let G = (P, T, I, b, u) be a finite imperfect-
information game, function v; : I, ; — A, set I'; a set of all distinct functions v; and
denote A(Z) a set of all possible probability distributions over arbitrary set Z. Then
B(pi) = AT )xATy)x...xA(T,,) is a set of behavioral strategies for agent p;.

The interesting part is, that for games of perfect recall, the set of Nash equilibria
doesn’t change if we restrict ourselves to behavioral strategies [34].

Theorem 3.5. In a game of perfect recall, any mized strategy can be replaced by an
equivalent behavioral strategy, and vice versa.

When the existence of NE in this new strategy type is guaranteed, creating a new
game representation has proved reasonable. Because this framework is directly depen-
dent on the perfect recall, it is essential to involve a fundamental aspect of it, which
seems to be a history. History of an agent is then maintained by a sequence of actions
which player has to play to get into the current state.

1Y Tt could be possible if there were single-stated information sets only, but this wouldn’t be an imperfect-
information game.
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Definition 3.6. Sequence Given an imperfect-information game G = (P, T, I, b,
u) with a game tree T = (S, Z, A, e, f, r), a sequence of actions for player p; is a list
of actions o; € ¥; that lie on the path from root state r to any state s € S. All sequences
leading to an information set I are denoted seq; ().

Sequences can be extended by finding feasible actions in the information set to which
the particular sequence leads. Formally, for every sequence o; € seq;(I), a set of its
extensions is a set Ext(c;) = {0;a;| a; is feasible in I}. The game tree is constructed
inductively in the way that for every information set the sequences which lead to it
are taken and by their extensions is found a subsequent information set. Every state
in every information set is clearly characterized by a combination of sequences of all
players, which lead to this state.

Given a behavioral strategy, it is obvious that some sequences will be preferred over
others in sense of their likelihood to be played.

Definition 3.7. Realization plan The realization plan of B; € B(p;) for player p; is a
function r; : 0, € ¥; — [0, 1] defined as r;(0;) = Haeai Bi(a).

Realization plan computes the conditional probability of playing a sequence o; when
considering a behavioral strategy ;. Nevertheless, this realization probability cannot
be truly arbitrary. The linear constraints C; have to be met:

] I‘z(@)zl,
[ ] VIGL : ZU{EE:cti(I)ri(o-’g) - rz(seqz(l))a and
] I'Z'(O'i) Z 0.

The first constraint says that the conditional probability of playing an empty sequence
when considering any behavioral strategy is always 1. The second constraint ensures
that the realization plans of sequences leading to the states reachable by one action
from information set I sum up to the realization plan of reaching set I. This also allows
the original behavioral strategy to be possibly recovered afterwards, just from these
equations. Finally, the third constraint demands the realizations of all sequences to be
nonnegative. It is quite natural, since the realization plans are the probabilities, which
are by definition at worst zero.

With all this knowledge, now it is attainable to define a sequence-form representation
of a game.

Definition 3.8. Sequence-form representation Imperfect-information game of perfect
recall in sequence form is a tuple G = (P, ¥, u, C), where:

m P is a set of players;

B Y = (31,%,...,%,), where ¥; is a set of sequences for player p;;

m u if a utility function, v : 0 € ¥ — IR; and

m C = (C, Cy..., C,), where C; is a set of linear constraints on the realization prob-
abilities r;(o;) of player p;.

With the sequence-form representation, the computation of NE can be done in time
polynomial in the size of the game tree. This is far more efficient than with the induced
normal form, for which even the within-form transformation causes an exponential
increase and after that the equilibrium is found in polynomial time [16].
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B 3.2.1 Full sequence method

The exact Nash equilibrium in zero-sum two-player games can be computed by solving
the following linear program [16].

minimaze v

subject to vy, (g,) — va > Z gi(o1,02)r2(02)

neco 09EY
ro(0) =1 (3.1)
S raoh) = ra(seqa(D)
UéEEJﬁtz([)
7“2(02) Z 0

The algorithm is deterministic and using a simplex method [35] for solving linear
programs guarantees finding an equilibrium in a finite time. However, the calculation
can be time-consuming. Due to this fact, using full sequence method as a real-time
solving algorithm is without a good evaluation function computationally impossible.

B 3.2.2 Double-oracle method

Double-oracle method is a refinement of the full sequence method for finding exact Nash

equilibrium in two-player zero-sum games. The players are allowed to play only some

of the sequences of feasible actions, which restricts the original game and therefore

allows faster convergence to the solution. The algorithm works iteratively and after

each iteration adds the additional best-response sequences to the restricted game.
More precisely, in one iteration the algorithm [36]:

m creates a restricted game by limiting the set of sequences that each player is allowed
to play

= computes a pair of Nash equilibrium strategies in this restricted game

m for each player, computes a best response strategy against the equilibrium strategy
of the opponent, which may be any sequence in the complete game

The iterations are repeated until the final strategy profile is found. These strategies
are proved to be a Nash equilibrium [36].

Double-oracle method is a remarkable improvement over the full sequence method,
but its execution suffers from the same practical issues as full sequence. Termination of
the algorithm within a few minutes is almost impossible even in the simplest games. For
example, to solve a game of Phantom Tic-Tac-Toe requires more than 17,000 seconds
[36].

B 3.2.3 Information set search

Information set search is a technique which uses opponent modeling when searching
the game trees of zero-sum 2-player games [37]. Although the algorithm was originally
derived from minimax, it does not suppose the players to intentionally exploit the
strategy of their opponents. Instead it simulates their behavior to calculate an optimal
strategy.

Definition 3.9. History Given a two-player game G = (P, ¥, u, C), a history h is a list
of joint moves h = (a1, az, ..., an), such as o1 = (a1,as, ...,am-1),02 = (a2, a4, ..., Ap,)
WLOG"). The set of all histories leading to information set I is denoted seq(I).

1) The sequences can also be defined as o1 = (a1, as, ...,am), 02 = (a2, a4, ..., am—1), it doesn’t matter.

18



3.2 Imperfect-information games

Given a two-player zero-sum game with imperfect information G = (P, ¥, u, C) and
behavioral strategies of its players §; and s, a realization plan of playing a history
h € seq(!) is:
r1(01) ra(o2)

Zh/eseq(l) T(h,’ Bla 62)

An expected utility of any non-terminal history can be calculated using following
formula:

r(h, B1, B2) = (3.2)

h, Br, B2) ZZ@ a;) u(hag, By, B2) (3.3)

i=1 a;€o;

As it can be seen, the formula is recursive and requires traversing through the whole
game tree generated from the terminal node of history h, which can be computationally
impractical. An expected utility can be reformulated for a given information set I:

u(l, B, B2) = Z r(h, B1, B2) u(h, B, Ba) (3.4)

heseq(I)

Denoting A(I) a set of possible actions in information set I, a set A* of optimal
actions for player who is on move in I is according to the theory of information set
search computed as:

A*(I, B, B2) = argmaz.ecayu(la, Br, Ba) (3.5)

From the optimal actions can be deduced an optimal strategy S;(I) for player p;
(WLOG) in information set I.

Theorem 3.10. Given a two-player game G = (P, 3, u, C) and a behavioral strategy
B2 of player py, an optimal strategy of player pi in information set I for playing action
ac€A(l) is
1 . * * .
B(a) = {gx*(f,m,@n if a € AL, B, Bo); (3.6)

otherwise.

The strategy (7 is claimed to be a best response to strategy /2 [37]. The problem
is that a precise model of opponent’s strategy is in practice usually not accessible.
Consequently, the solving algorithm has to rely on approximate model of behavior of
player ps. Among two most common [37] opponent modelings are:

= paranoid model
= overconfident model

Paranoid model assumes, that the opponent will always make his best possible move.
A paranoid player expects his opponent to have the same information about the para-
noid player’s information sets as he does and that the opponent will take actions which
are the worst for a paranoid player. This might cause significant errors in the model,
when playing against a non-perfect player. The reason is, that the opponent considers
different information sets than the paranoid player, which may not allows him to make
such perfect moves.

On the other hand, overconfident model represents a player, who expects his op-
ponent to be totally unable to consider available information and that he makes his
moves purely randomly. Oddly enough, this approach can sometimes outperform the
paranoid model, mainly in situations where the paranoid player’s opponent modeling
is completely wrong.
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To conclude, information set search is a powerful technique for solving games, but
its dependence on modeling can lead to incorrect conclusions about optimal actions.
In fact, in situations where the model’s strategy does not represent a best response to
strategy 87 (and these are the most common [37]), the strategy profile found is not an
equilibrium. Due to these problems, information set search is not a desired algorithm
of this thesis.

B 3.2.4 Regret minimization

Regret minimization [16] is an alternative solution concept to Nash equilibrium orig-
inally introduced in the field of perfect-information games. The technique does not
maximize the worst achievable outcome, but instead it minimizes the worst-case dif-
ference between the utility obtained when playing the current strategy and the utility
that would have been gained if different decisions had been chosen.

Definition 3.11. Regret Given a game G = (P, A, u) and an action profile a =
(@1, ey Qiy ooy i), Dlayer p;’s regret regret for playing an action a; is

Rz(al) = majc ui(a;, a,i) - ui(ai, a,i) (37)
a’'€A;

Regret minimization strategy ensures, that the player plays reasonably well when
compared to the overall best possible outcome, no matter how do the other players
behave. His best action is then defined as:

a* = argmingea, max (R;(a;)) (3.8)
a_;€EA_;

Although this solution concept was meant to solve the games of perfect information,
regret minimization method was later extended to imperfect-information games too
[38-39]. The concept is called counterfactual regret (CFR) and the method is based on
iterative minimization of the immediate counterfactual regret at each information set.
This is achieved by many repetitions of a single game.

Definition 3.12. Immediate counterfactual regret Given a game G = (P, T, I, b,
u), immediate counterfactual regret is a player’s p; average regret for playing actions at
information set I, if he had tried to reach it:

REm(L,0) = 23 a7 (D) (wi(B 150, T) — wi( B, 1))
T (3.9)
RT. 1) = RT. I
z,zmm( ) aglAa()i) z,zmm( ,(I)

where:

m A(I) is a set of feasible actions in information set I;

w 72(1) is a probability of reaching information set I if players behave according to
strategy profile B. Therefore wfi (1) is;

® Bl15a is a strategy profile identical to B, except that player p; takes an action a in
information set I;

m u;(0, I) is counterfactual utility — the expected utility given that information set I is
reached and all players play using strateqy except that player p; plays to reach I; and

m T is the number of repetitions of the game.
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3.2 Imperfect-information games

Immediate conterfactual regret is a value defined in every information set. Conversely,
the average overall regret specifies the regret of player p; in the whole game:

T
1
T *
Ravg,i - T gzlez%i (ul(ﬁz ’ Bt—z) - uz(ﬁt)) (310)
t=1

The relationship between these two definitions of regret turned out to be really im-
portant. It has been proved [39], that the average overall regret is bounded by the

positive portion of immediate conterfactual regret:

Rivgi <D Riimm (D), (3.11)
where:
Rt (1) = max (R, (1), 0). (3.12)

Furthermore, in two-player zero-sum games with perfect recall, minimizing the average
overall regret of all players leads to an approximate Nash equilibrium [39].

Since the average overall regret is bounded this way, the algorithm for finding an
appropriate strategy can take advantage of it and rather than focusing on the overall
regret, it can try to decrease the immediate counterfactual regret in every information
set. If the strategy is modified after each iteration according to this formula:

R (1,a) o pTht )
B,T'H(a) ={ Xaeamn R{T (1) if R (7, a) > 0;
v 1

A otherwise,

(3.13)

the convergence to an approximate Nash equilibrium is guaranteed [38].

The method of finding equilibria based on conterfactual regret minimization became
a significant improvement in solving imperfect-information games, especially in a sense
of memory complexity. The reason is that the algorithm depends on the number of in-
formation sets, instead of the game states like in the full sequence method. This enables
to compute the equilibria even in the much larger game spaces. Another advantage of
CFR is its ability to compute best responses against one or more static opponents [38].

However, there are no theoretical guarantees for CFR to work in games with more
loose conditions, e.g. in games with multiple opponents, non-zero-sum or imperfect-
recall games; although it performs well also in some of these games [40]. In addition,
the algorithm works so well especially due to the domain-dependent abstractions, which
might be the real reason behind the success of CFR in card games like poker. In
these games, the game descriptions are known in advance and the algorithm can use
specifically designed abstractions. In GGP no good way of doing the abstraction is
known [41], which is probably the most significant weakness of using CFR in GGP.

B 3.2.5 Monte Carlo methods

Monte Carlo (MC) methods are a statistic-based class of computational algorithms that
use great number of repeated random sampling to calculate numerical values. These
values are than used to estimate an unknown probability distribution. Monte Carlo
techniques are usually applied when it is inconvenient to perform a deterministic calcu-
lation, either because it is impossible in a sense of time or memory, or the deterministic
formula doesn’t even exist.

A variant of MC invented in the game theory!) is called Monte Carlo tree search
(MCTS) [42]. MCTS is a heuristic search algorithm, which is immensely successful

1) In fact, this variant is used in the whole decision theory, but it is not essential for this thesis.
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3. Computing Equilibria

especially during the search of huge decision trees. Programs based on MCTS are
getting better every year, as the computational power increases. For example in the
game of Go, which is still considered to be one of the most difficult games, the first
algorithm has already reached a 6th') out of 9 dan (level) on 19x19 board [43].

Selection Expansion Simulation Backpropagation

(=) P -
OO @Q@@ @O @

210

0:1
Figure 3.3. Four phases of each iteration of MCTS algorithm [44].

MCTS is based on analyzing the most promising nodes in the search space. The
algorithm is iteratively constructing a partial game tree rooted at the initial state of
the game.

Definition 3.13. Monte Carlo partial tree Given a game G = (P, T, b, u) with a tree
T =(S, Z A, e, f, r), MCTS algorithm starts to construct a game tree T’ = (S, Z’,
A’ e, f, r, n, w), where:

m S’ is a subset of S;

m 7’ is a subset of S ;

m A’ is a subset of A;

m 1 is a function which counts number of performed simulations in any state from S,
n: S — IN; and

m w is a function which stores a cumulative utility of play-outs performed, w: S — IR.

Every iteration of Monte Carlo tree search includes 4 phases, shown in Figure 3.3:

m Selection — the algorithm starts in a root-node r and selects one of the leafs 1 € Z’ of
the already expanded game tree.

= Expansion — then it expands none, one or more children of 1, adds them to S,
respectively modifies Z’ and A’, and picks one of them or I for simulation.

= Simulation — now a single random play-out from the node selected in expansion down
to z € 7 is performed.

= Backpropagation — the result of the play-out is then propagated back to the root,
updating the values of n and cu functions in appropriate game states.

During the run, the algorithm expands the tree in accordance to random sampling.
Every sampling is executed as a play-out, within which the moves are chosen randomly.
The final utility of a particular play-out is used to modify statistics on the way from
the root of the play-out up to the root of the MC partial tree. The value is utilized to
evaluate nodes in the tree, so that when the next root of a play-out is being chosen,
the nodes with better outcomes are preferred.

1) Using the methods for solving games based on informed search, the algorithms accomplished at most 2nd
kyu, which can be compared to -2nd dan [43].
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3.2 Imperfect-information games

Critical is a balance of exploitation of states with high value estimates and exploration
of states with uncertain value estimates. In the selection phase MCTS decides, in which
way should be the tree expanded and evaluated during the current iteration. A popular
method for the selection is based on maximization of a UCT (Upper Confidence Bound 1
applied to trees) formula (3.14) [45], which was derived from a UCB1 (Upper Confidence
Bound 1) [46]. In every decision node on the way from the root to some of the leafs, the
UCT value decides in which direction the descend should continue. Since the estimate
of a current value remains uncertain until a large amount of simulations is executed, a
balance between exploitation of nodes with high values and exploration of nodes with
a low number of passes is critical.

i Int
UCT : u——l—c -
n; n;

(3.14)

Where:

m w; is the cumulative utility after ¢ moves;

m n; is the number of simulations performed after i moves;
m c is the exploration parameter; and

m t is the number of simulations in a given node, t = ). n;.

The formula is balancing the exploration and exploitation in the way, that the first
component is responsible for the exploitation, because it approaches 1 for a node with
a high number of wins. The second component corresponds to exploration, since the
fewer simulations were completed, the greater value the node acquires. The exploration
constant defines how much stress is put on the exploration phase. A greater ¢ signifies
more emphasis over exploration. Some theoretical analyses [45] expect ¢ to be equal
V2, but the value is in practice chosen empirically.

Although the UCT formula works well in the perfect-information game, it has been
proved the convergence to Nash equilibrium in games of imperfect information is not
guaranteed [47]. The solution brings an EXP3 formula [48].

(1 — ) exp (wpn) v

EXP3:
D oweA@mny) €xXp (wpn) — [C(p(h))]

(3.15)

Where:

m h is a leaf node of MC partial tree;

® wy, is the cumulative utility over all simulations through h;
= p(h) is a parent of h;

s A(h) is a set of actions applicable in h;

m 7 is the exploration parameter, v € [0, 1]; and

_ 9l
& =AM

The Exploration-exploitation with exponential weights (EXP3) computes a proba-
bility of selection a node h. The formula is also balancing the exploration and exploita-
tions, similarly to UCT. The greater the v parameter will get, the more will the formula
focus on exploration, since the first component will be almost equal zero.

The MCTS algorithm which uses the EXP3 criterion as its selection policy is proved
to converge to an approximate Nash equilibrium in simultaneous-move MCTS (SM-
MCTS) variant [49]. It is believed to converge also in a general imperfect-information
MCTS algorithm [50], however, the proof is still missing. An encompassing survey over
the numerous variants of MCTS is done in [51].
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3. Computing Equilibria

The main advantage of Monte Carlo methods (especially in the context of general
game playing) is their domain-independence and ability to find more precise approx-
imate Nash equilibrium with more iterations executed. At last but not least, the al-
gorithm is elegant and easy to implement. A practical disadvantage is that for useful
approximation of Nash equilibrium is required a significant amount of time and itera-
tions.
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Chapter 4
General Game Playing

This chapter presents both theoretical and practical fundamentals of general game
playing. As it has been said in the introduction, GGP arose as an attempt to bring
more general and domain-independent techniques into playing games. As an abstract
concept, general game playing consists of 4 parts:

s Knowledge Representation. All game descriptions are obligated to follow a standard
computer representation. This representation captures information about the game
in a manner, that it can be later used to solve more complex problems like reasoning
and finding optimal moves.

m Reasoning. The player has to reason about the game description to be able to con-
struct the game tree. The reasoning in GGP includes finding legal moves, identifying
players, determining the properties of following states, etc.

m Planning and Search. To play the game successfully, it is essential to recognize
sensible actions among all possible ones. This purpose serve well the techniques of
computational game theory.

m Learning. To support the planning the players can profit from previously gained or
currently extracted knowledge.

In this chapter are presented 3 out of these 4 fundamental parts of playing general
games. At the first place the chapter specifies the programming paradigm which is being
used to describe both the games and the game environment. Consequently, it proceeds
with defining the GDL language for knowledge representation; and GCL language for
communicating with the game servers. Next the chapter presents two basic approaches
into reasoning and finally, it identifies various methods of learning in GGP. The fourth
part — planning and search — is then discussed in the following chapter. All descriptions
in this chapter are loosely inspired by [9].

I 4.1 Game specification

Defining various games within a one concrete environment requires a robust mathemat-
ical background. Every agent has to be aware of all the possibilities the environment
offers. This includes the difference between legal and illegal game descriptions. These
boundaries clearly determines the kinds of games players can encounter and how they
will be represented.

Logic programming is a programming paradigm, which is based on formal logic and
thus provides suitable methods for precise definitions of both games and game environ-
ment.

B 4.1.1 Logic programming

Compared with imperative programming, logic programming defines the problem,
rather then how to solve it. The problem is incorporated into logic environment and
executing the program is to find a solution [52].
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4. General Game Playing

First, it is necessary to define several basic notions. Logic programming languages
consist of four sets of symbols:

m object constant

m function constant
m relational constant
m variable

Object constants denote simple objects occurring in the environment, function con-
stants are the names of functions, similar to calculus and relation constants represent
various associations. Variables are used to substitute any object constant.

As an example, let’s take a crocodile farm named Toothy Hill [53]. There are 4
crocodiles living on Toothy Hill, concretely Phil, Fat, Gloria and Kevin. All these names
are object constants. Fat is a hatchling of Phil and Gloria, which makes hatchling a
function constant. Then green can be a relational constant describing the property of
some of the inhabitants of Toothy Hill. If X is a variable, we can then say that some X
is green by green(X).

Definition 4.1. Term A term is either an object constant, a variable, or a functional
term, i.e. an expression consisting of a function constant and n simpler terms.

Terms portray an implementation of the basic symbols. So for example, if
hatchling is a function constant, X is a variable and Phil is an object constant,
then hatchling(X,Phil) is a functional term of two arguments.

Definition 4.2. Atom An atom is an expression formed from a relation constant and
n terms.

Relation between objects signifies some mutual dependency or property of one or
more objects. So if we take out little farm and consider another function constant
tail and relational constant longer, then longer(tail(Kevin),Gloria) is an atom
representing binomial relation.

Definition 4.3. Rule A rule is an expression consisting of a distinguished atom, called
the head, and a conjunction of zero or more atoms or negations of atoms, called the
body.

Now consider this logic program. Symbol ~ denotes a negation.

crocodile(Phil)

crocodile(Fat)

toothy (Phil)

long(Phil)

longer(X,Y) :- long(X), “long(Y)

threaten(X,Y) :- crocodile(X), crocodile(Y), toothy(X), longer (X, Y)

Logic programs consist of facts and rules. In the program above, the facts are instan-
tiated relations. They represents the reality, that both Phil and Fat are crocodiles.
The program also admits, that Phil is long and toothy. Two rules are included. First
says that somebody is longer then someone else, if the first entity is long and the
second one is not at the same time. Second rule presumes that someone will threaten
someone else, if they are both crocodiles, but the first one is toothy and longer than
the second one.
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4.1 Game specification

Definition 4.4. Proposition For a given logic program P, a proposition is a structure
consisting of an relation of n arguments and n objects from P. Fvery proposition is
possible to evaluate as true or false.

In logic program presented above, it is possible to ask, if Fat can be threatened by
Phil. It is a proposition. The environment then takes the rule and instantiates it to fit
the query.

threaten(X,Y)
X = Phil
Y = Fat

Following the definition of the rule, the instantiation is then pushed further into the
body.

crocodile(Phil)
crocodile(Fat)
toothy (Phil)
longer (Phil,Fat)

The longer rule is nested into the threaten rule, so it means that the instantiation
has to be pushed once again.

long(Phil)
“long(Fat)

And these are the facts of the program. There is no other long entity than Phil.
Consequently, the proposition is true.

B 4.1.2 GGP environment

Game Description Language (GDL) is a logic programming language derived from Dat-
alog, but static and purely declarative. The set of all relational, functional and object
constants is always finite in every game (although in some cases it can be very, very
large).

Language specification of GDL consists of two parts:

m game-independent vocabulary; and
m game-specific vocabulary.

Game-independent vocabulary provides the names and specification of every oblig-
atory constant to define the game. Such terms can occur in any game and a player
has to recognize their meaning. GDL uses default object constants substituting the
integers 0,1,..,100, used as utilities or indexes. Relational constants are dependent on
a GDL version and no function constants are predefined. It uses & symbol to define
a conjunction and a ~ symbol for negation. GDL exists in several forms'), describing
numerous types of games. Here presented will be two standard versions — GDL-I and
GDL-IL.

Games defined within GDL environment have always finitely many states, including
one initial state and one or more terminal states. Consequently, every game tree of a
GDL-described game has a fixed maximal depth. The number of players is finite and

1) For example there is a simplistic variant of GDL called mGDL [54]. A modification called SGDL (Strategy
Game Description Language) is intended for use in various strategy games [55]. There also exists an idea of
an extension of GGP called GGPGPGPU (for representing a game on graphical processing units), which I
believe would require a modified GDL. The two most common forms of GDL did come through an evolution
too.
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4. General Game Playing

constant in every game and every player has at least one goal state. The players choose
their moves simultaneously (i.e. the games belong to the class of simultaneous-move
games) and the environment changes in response to their actions only.

Each game specified in GDL has to be well-formed [9], which means it is obligated
to satisfy 3 conditions :

m Termination. A game description in GDL terminates if all infinite sequences of legal
moves from the initial state of the game reach a terminal state after a finite number
of steps.

s Playability. A game description in GDL is playable if and only if every role has at
least one legal move in every non-terminal state reachable from the initial state.

s Weak-winnability. A game description in GDL is weakly winnable if and only if, for
every role, there is a sequence of joint actions of all roles that leads to a terminal
state where that role’s goal value is maximal.

Moreover, everything which cannot be proved is in general game environment by
default false.

B 413 GDL-I

GDL-I is a form of GDL [56], which describes extensive-form games with simultaneous
moves. Games specified in GDL-I are obligated to provide at least one legal action for
each player in every non-terminal state. Sequential perfect-information games can be
implemented in GDL-I by enabling only one player to play a non-noop action in every
state of the game.

constant name meaning
role(a) a is an agent in the game
init (p) the proposition p is true in the initial state
true(p) the proposition p is true in the current state
distinct(o,p) the proposition p is not equal to the proposition o
does(r,a) agent r performs action a in the current state
next (p) the proposition p is true in the next state
legal(r,a) action a is feasible for agent r in the current state
goal(r,n) the current state has utility n for player r
terminal the current state is a terminal state

Table 4.1. Relational constants in perfect-information GDL.

Relational constants of game-independent vocabulary for GDL-I are specified in table
4.1. The players of the game are specified by relational constant role. The initial state
of the game (and also of the game tree) is described by all propositions, which are true
in the root state. These are those, which satisfy the relation init. Legal actions for
each player in the current state are restricted by legal and their number is always
finite. As the game tree branches, some propositions become true. Constant true
means that its argument is true in the current state and next remarks the same thing
for a next state. Distinct requires its two parameters to be different propositions.
The transfer in the game tree is caused by does, which says that a player executed a
particular action in the current state. Finally, terminal state is identified by terminal
and the utilities provides a binomial relation goal.
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4.1 Game specification

Now consider this example of Prisoner’s Dilemma in GDL.

1 role(Kevin)

2 role(Fat)

3 init(p)

4 legal (Kevin, cooperate)

5 legal(Kevin, defect)

6 legal(Fat, cooperate)

7 legal(Fat, defect)

8 next(t) :- true(p)

9 goal(Kevin, 100) :- does(Kevin, defect) & does(Fat, cooperate)
10 goal(Kevin, 66) :- does(Kevin, cooperate) & does(Fat, cooperate)
11 goal(Kevin, 33) :- does(Kevin, defect) & does(Fat, defect)

12 goal(Kevin, 0) :- does(Kevin, cooperate) & does(Fat, defect)
13 goal(Fat, 0) :- does(Kevin, defect) & does(Fat, cooperate)

14 goal(Fat, 33) :- does(Kevin, defect) & does(Fat, defect)

15 goal(Fat, 66) :- does(Kevin, cooperate) & does(Fat, cooperate)
16 goal(Fat, 100) :- does(Kevin, cooperate) & does(Fat, defect)
17 terminal :- true(t)

The game is a variation of the classic Prisoner’s Dilemma, which was already de-
scribed in section 2.3.2. There are two prisoners, here named Kevin and Fat, who are
separated and try to decide, whether they should stay quiet and cooperate or betray
the other prisoner. Both their actions are legal in every state of the game.

Cooperate\Deflect
@ Kevin
ﬁoperatek}eﬂect Cooper%eﬂect

66,66 0,100 1000 33,33

Figure 4.1. The game tree of Prisoner’s Dilemma formulated in GDL-I.

To demonstrate the whole game progress, the game tree of Prisoner’s Dilemma is
depicted in Figure 4.1. So for example, if Kevin decides to betray Fat, but Fat is
foolish enough to stay quiet, game terminates and Kevin gets his 100 and Fat quits the

game with 0.

B 414 GDL-II

Because GDL-I expects all players to have complete information about the game and
the moves of all players in the previous turns, it is not able to describe games with
imperfect information. GDL-II was created as an extension of GDL-I, using its game-
independent vocabulary and adding some new relational and object constants to be
able to define incomplete games [57].
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4. General Game Playing

constant name meaning
random pre-defined role that moves purely randomly
sees(r,p) agent r perceives p in the next state

Table 4.2. Extended constants in imperfect-information GDL.

Random is a new kind of player, representing the nature in the game, e.g. the dice
roll. The players do not have complete information about the game. Instead, they may
percept only selected parts of the state of the game. In every situation, the details they
are informed of is defined by sees. The number of possible percepts is finite in every
GDL-II game.

An example of a coin-flipping game formulated in GDL-II is presented below.

role(random)

role(Phil)

init(t1)

succ(tl,t2)

succ(t2,t3)

next(X) :- true(Y) & succ(X,Y)

terminal :- true(t3)

coin(head)

9 coin(tail)

10 legal(random, tossCoin(X)) :- coin(X)

11 legal(Phil, guessFlip(X)) :- coin(X)

12 next(guessRight) :- true(guessRight)

13 next(guessRight) :- does(random, tossCoin(X)) &
does(Phil, guessFlip(X))

0 ~N O O WwN -

14 goal(random, 100)

15 goal(Phil,100) :- true(guessRight)

16 goal(Phil, 0) :- true(t3) & ~true(guessRight)

17 sees(Phil, guessRight) :- true(guessRight) & true(t2)

This coin-flipping game has only one rational agent, called Phil. The game is played
in two rounds and at the beginning of each round a random player toss a coin. Phil
then tries to choose between two alternatives, head and tail. If he is successful, he
will gain 100 for sure, but since the game provides no percept in these states, he would
have never know. Anyway, the game continues to the second round and Phil faces the
same choice. Whether he is victorious not, the game ends and he gets 100 if he guessed
at least once the value right, or 0 otherwise.

The sees predicate guarantees, that Phil will become aware of the outcome of the
game, once he makes his two choices. This is granted due to the guessRight constant,
which is propagated through the game from the moment it became true. This can occur
in two situations — after the player takes an action in the first round (more precisely,
when he gets into the second round), eventually after the second round in case Phil is
not declared a winner in the first round.

The game tree of the coin-flipping game is in Figure 4.2. Until the game end, Phil
is not able to determine the state in which he is localed. The only thing he percepts
during the game-play is the request to select another action. This is why there are two
information sets in the tree. For example, if the actions taken by Phil are {tail, head}
and the actions of a random player are {head, head}, Phil wins and will receive utility
100. This particular game-play corresponds to the leftmost branch of the game tree.
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Figure 4.2. The game tree of a coin-flipping game formulated in GDL-II.

I 4.2 Game management

GGP is played through the network using HT'TP protocol. GGP server registers the
players and their IPs, schedules tournaments, or just a regular game playing, and
provides results and analysis. Game manager is a program hosted at a GGP server,
which manages the game-play of a particular game. When the match is about to begin,
the manager receives the details about it from the game server. This includes the
game specification in GDL'), two kinds of time limits and the info about the players.
The GGP matches always incorporate two clocks — a time limit before the game starts
(start-clock), and a time limit for each move (play-clock). Players are given a starting
time limit, so that they can analyze the game before the game-play actually begins.
Once the manager processes the settings of the match, the connection with each player
is established.

Graphics for
Game Server Spectators

Game ?

Descriptions |_| T
emporary
Game Manager (¢ St e

| v

Match  [€
Records ¢ T

Player

Figure 4.3. A schema of game manager as a link between a player and a game server,
inspired by [9].

Manager also provides output for spectators. When the game terminates it sends the
results back to the server’s game scheduler.

1) For better readability, the presented form of GDL was in the infix form. But in fact, not all GDL systems
enable to use such representation. Conversely, each one supports GDL in prefix form, so it became a standard
notation. In Appendix C can be found the description of this form and an example.
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M 4.2.1 GCL-I

For communication with players the manager uses a simple game communication lan-
guage (GCL). Game communication language has two variants depending on which
GDL version is used. As a first version is described GCL-I, a form of GCL designed for
communication in GDL-I matches.

The language is quite plain. It consists of only five defined keywords. They are:

= (info)

m (start id role description start-clock play-clock)
s (play id moves)

s (stop id moves)

s (abort id)

info message is used to ping the players. It is a common manner to return a player’s
name in response to an info message.

The match starts when a player receives a start message. This message contains
a match id — a unique identifier, so that the player can distinguish between different
contests; a role assigned to a player; a whole game description in GDL; a start-clock,
which determines the remaining time before the match starts; and finally a play-clock
for setting a fixed time limit the players have for choosing the next move. Within the
start-clock limit, the players have to respond ready.

The play message manages the progress of the single match. It informs each player
about the moves done by all participants in the game and requests the next action at
the same time.

When the game ends and the winner is determined, all players are notified by a stop
message. It holds the same information as a play message, but it does not demand the
agents to provide a next move. Players respond done.

The match can also terminate in an unforeseen manner, usually when some of the
participants disconnects or if someone is continuously attempting to perform an illegal
action. Such situation will result in sending the abort message to all players.

W 4.2.2 GCL-ll

The communication language for matches in imperfect information games alter two
keywords of the original GCL-I. They are:

s (play id turn move percept)
s (stop id turn move percept)

The meaning remains the same, but the messages require new arguments, due to
the need to inform the players about their percepts. Both the play and the start
message now contain three new arguments. First, a turn is an integer, a number
increasing in every round by one and used to ensure the player about the maintenance
of a communication, a move only confirms his previous action or the action selected by
the manager, if his choice was somehow incorrect !); and a percept informs him about
his perceptions.

1) The policy of a manager in cases when one of the players attempts to play an illegal action differs.
Sometimes it just chooses a legal action itself and informs the respective player about it in the next play
message. The manager’s reaction depends on rules of a particular server. The same thing applies for GCL-I.
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B 4.2.3 Game flow

Since this thesis focuses on imperfect information games, an example of a game-play
will be given on the Blind Tic-Tac-Toe game in GDL-II variant with the communication
in GCL-II. The whole description of the game can be found in [9].

The game starts when the manager sends the start message to all players involved
in the match.

Game Manager to Player x: ( start blindttt30 x ( (role x ) ... ) 10 10 )
Game Manager to Player y: ( start blindttt30 o ( (role x ) ... ) 10 10 )
Player x to Game Manager: ready
Player y to Game Manager: ready

The id of the match is blindttt30. It enables the players to check, whether the
incoming message truly belongs to the match they are playing right now.

As the game progresses, the players might all try to mark field (2 2). Since the
simultaneous marking are not allowed, player y is informed about his fail to do so.

Game Manager to Player x: ( play blindttt30 2 ( mark 2 2 ) ( ok ) )
Game Manager to Player y: ( play blindttt30 2 ( mark 2 2 ) nil )
Player x to Game Manager: ( mark 3 3 )

Player y to Game Manager: ( mark 1 3 )

It is evident, that they won’t interfere now, thus the denying of their actions will
depend on a current state of the game.

When the game terminates, all players receive the stop message.

Game Manager to Player x: ( stop blindttt30 3 ( mark 3 3 ) (ok) )
Game Manager to Player y: ( stop blindttt30 3 ( mark 1 3 ) (ok) )
Player x to Game Manager: done

Player y to Game Manager: done

I 4.3 Game description reasoning

To successfully participate in an imperfect-information game, a player has to correctly
figure out the way the game is played. For finding legal moves in every state of the
game, the player reasons about the game descriptions in GDL-II. Since the reasoning
can be quite time-consuming, efficient reasoner can provide an opportunity to focus
on more advanced calculations, which is finding better moves. There are two possible
basic approaches to this problematics.

The first option is based on fact, that dynamics of the particular game can be cap-
tured by a state machine. At every moment, the game is situated in a single state of
the state automaton and as the actions are performed, the state of the game changes
and the game moves along the corresponding edge on the state graph to reach the next
situation.
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Figure 4.4. A simple game represented as a state machine, inspired by [58].

When the game is represented as a state machine, the simulation of a transit along
the edge is done by an automated theorem prover working with the game description
in GDL. The prover takes the facts which determine the state and computes all edges
which originate in this particular state. As the game proceeds along the edge, the
prover involves the information provided by the edge, i.e. which actions were executed.
Using this knowledge, the prover is able to reconstruct the facts that become true in
the next state.

The automated theorem provers works well due to the fact, that in the GGP envi-
ronment the set of all relational, functional and object constants is always finite. This
ensures that the prover will terminate in finite time whenever considering a well-formed
GDL-II game. But although the provers has proved to be consistent and correct, they
are quite slow when searching a large game tree.

The state machines conveniently capture the dynamics of the game, but ignore the
dynamics of states themselves. For a state machine representation, a state is a solid
data structure, which only stores the facts about that state, specifically which propo-
sitions are true. However, the flow of the game is directly dependent on the way the
propositions change their values according to which actions were executed by the play-
ers. This suggests the game to be characterized as a propositional net, rather than as
a state machine.

In terms of graph theory, a propnet is a directed bipartite hyper-graph. It is similar
to a logic circuit, as it consists of 5 components:

m propositions
m negations

® conjunctions
= disjunctions
m transitions

Every game description can be transformed into a unique schema of correspond-
ing propositional network. This schema determines the way the components of the
particular network are interconnected. For example, in Figure 4.6 is depicted a propo-
sitional net of GDL-I version of Prisoner’s Dilemma, as described in section 4.1.3. The
components of every propositional net can be partitioned into 2 sets — connectives and
propositions. The propositions are the components of the network, which can be marked
with a boolean value. The connectives create relations between individual propositions
a determine the way the values are assigned to each proposition.

A propositional network represents the states of simultaneous-move game by a set
of boolean values of propositions in the net. Consequently, every state of the game in
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extensive form, in which the players effectively take their moves at the same time share
the same set of proposition’s values. In every propnet, there are three basic types of
propositions:

m base propositions
m input propositions
m view propositions

Base propositions are the propositions with incoming edges from transitions. They
represent a property of a current state which emerged from a previous state after tak-
ing a particular action. In propositional net 4.6, an example of base proposition is
( true P ). Input propositions are the propositions with no inputs. They correspond
to an action taken by a player. Every action for every player has an equivalent propo-
sition included in a propnet and in every state of the game, only one input proposition
for each player is true (excluding a root state). In propnet 4.6, there is an input
proposition called ( does Fat DEFECT ). Every propnet contains one special input
proposition, which is true in a root state only — init. Other extraordinary input
propositions are constants, the propositions with fixed value. Naturally, they are true
or false. The last kind of propositions are the view propositions. These are incorporated
into inner architecture of the network and their value can be calculated from values of
input and base propositions. For instance, the propnet 4.6 contains a view proposition
( legal Fat COOPERATE ). In other words, to uniquely distinguish one state of the
simultaneous game among other states, the values of input and base propositions are
sufficient.

An algorithm which computes a value of a particular view proposition takes its input
and performs a depth first search through the network’s architecture until it reaches all
bases and inputs on which the view proposition depends. Then it propagates the values
back and sets the value of the proposition in accordance to the connectives which the
algorithm meets on the way. As an example, consider the mapping 4.5 of bases and
inputs of propnet 4.6.

(does Kevin defect)
(does Fat defect)

(does Fat cooperate)
(does Kevin cooperate)

Figure 4.5. A sample mapping of the propositions to their boolean values in the proposi-
tional network of Prisoner’s Dilemma.

To determine the value of ( goal Kevin 0 ) the algorithm goes backwards, starting
in this proposition. It meets a conjunctive, which value is determined by its 2 inputs.
These are ( does Fat defect ) and ( does Kevin cooperate ). They are input
propositions, so at this moment the algorithm checks the input markings.
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Figure 4.6. The propositional network representing the Prisoner’s Dilemma.
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According to the mapping of these propositions to their boolean values, the propo-
sition ( does Fat defect ) is true, but ( does Kevin cooperate ) is false. From
this follows that the conjunctive is false and the value of ( goal Kevin 0 ) is therefore
false too.

To compute an initial state of a game, the propnet first marks all the input proposi-
tions with variable value false, as no player has taken any action yet. Then it assigns
a true value to the init proposition. Thereafter, it takes all the base propositions and
evaluates them. Only those, which depend on init proposition might be true, but
this depends on the architecture of a particular network. For example, the only base
proposition true in the initial state of the propositional network 4.6 is ( true P ).

To determine the legal actions, the propnet performs a similar procedure as when
computing the initial state. It marks all the input and base propositions in accordance
to the current state. Then it takes every legal proposition for every player and evaluates
them. Those, which are true, are the possible actions.

General games are simultaneous games. The next state is thus computed once all the
players made their moves. The propnet then marks the input propositions according
to these moves and evaluates every base proposition. This new set of values of input
and base propositions identifies the following state.

Naturally, a particular state is terminal, if terminal proposition is true in this state.
The utilities are then assigned to the players based on goal propositions. The propnet
finds all these propositions and calculates their values. The goals which are true, define
the utility for respective players.

I 4.4 Learning in games

Learning in games can help a player to extend his solving algorithm to perform more
domain-specific informed search. The knowledge can be based on identifying distinct
structures within a game description, such as factoring games; predicting how the game
will evolve using some kind of statistic learning; or automatic generation of evaluation
function.

@D @) (D) Q?@ @@

(@D D (@) 00 @&

Figure 4.7. An example of identifying sub-games in propositional net of Multiple Buttons
and Lights [9].

Factoring of games is a technique which enables the player to recognize independent
components in compound games [59]. For instance, consider a game consisting of
two Tick-Tac-Toe matches playing simultaneously. If a single Tic-Tac-Toe game has
branching factor b, then the branching factor of the joint game is b? and the fringe of the
game tree at depth d is therefore (b?)?. This can be significantly improved if the player
realizes that there are actually two trees - both with branching factor b. The total size
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of the fringe of these trees at depth d is now only 2b?. Another example is when the
termination depends on one sub-game solely. Then playing a move which leads to one of
other sub-games is literally a wasted action, which can be seen in Figure 4.7. Although
factoring is a general technique, the most convenient form of identifying independent
sub-games within one game is through propositional nets. The reason is that propnets
depict the game through the properties of each game state, thus enabling to locate the
sub-games more distinctly. The structure of the game projects itself on the structure
of the propositional net. Factoring can be performed as a search in the propnet, which
is clear when looking at Figure 4.7.

Learning can be utilized to predict the evolution of the game and push it towards
more promising directions. Notably statistical learning is used to improve biasing in
Monte Carlo simulation control, prioritizing the states and actions with higher statis-
tical correlation in winning [60].

Perhaps the supreme way to involve the learning techniques in the general game play-
ing is through their ability to automatically generate game-specific evaluation functions.
Almost every kind of heuristic incorporates one or more of these universal methods:

m Mobility. The heuristic suppose the states with higher number of possible actions to
be more beneficial.

m Focus. Tt is the opposite of mobility. It measures the narrowness of the game tree.

m Goal. The goal functions can indicate how close to the optimal terminal state the
current state is.

A famous method of producing effective evaluation functions is based on detecting
features from syntactic structure of the game. The learning algorithm first tries to
recognize and exploit relational patterns such as successor relations and board-like
grids. The features can be maximized or minimized, depending on what better serves
the purpose of winning. The search is then performed, demanding multiple single-
heuristic processes to pick up a best action. The suggested actions of each process are
then compared, eventually choosing the best move [61].

For extending the feature-optimization heuristics, one can also utilize fuzzy logic and
techniques for reasoning about actions to estimate a value to which a particular state
satisfies the logical description of winning [62]. The state’s distance to termination is
critical, search algorithms profits from seeking terminal states with higher goal values
and avoiding terminal states when goals are not yet reached or are too low.

Some approaches examine a simplified model of the game, which is much easier to
evaluate. Then examine the relevant features of their respective heuristics by their
performance on the model. The key aspect is the stability to work across various game
scenarios emerging during the game-play [63]. Another way is to employ neural nets to
construct improved evaluation functions [64], or even temporal difference learning [65].

Even with the ultimate evaluation function, the player is not safe from struggling with
a horizon problem. A short-term’s best action can generally prove to be unfortunate
from the long-term point of view and searching just a little deeper would have had
completely changed the strategy. The problem can be partially overcame by executing
a variable depth search, examining the promising parts of the game tree more intensely.

The great challenge of general game playing still remains a transfer learning, as a
method of applying knowledge already gained in previously played games. Algorithms
capable to analyze analogies between various games can considerably profit from such
ability [66].

To conclude, learning is an important part of general game playing for one reason —
the player plays a broad range of diverse games and learning can significantly boost his
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ability to play well, as there are no other options to create a domain-specific algorithm.
On the other hand, it is widely known that more learning requires more data and time,
which especially can be a great disadvantage for most general game players.
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Chapter 5
Player Shodan

This chapter describes the process and practical difficulties which have to be overcame
when creating a functional player capable to play a general imperfect-information games
in GDL-II. It presents “Shodan”, a player designed as a part of this thesis. The con-
struction of Shodan is based on theoretical background presented in Chapters 2, 3 and
4.

I 5.1 Player construction

The player is implemented in Java programming language and he is dependent on
two libraries. GGP Base!), a project of Sam Schreiber; and GT Library, a project of
Computational Game Theory group from Agent Technology Center located at Czech
Technical University in Prague.

GT Library contains domain-independent implementations of algorithms for solving
extensive-form games and defines a general domain framework for describing the games.
However, its formalization is different from the formalization of GGP. A domain?) is
an implementation of an extensive-form game with imperfect information G = (P, T,
I, b, u). Each domain has to define the rules of the game by describing the states of
the game, available actions in each state, partitioning the states into the information
sets, and modification of the states by actions. Finally, utility represents the outcome
for both players when the game ends.

Every well-formed domain is obligated to implement 4 classes — Gamelnfo, GameS-
tate, Expander and Action. Each class corresponds to the respective part of the defi-
nition of imperfect-information game in extensive form. Gamelnfo defines the players
and stores a domain-specific data. GameState is an implementation of a game state
with an assigned player and information set. If the state is a terminal state, GameState
determines its utility. GameState also defines the way the states change by applying
actions. In every state of the game, Expander specifies the possible actions. Finally,
Action class is an implementation of game’s actions. As a part of this thesis was in
the domain framework of GT Library created a distinct GGP domain, as a wrapper
between these two formalisms.

GGP Base is a set of Java libraries and applications for building and testing perfect-
information GGP players. It provides a common unified structure, which is obligated
to run a player. This includes communication with the game servers, processing rules
of games in GDL, representing games as state machines and simple automated theorem
prover implemented in Java.GGP Base also contains several other tools, e.g. a utility for
creating game descriptions, which is able to verify that the game presents a valid GDL;
a tool for matches visualizations for both participants and spectators or automated
tournament schedulers and result analyzers. The serious drawback of GGP Base is
that it was primarily intended for use with GDL-I. Consequently, numerous classes of
this library had to be modified to suit the framework of GDL-II.

1Y http://www.ggp.org/developers/players.html
2) The whole description of a domain and a tutorial to build one is included in Appendix B.

40



5.1 Player construction

B 5.1.1 Layers

Creating a GDL-II player is a complex process, which requires focusing on several
important tasks mentioned in previous chapter. The relevant parts of the player’s
design must aim at solving such problems. With this in mind was suggested a structure
of Shodan player, which is shown in Figure 5.1.

Game Manager <> ComT:;;?ation 2 Gamer
| I l
l Match
MonteCarlo
TreeSearch GGP DOMAIN ,
¢ Action l GameState
EXP3Policy * +
¢ Expander Gameilnfo

-} ConstructedTree Reasoner

Figure 5.1. The inner structure of Shodan player.

The player’s structure is composed of several interdependent layers, which together
enable the player to participate in the matches. The central part of the player is
based on the top of the Gamer class from the GGP Base, which was altered for use
with domains of GT Library, instead of the state machines, for which it was originally
intended. The player’s layers surrounding the Gamer class are:

s Communication

= Representation and reasoning
s Game data structures

s Game solving algorithm

First, the player is obligated to understand the communication protocols to be able to
play the tournaments on the game servers. The communication is handled by the com-
munication packages from GGP Base, which were rewritten to suit the needs of GCL-II.
In the structure of the player, the communication is incorporated into a communication
layer.

The knowledge representation is done in GDL-II and player has to correctly figure
out the way the game is played. The game is represented by a state machine or by
a propositional network. Both of them have their own specific practical advantages
and disadvantages and a respective reasoner (an automated theorem prover from GGP
Base or a propositional net search algorithm) has to be appropriately connected with
the GGP domain of GT Library.

The game data structures are distributed between several parts of the player’s struc-
ture. The GDL description, the time limits and the histories of percepts and actions
are stored in the modified Match class of GGP Base. The processed description is
integrated into respective classes of GGP domain. The main and the greatest structure
— the game tree — is handled by the Monte Carlo partial tree (on the figure called Con-
structed tree). The player builds and updates the game tree, as the match progresses.
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The data are constantly accessed by both the communication handlers and the solver.
The handlers identify the current information set in accordance with the data received
from the server and dispose the tree above it. This includes all lateral branches, which
do no pass the current information set. It means, that they are not longer reachable
and can be pruned. The solver continues with construction of the game tree below.

For solving the game and planning the next moves Shodan uses Monte Carlo tree
search method with EXP3 selection policy. These algorithms are a part of GT Library
and had to be just a slightly modified because of the opponent modeling described later
in this chapter.

I 5.2 Communication

In the moment the player invokes, the communication layer starts to listen at port
4001. It waits for an info or a start message. When the message is received, the
player reacts accordingly to the protocol. It parses the massage, identifies its type and
appropriate components of the message. If the info message is identified, it responds
with the information about the player, thus confirming that the player is ready for a
match. If a start message occurs, the layer acknowledges the main Gamer class, that
a match is about to begin. The central class then has to perform all the necessary
preparations, i.e. invoking the reasoner with the GDL description, setting the player’s
role in the match and registering the time limits. The start clock defines the remaining
time before the game actually starts, which can be used for launching the computations
and learning. Within this limit the player replies ready.

start
stop & abort
Game Manager play
info
Game Data |,
Structures |
Gamer ;
l Communication
layer
Reasoner

Figure 5.2. The structure of a communication layer.

The game starts and progresses with a play message. Once detected, the layer
initiates the update of the current information set, which results in pruning the game
tree; and notifies the Gamer class that the selection of the next move can begin. After
receiving a stop or an abort message, the communication layer informs about it and
causes a deletion of the redundant game data structures. Then Shodan returns to the
manager done.

The layer is also able to detect irrelevant messages in the current time, for example
the calls for another match.

I 5.3 Representation and reasoning

The player is able to use both kinds of game representations as described in previous
chapter — a state machine and a propositional network. The GGP domain in the GT
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Library is connected to one of the representations, which are carried out by the GGP
Base and uses it to reason about the game description. The representations themselves
need no cache, because the tree is cached by Monte Carlo partial tree.

B 5.3.1 Propositional network

Reasoning about game descriptions with propositional networks is a little more complex
than reasoning with theorem provers. First, in the moment the communication layer
recognizes a match-starting request, the propositional net has to be created. For this
purpose Shodan uses PropNetFlattener from the GGP Base. The flattener takes the
GDL description and instantiates the game domain. Once the instantiation is done, the
individual propositions which have been found are snapped together by various gates
(namely conjunctions, disjunctions, negations and transitions) and the propositional
net is created. The network then locates the propositions corresponding to important
methods necessary for the game-play, e.g. the legal propositions, sees propositions,
does proposition, etc.

GGP DOMAIN
getlLegals()
Expander
readProposition()
Gamelnfo initialize()

getNextSees() A \ 4
GameState | getNextBases() Propnet
A A getBaseValue() |

getinputValue()
Action

Figure 5.3. The structure of GGP domain designed to reason with propositional network.

For reasoning about the game states Shodan uses cached backward propnet traverse
through the propnet architecture. This algorithm has been already described in sec-
tion 4.3 of the previous chapter. To evaluate a desired proposition value, the domain
performs a depth first search from the proposition until it reaches the bases or inputs.
Then it propagates the value upwards. The search is cached in a sense that in every
state of the game, Shodan registers value of every proposition, once calculated. So
anytime the search reaches this proposition, it returns its value and does not have to
continue deeper into the network architecture. It is reasonable, since a lot of propnet’s
inner propositions don’t have to be evaluated numerous times. The disadvantage is
that this approach is quite memory-consuming, even though the cache is implemented
as a boolean array.

The GGP domain is modified for use with propositional networks. The Gamelnfo
class has a backward traverse implemented and this method is called from other classes
of propnet-based domain, how can be seen in Figure 5.3. So for example, if expander
wants to determine the legal actions in a particular state, it asks the Gamelnfo class and
this class performs the search through the network and returns the true propositions
representing the legal actions. Another example are the modifications of game states by
actions. The GameState class provides the Gamelnfo class the already calculated values
of propositions (necessarily including the values of bases) and the actions performed
by players. Based on this data, the Gamelnfo class then evaluates the values of base
propositions in the next state.
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The principal benefit of propositional networks is their swiftness. Propositional nets
are faster than most theorem provers, if implemented efficiently. The speed of reasoning
is essential for GGP, since it is a key to quick exploration of the game tree.

B 5.3.2 Propnet issues

Unfortunately, propnet flattening as implemented in the GGP Base experiences prob-
lems when encountering more complex game descriptions. Sometimes it creates more
or less components then it should. For example in the Monty Hall problem, as specified
on Dresden GGP server!), the flattener successfully finds:

( SEES CANDIDATE ( OPEN_DOOR 1 ) )

( SEES CANDIDATE ( OPEN_DOOR 2 ) )

( SEES CANDIDATE ( OPEN_DOOR 3 ) )

( SEES CANDIDATE ( CAR 1 ) )

( SEES CANDIDATE ( CAR 2 ) )

( SEES CANDIDATE ( CAR 2 ) )

( SEES CANDIDATE ( does CANDIDATE SWITCH ) )
( SEES CANDIDATE ( does CANDIDATE NOOP ) )

But it is unable to generate:

( SEES CANDIDATE ( does CANDIDATE ( CHOOSE 1 ) ) )
( SEES CANDIDATE ( does CANDIDATE ( CHOOSE 2 ) ) )
( SEES CANDIDATE ( does CANDIDATE ( CHOOSE 3 ) ) )

It seems that at a certain step the flattening algorithm does not consider the nested
instantiations. This is not only the problem of sees predicate, since e.g. in Kuhn Poker
(as specified in Motal’s thesis [14]) the flattener finds several unprovable game-specific
propositions.

Since the error could not be solved, the propnet was only used in experiments with
games that are flattened correctly. The domain using the propositional net reasoning
will be fully adapted as a default domain once the PropNetFlattener is fixed.

B 5.3.3 State machine

The theorem provers do not require an initialization similar to the propositional net-
works. For reasoning about games represented as state machines Shodan uses a theorem
prover called Aima prover, which is contained in the GGP Base. Before the game starts,
this prover performs a transformation of the GDL description into a functionally equiv-
alent description so that it is able to reason about it. The reason for this behavior is
that the Aima prover does not correctly apply distinct literals in rules in case they
have not been bound yet. The same problem has the prover with not literals. The
transformation works that way that it takes the distinct and not literals and move
them later in the rule, so that they are listed after sentence literals which define those
variables in the description. Aima prover works correctly and its implementation in
GGP Base is stable, but its main disadvantage is its speed.

Y http:// server.general-game-playing.de/ggpserver/public/view_game.jsp?name=montyhall
P ggp g g playing ggp P g Jsp y
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5.4 Game solving algorithm

GGP DOMAIN

initialize()

Gamelnfo getRoles() l

4

GameState geled) > AIMA
getlLegals() T

Expander

Action

Figure 5.4. The structure of GGP domain designed to reason with Aima prover.

Just as with the propositional networks, also for AIMA prover was created a distinct
GGP domain which integrates the methods for working with the prover. Its architecture
can be seen in Figure 5.4. Gamelnfo class contains several queries which are later asked
the prover to determine all important game-playing-related information. Specifically,
this class contains following queries:

s DOES query — for selecting the desired actions;

s GOAL query — for computing goals for each player in current state;

m INIT query — for determining the properties of initial state;

s LEGAL query — for finding legal actions in the current state;

s NEXT query — for identifying true propositions of the next state;

s ROLE query — for extracting player roles from the game description;
s TERMINAL query — for evaluating the current state to be terminal;
s VARIABLE query — for allocating variables in compound queries; and
s SEES query — for revealing percepts in the current state.

For example, if the GameState constructor is called to crate a root state of a game,
it selects an init query from the Gamelnfo class and asks the Aima prover about it.
The prover then returns the propositions which are true in the initial state.

In the case the reasoning works properly, the player is able to generate the game tree
and based on the percepts received from the GGP server he is capable to identify the
appropriate information set in which he can be located.

I 5.4 Game solving algorithm

When a player successfully recognizes the information set of the game in which he can
find himself, he can concentrate on choosing the move he considers the best with his
current knowledge. This can be done by one of the methods described in Section 3.2
of Chapter 3. The selected algorithm is incorporated into the structure of a player as
shown in Figure 5.5. It uses the game description reasoner to explore the game tree
and the knowledge gained by learning to search the tree more efficiently.

Generally, a player can choose from two most significant approaches in solving the
game. The first one can find only approximate Nash equilibrium and is based on some
variant of Monte Carlo tree search. The second one can find an exact NE. However,
the calculation is deeply affected by the game-play.
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First, since the GGP runs on the tight time limit, solving the whole game for an exact
NE remains impossible. Hence the players are forced to solve only a part of game and
use various heuristics to evaluate the states after exploring the game tree to a particular
depth. It is crucial to realize that the solvers do not calculate the Nash equilibrium of
a game played, but an equilibrium of a subtree created as a restriction of an original
game tree with the leaves values corresponding to the heuristic of that particular state.
Using better heuristics produce more relevant evaluations of the states and therefore

more sensible moves.
Game T’ Learnin
Description 9

Reasoner
Move State Termination Evaluation
List Update & Goal Function

vV v

Game solving algorithm 4

Figure 5.5. A general architecture of a planning player, inspired by [4].

Second, most algorithms computing NE are designed to solve the whole game or
find an approximate solution, starting from the root state of the game. In GGP, time
to calculate a move is given at every decision point. It seems rational to use already
calculated results to get more precise predictions. Consequently, the algorithms has to
be modified. The whole tree above the current state can be cut, because those parts of
the tree will no longer be visited. The solver than runs on the subtree generated with
the current state as a root.

Finally, even with an updated algorithm, the game-playing solvers struggle from
another issue. As the game progresses, the player can find himself in a non-singleton
information set. In this set, the player does not precisely know in which state he
is. It means that the restricted game can have multiple roots. However, the solving
algorithms can be executed from one state only. There are following options on which
states from the information set the algorithm could be run:

= On every state of the information set.
= On the subset of all states.

The obvious negative of the first possibility is that the information sets can be huge!).
In fact, to run the algorithm on the whole information set is in these cases simply not
possible. When considering the second option, the question remains: how to select the
subset. There are two possible approaches in doing this.

First option is to pick the states according to some rule or heuristic. The problem is
the quality of the found solutions can be significantly affected by the selection criterion.

Second approach is to choose the states randomly. Random sampling can be done
with paranoia or overconfidence [37]. Using paranoid sampling, the player expects

1) For example in the blind chess — kriegspiel, the cardinality of a single information set can exceed 500,000
[67].
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his opponents to make rational decisions to maximize their final utility, based on the
information provided in the current state of the game. Because the rational agent makes
his moves according to the mixed or behavioral strategy, the probability distribution
over the states in the information set corresponds with the likeliness of the game to be
located in the particular state. This modeling works well when playing with a rationally
reacting opponent, but can yield poor results against a random player.

Conversely, overconfidence suppose that the opponents do not consider the preference
over different states in the information set and make them all same probable. This
approach results in considering uniform probability distribution over the states in every
information set. In contrast to the paranoid sampling, overconfidence works well against
random players, but can fail when facing an experienced opponent.

However, this solution concept of applying a perfect-information algorithm on the
information set can suffer from following theoretical problems — strategy fusion and
non-locality [68]. Strategy fusion error is caused by the solving algorithm assuming
that it can make the right decision in every state of the game. But this is not true,
due to the fact that the information sets generally contain more than one state, and
these states can have different perfect-information strategies. Playing a certain action
in an information set can generate different expected outcomes even if the opponent ’s
strategy is pure. Consequently, fusing the optimal strategies from different states from
one informations set does not guarantee the final strategy being optimal. An example
of a strategy fusion error is given in Figure 5.6. In this game an agent Phil faces the
decision of playing an action in his upper information set . First possibility is to take
the left action, which results in winning in both states of the information set. But for
the perfect-information algorithm, playing the right action also yields a victory, because
it assumes that Phil is able to make a right decision in his lower information set. It is
not true, because the outcome of playing the same action in different states of this set
is opposite.

Figure 5.6. An example of a strategy fu- Figure 5.7. An example of a non-locality
sion error in a simple game, inspired by error in a simple game, inspired by [68].
[68].

Non-locality error is based on an assumption of a perfect-information algorithm, that
any game state can be analyzed based on the values of terminals of its own subtree.
But this is false too, since the outcome can also depend on other parts of the game tree,
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5. Player Shodan

covered in the information set. An example of a non-locality error is shown in Figure
5.7. In this simple game Gloria knows, that Phil is able to distinguish between his two
states. Consequently, if he takes a right action and not the left one, she can be certain
that the game is played in the left branch of the game tree. But the perfect-information
solving algorithm analyzing her information set is not aware of it and would have made
its move purely randomly. However, there exists numerous techniques for detecting
how much can these errors influence a particular game, so that the player can draw a
conclusion about the rationality of his behavior [68].

There is also a possibility to convert the perfect-information game-playing algorithms
into the imperfect-information players using the technique called HyperPlay [13], which
was noticed in section 1.1.

B 541 MCTS with EXP3

As a planning and solving technique was chosen Monte Carlo tree search method, which
uses EXP3 selection policy during the selection phase of the algorithm. The main reason
is that Monte Carlo methods are domain-independent, work satisfactorily under time
pressure and can be adapted for sequential launching. The EXP3 selection criterion is
most probable to converge to Nash equilibrium, as it has been said in Chapter 3. The
solver of Shodan is adapted to these kinds of games:

= one-player stochastic
= two-player
= two-player stochastic

During the game-play, the player is aware of the whole information set in which he
might find himself. Before MCTS can be run, the player has to decide, which state from
the current information set should be chosen as a root. For this purpose the player uses
belief distribution, an approach based on opponent modeling.

B 5.4.2 Calculation of belief distribution

Calculation of belief distribution is a method for determining a probability of being
located in the particular state of the current information set. It is build on an assump-
tion, that the opponent is likely to choose the best action that he can with his current
knowledge.

Ip

h2

BACPECRECY

b b
POLOOE
HOOD

Figure 5.8. The process of calculation belief distribution over a new information set.
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5.4 Game solving algorithm

When the game starts, the distribution over the beliefs in the information set is
uniform, as no one made his move. In fact, the information set can be singleton, if
the player is the first player to move in the constructing game tree. The belief over an
arbitrary state A in the initial information set I; is thus calculated as follows:

b(h) = ’i‘. (5.1)

From this point, Shodan proceeds inductively. As the game progresses and the beliefs
over the previous information set are known, the player has to compute new decompo-
sition of beliefs over a current information set I.. To do this, he performs a depth first
search from the previous information set I, after playing the action b he chose in the
previous round. In the two-player stochastic game to the new belief in the state s € I,
contributes three components:

b'(s) = b(h) p(m) p(a). (5.2)
First component corresponds to the normalized belief of a predecessor of s, h € I,.
The belief of h is normalized over all states h; € I,, among their successors belong any
state in I., denoted as I’), C L:
b(h)
b(h) = =——. (5.3)
Second component is a probability of the Nature player playing an action p € A(c)
which leads to the subtree where is located state s. In GGP, the distribution over the
feasible actions is always uniform, thus:
1
p(m) = :
|A(c)]
Finally, third component signifies the willingness of the opponent to take an action
a, which leads to the subtree containing state s. For calculation the probability, that
the opponent permitted reaching state h is utilized a number of play-outs performed
by Monte Carlo tree search. When denoting C(h/,a) a child of A after playing action
a and n(h') the number of play-outs which were executed through A, the probability
that the opponent will play action a in state o € I, is:

oa) - Zer,M(C00)
ZOZ‘EIU n(ol)
The values computed during the run of the depth first search might not yield a

proper probability distribution. The final belief of a state s should be normalized, for
the beliefs of the whole information set I. to sum up to 1.

/
bs) = — )
Zsiejc b/(si)

The whole computation of new beliefs is depicted in Figure 5.8. In this example the
states in I’y which leads to I. are {h, hy}, the belief of h is thus divided by the sum of
beliefs of these two states. There are two feasible actions in state c. Consequently, the
probability of playing action m is % Finally, the opponent is likely to take action a in
state o with probability p(a) = %

When the selection of a root is resolved, MCTS launches the repetition of iterations.
These 2 phases are then repeated until the time allocated for a move expires. The
action is chosen randomly with the distribution over the number of selections in each
of possible actions in the current information set.

(5.4)

(5.5)

(5.6)
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5. Player Shodan

B 5.4.3 Calculation exceptions

However, there are some situations in which these precise formulas are not exactly
applicable. These situations can occur especially in cases when Monte Carlo tree search
is unable to perform enough iterations of tree expansion and evaluation. The phase of
the belief computation, in which is calculated the chance that opponent is likely to take
an action a, any state s € I, can suffer from following problems:

s MCTS has not expanded the node C(s,a) yet;
s MCTS did not perform any iterations through s; or
s MCTS did not perform any iterations through C(s,a).

In these cases Shodan assumes the distribution over the states to be uniform.

I 5.5 Playing matches

The game starts, when the player receives a start message. Once that occurs, the
communication layer informs the central Game class and this class instantiates all nec-
essary classes for playing. This includes the classes from the GGP domain, which store
the game characteristics: Gamelnfo and the rootstate as an instance of GameState.
Simultaneously the reasoner is initialized (it means that either the propositional net
is constructed or the prover performs the transformation of GDL). Monte Carlo tree
search then starts the construction of the game tree and the player is ready to begin
playing.

The game progresses as the player receives a play message from the game server.
First, the player updates the history of percepts perceived so far. According to this
information he passes through the next layer of the game tree and finds all states which
belong to the current information set.

Game Manager f[sssssssssnnannng

History of actions ' Play message ' Current percepts ' Information set
updated received identified found

5 — 1

Action MCTS — Root Beliefs
selected iteration ran _’ selected recalculated

Figure 5.9. The process of choosing next action during the game-play.

During the search the player detects and cuts all branches of the game tree which
are certain to be unreachable. At the same moment Shodan computes a belief over the
selected states based on the algorithm described in the previous section. This helps
him keep the track of the probability distribution determining how will the states be
consequently picked as the roots of each MCTS iteration. Once the whole IS is collected,
the solving algorithm runs in the loop, repeatedly selecting states from the current
information set as roots and performing Monte Carlo iterations until the time remains.
In the last second, the player calculates the strategy derived from the distribution of
MCTS iterations over actions applicable in the current information set, chooses his next
move, sends it to the manager and awaits the next play message.

When the game terminates, all game data structures built during the match are
disposed.
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Chapter 6
Experiments

This chapter describes the experiments performed with the player. First, it states the
conditions under which the experiments were conducted. The chapter specifies the
programs used for testing, the games played, the opponents, and also the time limits.
Second, the results are given, together with a concise analysis.

I 6.1 Settings

Several experiments were carried out to evaluate the player presented in the previ-
ous chapter. Most games, which are being played in the imperfect-information GGP
tournaments, come from the Dresden GGP server!). The Dresden GGP server is a tour-
nament server for testing general game players on a broad range of different games and
against other rational players. The matches are scheduled by the server or manually.
The project also contains GameController?), a standalone Java program for running
the matches locally. This program was used to perform all tests.

There are 25 GDL-II games currently present on the Dresden GGP server. The games
vary from very simple ones like guessing the value of a rolled dice, up to relatively large
games like Mastermind. Three of them were picked and the player was evaluated on
each.

Three players were chosen as opponents for Shodan, specifically random, TIIGR [14]
and Shodan itself. Shodan player comes in two version. First version uses propositional
networks as the game representation and reasons by a backward search algorithm. The
second version represents the games as state machines and uses automated theorem
prover. Because the propositional network provides faster reasoning, the propnet-based
Shodan is the primary player. If the GGP Base flattener is able to process the game
description, the propnet-based Shodan plays the particular game. Which version of the
player participated in the game is stated in the description of each game.

Four parameters were set in each experiment. The time limit, the game, the role
of Shodan in the game and the opponent. The exploration/exploitation coefficient -y
was set to 0.05, based on several initial experiments. Each game was played 240 times,
players exchanged their roles and faced different time limits. The experiments were
performed on Windows 7 64Bit running on processor i5 4670K, 4Ghz, using 16GB
DDR3 1600Mhz RAM.

B 6.1.1 Time limits

Time limits are the most significant parameter which affects the performance of Shodan.
The reason is, that with shorter limits the reasoner produces smaller amount of MCTS
iterations. This can lead to imprecise decisions and unreasonable opponent modeling.
As the time limits get larger and the number of iterations grows , more iterations enable

1) http://ggpserver.general-game-playing.de/ggpserver/
2) http://sourceforge.net/projects/ggpserver/files/gamecontroller/
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6. Experiments

more precise convergence to an approximate Nash equilibrium. Specifically, following
play-clock time limits for each move were chosen:

m 30s;

m 60s;

= 120s; and

m 200s or 300s.

Because none of the players uses learning, the start-clock was fixed on 30 seconds.
Usually, all players responded with ready within the first 10 seconds after the start of
a game.

B 6.1.2 Games played

Following three games from the Dresden GGP server were chosen:

s Latent Tic-Tac-Toe
= Monty Hall problem
s Meier

Latent Tic-Tac-Toe is a blind variant of Tic-Tac-Toe. It is played by two players on
3x3 board and in every turn, only one player tries to mark a cell. The other one is only
able to perform a noop action. If the player is successful in marking the selected field,
the other one takes an action in the next round. Otherwise, the player has to decide
again. The goal is the same as in perfect-information Tic-Tac-Toe, which is to place
three follow-up marks in a horizontal, vertical, or diagonal row. The winner obtains
utility 100, the loser gets 0. If no player is successful in creating a row of his marks,
the game results in a draw, rewarding both players 50. The propnet-based version
of Shodan plays the matches of Latent Tic-Tac-Toe, because the flattener is able to
process this game’s description.

The Monty Hall problem is a brain teaser named after Monty Hall, a host of American
television game show Let’s Make a Deal. It is a form of probability puzzle [69], which
goes as follows. Suppose you are standing before three doors and you have to pick one.
Only behind one of them is a hidden treasure, remaining two do not conceal anything.
The chance of success %, that is clear. But once you make your choice, one of the other
two doors opens and there is just empty space there. Then you are given a chance to
reconsider your turn. Should you switch?

This teaser has become famous after its analysis in Parade magazine in 1990. One
of the readers asked this question and the response [70] was that it is reasonable to
change your decision and pick the other door. In this game the player scores 100 if
he chooses the right door and 0 otherwise. Prover-powered Shodan competes in these
matches because the impossible to create a propositional net for this game.

The third game is Meier, a two-player game also called Lier’s Dice [71]. In this game,
the first player rolls two dices and looks at the result. Then he can claim the true
value of the dices or bluff. One way or another, the second player can accuse the first
player of not telling the truth or roll the dices. Regardless of the result, he has to
declare a strictly greater value, be it the true result or just a lie. The game ends when
one of the players indicts the other one of bluffing. The dices are revealed and if the
accusation is true, the claiming player obtains utility 100 and the other one’s outcome
is 0. Otherwise, the falsely accused player gets 100 and the other player quits with 0.
Prover-based Shodan plays this game.

The exact definitions of all these games in GDL-II can be found on the Dresden GGP
server.
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6.2 One-player games

I 6.2 One-player games

Monty Hall problem is an already solved game with one strictly best strategy. That
optimal action is to change your mind and pick the other door. With such behavior, the
player has 66% chance to win. The results prove that Shodan almost always changes,
since this action is strictly better than to keep the original choice.

30 s 60 s 120 s 300 s
candidate 63.33 £17.24 66.66+£16.87 60.00+17.53 63.33+17.24

Table 6.1. Ratio of wins and losses in Monty Hall problem with 95% confidence intervals

[%).

Results correspond with the expectations also due to the fact that the game is small
enough to perform a lot of MCTS iterations even within 10 seconds or less.

I 6.3 Two-player games

B 6.3.1 Against random

Matches against a random player are a convenient way to test a player against a basic
opponent. The reason is that since the random player does not improve with longer time
limits, the increase in performance of rational agents should be clearly visible. Another
advantage is that the randomness of this player guarantees that after numerous matches,
the outcome of any intelligent player has a sufficient information value.

Shodan performs quite well against a random player and it can be seen that the player
improves his win ratio with longer computations. The assumption that the opponent
will react rationally can be a disadvantage against random agents, but in this case it
was not confirmed.

First set of tests against a random player was performed on Latent Tic-Tac-Toe.
Latent Tic-Tac-Toe is a relatively large game with a great state space. This can affect
the efficiency of deciding under shorter time limits. However, it seems that against
random player, even the lower number of iterations yields almost satisfactory results.

30 s 60 s 120 s 200 s

X player 80.00£12.07 86.66£9.32 90.00+£8.66 86.66£10.43
O player 68.33£9.95 71.66+10.17 75.00+10.24 85.00£9.57

Table 6.2. Ratio of wins and losses in matches of Latent Tic-Tac-Toe against random with
95% confidence intervals [%].

In Meier, Shodan absolutely dominates over the random player in both roles.
Whether Shodan plays as the first or the second player, it usually wins. But in fact,
this is not so surprising, because the strategy calculated without a lot of iterations (i.e.
without the significant affection on calculation of belief distributions) says to claim the
truth when rolling the dices and accuse the opponent of lying when not on the round.
With this simple strategy, Shodan was able to win most matches, independently on
the role.

The precise number of iterations in Meier varied from tens of thousands in the begin-
ning of the match to hundreds of thousands in the middle and millions in the ending.
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Figure 6.1. The ratio of wins and losses Figure 6.2. The ratio of wins and losses in
in matches of Latent Tic-Tac-Toe against matches of Meier against random.
random.
30s 60s 120s 300s

first player 86.66£12.17 90.00£10.74 93.33£8.93 93.33£8.93
second player 83.33£13.34 86.66£12.17 93.33£8.93 90.00+£10.74

Table 6.3. Ratio of wins and losses in matches of Meier against random with 95% confi-
dence intervals [%].

To sum up, the player performs well against a random player in both Latent Tic-
Tac-Toe and Meier. The reason is that although the state space is large, Shodan is able
to perform enough iterations to react rationally. Furthermore, the assumption that the

opponent behaves rationally does not negatively affect the sampling of the state space
of both games.

B 6.3.2 Against TIIGR

Matches against TIIGR were the first real challenge. TIIGR is also based on MCTS,
but she!) involves UCT selection policy, while Shodan uses EXP3 criterion. The whole
architecture of Shodan is more complex than the design of TIIGR player. As a result,
Shodan is not able to perform the same amount of MCTS iterations as TIIGR. While
Shodan executes an equal or greater number of repetitions at the beginning of both
Latent Tic-Tac-Toe and Meier matches, as the game progresses, the player is unable
to compete with TIIGR in this aspect. This leads to a greater number of losses in
Latent Tic-Tac-Toe, especially in matches with longer time limits, where TIIGR is able
to compare larger number of possible outcomes.

30s 60s 120s 200s

X player 70.00£12.95 73.33+£12.19 75.00£12.21 71.66+13.84
O player 21.66+11.2 28.33+13.84 23.33£11.25 16.66+9.78

Table 6.4. Ratio of wins and losses in matches of Latent Tic-Tac-Toe against TIIGR with
95% confidence intervals [%)].

1Y In his thesis, Motal considers his player to be female.
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6.3 Two-player games

The first player possesses a considerable advantage in this game because of the op-
portunity of the first move in each round. This means that he does not have to think
so much about blocking his opponent and he can focus on finding actions leading to
victory. When playing as X player, Shodan wins. That fulfills expectations, since the
first player has a great advantage over his opponent. As the O player, Shodan loses
a lot. The main reason is that during 30-seconds-per-move match, the player is able
to produce only tens of thousands of iterations. That is extremely insufficient. There
is not enough data for accurate opponent modeling and it can result in considerable
deviations in the model. This problem is not so noticeable during the first half of the
match, when the cardinality of information sets does not exceed 50. However, when the
game progresses to the middle and further, the number of states in each information set
significantly increases and fluctuations in the middle can cause disproportional prefer-
ence over some states. This only confuses the player even more. When the player is not
able to perform enough MCTS iterations, calculations the belief distribution seems to
be quite a drawback. It could be, for the most part, substituted by uniform probability
distribution over the states.

; Shm‘:ian as X — Shodlan as first
== Shodan as O === Shodan as second
= TIIGR as O = T1IGR as second
100k = TIIGR as X 100l = TIIGR as fiits
80| 80|
5 | =
& &
o ®f o ®r
T ©
o o
a0 40
/
sl \ 20 —~—
20 40 60 80 100 120 140 160 180 0 50 100 150 200 250 300
Time [s] Time [s]
Figure 6.3. The ratio of wins and losses Figure 6.4. The ratio of wins and losses in
in matches of Latent Tic-Tac-Toe against matches of Meier against TIIGR.

TIIGR.

On the other hand, the performance of Shodan in Meier is interesting. When claiming
the true value as the first player, Shodan wins almost in every match. This is due to
the fact that TIIGR uses perfect information sampling when choosing the root states
of the Monte Carlo iterations in every information set of the game. As a result, TIIGR
loses the track of behavior of rational opponents. She supposes that since there are 36
possible outcomes of rolling two dices, the opponent will most likely bluff, so she calls
a bluff [14]. But that is not true, because every rational opponent will most probably
tell the truth, since his opponent has a lower chance to be able to speak truthfully in
the next round. Shodan won most games in which he was the first player this way, that
is by claiming the real value of the dices and waiting for TIIGR’s accusation.

30s 60s 120s 300s

first player 93.33£8.93 96.66+£6.43 90.00+£10.74 93.33£8.93
second player 20.00+£14.31 16.66+13.33 16.664+13.33 13.334+12.16

Table 6.5. Ratio of wins and losses in matches of Meier against TIIGR with 95% confidence
intervals [%)].
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The position as the second player is less positive. The fact is, that in the beginning
of the game, which is the most crucial part in this case, Shodan was not always able to
perform enough iterations to evaluate all states in the closest deeper layer of the game
tree and thus the belief distribution often degraded to uniform sampling. Nevertheless,
instead of claiming a bluff, Shodan took the dices and inverted the game into a situation
where he is the casting player in all games he won. The result is, then, the same as
when playing the first role. To sum up, Meier is an interesting game with potential to
become a popular game for testing the calculation of belief distributions.

B 6.3.3 Against itself

Shodan also performed several experiments against itself. Prover-based and propnet-
based implementations competed in Latent Tic-Tac-Toe. Propositional networks are
generally faster reasoners than automated theorem provers, so this comparison is inter-
esting due to asymmetric roles of the players in this game.

The experiments show that even with more efficient reasoner, the first moving player
still has a significant advantage over the second agent. However, with growing time
limit, the differences between reasoners increase and in experiments with 200 second per
each move a variant of Shodan reasoning with propositional networks strictly dominates
over the prover-based implementation.

30s 60s 120s 200s

X player 50.00414.86 65.00£11.65 71.66+12.15 78.33£12.15
0 player 28.33£11.2 36.661+10.43 45.00+10.87 51.66+12.85

Table 6.6. Ratio of wins and losses in matches of Latent Tic-Tac-Toe against Shodan with
95% confidence intervals [%)].

The performance of playing general imperfect-information games with Monte Carlo
tree search planning methods is highly dependent on the speed of reasoning. It can be
seen from the experiments that fast exploration of the game tree is really fundamental
for successful decisions. The example of Meier matches with TIIGR also confirmed the
sensibility of calculations belief distributions based on opponent modeling.
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Chapter 7
Conclusion

An approach to designing, testing and evaluating domain-independent playing algo-
rithm capable to participate in matches of general imperfect-information games was
proposed in this thesis. The main contribution of this work to the field of general game
playing systems is the creation of Shodan. This player is the first GDL-II player which
utilizes propositional networks as game representations, benefits from asymmetric pref-
erence distribution over states in information sets based on opponent modeling, and
plans the next moves with methods most likely to converge to an approximate Nash
equilibrium.

Game Against random Against TIIGR
Latent Tic-Tac-Toe 80.41 47.48
Meier 89.95 54.99

Table 7.1. An average utility of Shodan in the experiments.

The algorithm is based on three key features. The first one is propositional network
representation, the ability of Shodan to represent a game as a gate array. However, this
approach requires several optimizations in the game description and it has to subse-
quently transform the program into an array before it can be even used for reasoning.
This considerable initial inconvenience is computationally expensive, but the resulting
advantage of propositional nets is their speed and the natural ability to be implemented
on hardware.

The second essential feature of the player is calculation of belief distributions. Belief
is a value which represents the conviction of a player that he is located in a given
state of the game. Set of beliefs in each information set represents the probability
distribution over all states in this set. Sampling the information set using beliefs helps
the player to draw more precise conclusions about his current location in the game
space. The calculation is built on a simple assumption that the states belonging to a
single information set are not necessarily equally probable. The reason for this is that
the opponent acts rationally and his behavior causes some branches of the game tree
to be preferred over others. As a result, the sampling of any information set should
not be always uniformly random. Nevertheless, the method is directly dependent on
opponent modeling. Shodan utilizes the data provided by Monte Carlo tree search for
this purpose.

Finally, the most important part of Shodan is the planning core, i.e. the solving
algorithm. The player uses Monte Carlo tree search method with EXP3 selection policy
for picking the node for expansion during the run of each MCTS iteration. Monte Carlo
techniques are a well-known class of stochastic computational algorithms that use great
number of repeated random sampling. Selection policies are crucial for optimal run of
Monte Carlo tree search iterations, because they balance out the exploitation of states
with high value estimates and exploration of states with uncertain value estimates.
The problem with imperfect-information games is that the UCT formula, widely used
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for the selection phase of MCTS in perfect-information games, has been proved not to
converge to Nash equilibrium. EXP3 selection criterion is currently the policy which is
the most believed to converge; however, the proof is still missing.

The thesis also presents the results of several experiments performed with the player.
Three games of different kinds — single-player game, two-player deterministic game and
two-player stochastic game — were played. Shodan ran the games with several time
limits and the opponents of Shodan were: random player, TIIGR and Shodan itself.
The results show two important things. First, the calculation of belief distributions
works well against a rational opponent, but it requires a lot of MCTS iterations to
produce relevant predictions. Second, compared to a UCT-based MCTS player, Shodan
struggles with the efficiency of planning under shorter time limits. This is mainly caused
by the computational complexity of EXP3 selection criterion and the calculation of
beliefs, which requires additional game tree traversals.

I 7.1 Future work

Judging from the presented performance of Shodan, there is certainly a vast space for
future improvements. The already implemented general game playing algorithm can be
extended in several ways.

DIFFICULTY of First, the most significant bottle-neck
IFFICUL of Shodan is the performance of rea-
VARIOUS GAMES : e
ror COMPUTERS soning about GDL. One possibility is
EPSY to increase the computing speed of con-
struction of game trees by using field-
SoED iR <y programmable gate arrays (FPGA) to
AL FOSSIBLE o) .
FOSTIONS <G %) represent the propositional network. This
3%%&3 <COMNECT_RuR] (197) will allow more states to be expanded
PLAY PERFECTY within the time limit.
vl IR Another way is to focus on precise cal-
POSTONS | (GETHeRg) (a00) culation of belief distributions over sets of
states which the player cannot distinguis
tat hich the play t distinguish
- between. Using opponent modeling is es-
COMPUTERS (AN S sential for creating rational preferences
[BEAT ToP HUMANS Vo= et inent over states in information sets. The player
mﬁ; is then able to consider aspects which can
———— describe the real state of the game with
EOOSMEPT%%SSHU%% better precision.
(BT FoCuseD RRD @ Finally, an efficient generation of
otendact domain-specific  evaluation  functions
<GP0 R based on detecting of features from the
COMPUTERS syntactic structure of a game would in-
ES
MAY MEVER m crease the performance. These learning
OUTFLAY HUMANS ARG algorithms try to recognize and exploit
%5&\3 relational patterns such as successor re-
lations and board-like grids. They are

useful for adapting domain-independent
algorithms to a specific game by exploit-
ing its unique properties.

Figure 7.1. Ability of computers to play
games. [72]
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7.1 Future work

The performance of various game Als in different games is presented in Figure 7.1.
The ultimate goal is to create a domain-independent algorithm, which is capable to
compete in most of these games even with the human top players.
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Appendix B
Domain Documentation

This appendix serves as a tutorial into creating a distinct game domain in GT Li-
brary. The concept of domain was originally designed to represent two-player zero-sum
extensive-form games with imperfect information. However, this framework enables to
describe also other types of games, e.g. simultaneous-move games. Every well-formed
game is obligated to have following structure:

s Game Info

s Game State

s Game Expander
s Game Actions

In domain, Game State class is an implementation of a game state and its instances
form a set of all game states. Naturally, Game Action class is an implementation of an
action and its instances form a set of all possible actions. Game Expander is a class,
which implements a function selecting from the set of all actions only those which are
feasible in a given state. Finally, Game Info class provides a basic info about the game,
e.g. a list of participating players or a maximal obtainable utility. All together, the
domain creates a mechanism for a successful build of the entire game tree.

The crucial thing is to ensure, that all game states are accurately assigned to one of
the information sets. Based on the observations, the information set key should add the
game state to the set of appropriate indistinguishable states. A slight error can result
in constructing a game tree, which is not the same as it was intended. The framework
of GT Library also expects all players to have a perfect recall.

I B.1 Game Info

Game Info is a class generally describing the game, defining players, maximal utility
possible to obtain and maximal depth of the game. It serves as a static database
accessed from any other class in the domain. The rules of the game are fixed and
therefore the variables are defined as final.

m getMaxUtility() — Double Returns a non-negative double or infinity, representing
a maximal utility in the game, which is a parameter necessary for the successful run
of the solving algorithms, where it serves as an upper bound for tree pruning.

m getFirstPlayerToMove() — Player Specifies a player who takes an action in the
root of the game tree.

m getOpponent (Player player) — Player Toggles between the players.

s getInfo() — String Describes the game and its setup - e.g. Goofspiel with fixed
nature sequence.

m getMaxDepth() — Integer Returns a positive integer or infinity. Maximal depth is
an optional parameter, used to define an upper bound to terminate the game - e.g.
3 rounds.
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B Domain Documentation

m getAllPlayers() — Player[ ] Returns all players, including also the Nature player
(if present).

I B.2 Game State

Game State class is the main and the most important class of the domain. It identifies
the states and assigns them to one of the information sets, handles the currently playing
player and if recognized as terminal, provides the utilities to determine the winner.
Following the standard definition of extensive-form games, each game state belongs to
one of the players, or it can be defined as a chance node to simulate a move by nature.

m getProbabilityOfNatureFor(Action action) — Double Returns a probability of
performing the action. This value is assigned to all actions in every chance node
during the construction of the game tree.

m getISKeyForPlayerToMove() — Pair<Integer, Sequence> Creates an informa-
tion set key mapping the state to one of the information sets. ISKey consists of a
pair observation history - actions history.

s getPlayerToMove () — Player Determines which player is on the move in this state.

m getUtilities() — Double[ ] Provides utilities for each player at the current state.
If this state is not terminal, utilities are zero.

= isGameEnd() — boolean Checks whether the condition for a terminal state is sat-

isfied - e.g. if the current depth is equal to max depth.

isPlayerToMoveNature() — boolean Checks whether the condition for a chance
node is satisfied, so if the Nature player is on move - e.g. at the end of each round.
hashCode() — Integer

equals(Object obj) — boolean

copy() — GameState

I B.3 Game Expander

Expander is a class responsible for branching the game tree. It defines all legal actions
available in a given state, creates their instances and returns them at once.

m getActions(GameState gameState) — List<Action> Returns the feasible actions
in gameState.

B B.4 Game Action

Each instance of Action class corresponds to one possible action for a player on the
move.

m perform(GameState gameState) — void Performs the action in gameState.

m toString() — String Describes the action - e.g. in Rock-Paper-Scissors, one action
can represent The rock.

= hashCode() — Integer

s equals(Object obj) — boolean

70



B.5 Implementing new domain

I B.5 Implementing new domain

Standard type of game domain describes two-player zero-sum extensive-form game with
imperfect information. Any game of this kind can be implemented into the domain the
following way:

1.

step - Define game info

Info about the game should contain all the necessary information needed to define the
initial state — number of players, maximal utility, first player to move and if the end
of the game depends on number of rounds, it should be defined in getMaxDepth()
function.

. step - Create an expander

Expander takes a game state and creates a list of all possible actions in this state.
Formulate a way to find feasible actions in every state of the game tree.

. step - Describe the actions

Every action should be unique. They are described by the information set in which
they are executed and some other attributes which distinguish them within the same
information set. For example in Tic-Tac-Toe the actions are distingushed by the cell
which can be marked. Define these domain-dependent aspects of actions.

. step - Summarize all in a game state class

Create the getISKeyForPlayerToMove(), hashCode() and equals(Object obj)
functions to differentiate one state from others. Implement the whole one-round game
cycle. The cycle transforms one state into another, so it should consist of performing
the action, changing the IS key and switching between the players. Remember,
states could belong also to the Nature player to bring randomness into the game. By
convention, GameState () constructor returns the root state of the game.
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Appendix C
Infix Form GDL to Prefix Form

In this appendix is described the difference between prefix and infix form of GDL. Infix
version is more comprehensible than the prefix form, however, prefix GDL is widely
used by most GGP servers to store the game descriptions.

I C.1 Transformation table

In table C.1 is shown the mapping from infix to prefix GDL. The syntax of prefix GDL
does not differ from any other prefix notation, how used e.g. in Scheme!).

Infix GDL Prefix GDL
p(a,Y) (p a ?y)
~p(a,Y) (not (p a ?y))
p(a,Y) & p(Y,c) (and (p a ?y) (p ?y ¢))
q(Y) :- p(a,Y) & p(Y,c) (<= (q ?y) (and (p a ?7y) (p ?y ¢)))
q(¥) :- p(a,V) & p(¥,c) (<= (@ ?7y) (p a?y) (p?y c))

Table C.1. Mapping from infix GDL to its prefix variant [9].

I C.2 An example

An example is given on a GDL form of Prisoner’s Dilemma problem. This game is a
canonical example with applications in social sciences, economics and politics; and was
explained in detail in section 2.3.2 of Game Theory chapter.

The prefix form of this game looks this way:

1 role(Kevin)

2 role(Fat)

3 init(p)

4 legal (Kevin,cooperate)

5 legal(Kevin,defect)

6 legal(Fat,cooperate)

7 legal(Fat,defect)

8 next(t) :- p

9 goal(Kevin,100) :- does(Kevin,defect) & does(Fat,cooperate)
10 goal(Kevin,66) :- does(Kevin,cooperate) & does(Fat,cooperate)
11 goal(Kevin,33) :- does(Kevin,defect) & does(Fat,defect)
12 goal(Kevin,0) :- does(Kevin,cooperate) & does(Fat,defect)
13 goal(Fat,0) :- does(Kevin,defect) & does(Fat,cooperate)

-
i

goal(Fat,33) :- does(Kevin,defect) & does(Fat,defect)

15 goal(Fat,66) :- does(Kevin,cooperate) & does(Fat,cooperate)
16 goal(Fat,100) :- does(Kevin,cooperate) & does(Fat,defect)
17 terminal :- true(t)

Y http://www.rbrs.org/
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C.2 An example

The infix form of Prisoner’s Dilemma is described as follows. Appropriate lines of
infix and prefix variant correspond.

© 0 N O O b W N -

10

11

12

13

14

15

16

17

(
(
(
(
(
(
(
(
(

legal Kevin cooperate )

p)

Kevin 100 ) ( does Kevin defect )

cooperate ))

Kevin 66 ) ( does Kevin cooperate )

cooperate ))

Kevin 33 ) ( does Kevin defect )

defect ))

Kevin 0 ) ( does Kevin cooperate )

defect ))

0 ) ( does Kevin defect )
cooperate ))

33 ) ( does Kevin defect )
defect ))

66 ) ( does Kevin cooperate )
cooperate ))

100 ) ( does Kevin cooperate )
defect ))

role Kevin )
role Fat )
init p )
legal Kevin defect )
legal Fat cooperate )
legal Fat defect )
<= (next t)
<= ( goal
( does Fat
<= ( goal
( does Fat
<= ( goal
( does Fat
<= ( goal
( does Fat
<= ( goal Fat
( does Fat
<= ( goal Fat
( does Fat
<= ( goal Fat
( does Fat
<= ( goal Fat
( does Fat
<= terminal (

true t ) )
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Appendix D
Abbreviations and Symbols

In this appendix are stated the complete lists of all abbreviations and symbols used in

the text.

B D.1 Abbreviations

AAAI
AGI

Al
CFR
EXP3
GCL
GDL
GGP
GGPGPGPU
IJCAI
IS

ISS
IFF
MC
MCTS
MIT
NE
SM-MCTS
SPE
UCB1
UCT
WLOG

B D2

o
|
sy

iEEMq = D

Association for the Advancement of Artificial Intelligence.
Artificial general intelligence.

Artificial intelligence.

Counterfactual regret.

Exploration-exploitation with exponential weights.
Game communication language.

Game description language.

General Game Playing.

GGP through general-purpose computing on graphics processing units.
International Joint Conference on Artificial Intelligence.
Information set.

Information set search.

If and only if.

Monte Carlo methods.

Monte Carlo tree search.

Massachusetts Institute of Technology.

Nash equilibrium.

Simultaneous-move Monte Carlo tree search.
Subgame-perfect equilibrium.

Upper confidence bound 1.

Upper confidence bound 1 applied to trees.

Without loss of generality.

Symbols

A pruning heuristic used in backward induction.

A behavioral strategy.

Any probability distribution.

A pure strategy.

A set of pure strategies.

A mixed strategy; or a sequence in sequence-form game.

A set of mixed strategies; or a set of sequences in sequence-form game.
A set of natural numbers.

A set of real numbers.

Typographical system Tex.
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Appendix E
CD Content

At the CD are located several files which require a third party software to be executed.
Specifically, this includes the source code of Shodan, the text of this thesis and numerous
figures and algorithms schemata. All necessary programs can be downloaded for free
from the websites in footnotes:

= Java - in version at least 1.7!)
s TEX — both BTEX and plainTEX?)
= GraphViz — in version at least 2.36%)

Although an early version of Shodan ran at Java 1.6, with the new update the GGP
Base necessitates several external libraries compatible only with Java 1.7 and greater.
This document was typeset in PlainTEX using Cgplain?) for a few Czech characters
and the CTUstyle®) template by Petr Olsak, to whom I'm really grateful for that.
The images were mostly programmed manually or exported using Java to the DOT
language®), and later processed with GraphViz to PDF. Other figures were created in
CorelDRAW Graphics SuiteT).

For connecting the player to the Dresden GGP®) server or to the Tiltyard®) server
is demanded a public IP address. Without it the server is not able to ping the player
and schedule matches with his participation.

The enclosed CD contains following files and directories:

= cernyj49.pdf — the text of this thesis
= doc — directory with the TEXsource files of this document

= figs — contains all figures

= graphs — contains graph structures in DOT language
= specification — contains the specification of this thesis
= text — contains text source files

= gdlgames — directory with several games in GDL-II
« players — directory with .jar files of Shodan and TIIGR
= source — directory with implementation in Java

= GT library — contains the main classes of Shodan
= GGP Base — contains the supporting classes

) http://www.oracle.com/technetwork/java/javase/downloads/index.html
) https://www.tug.org/texlive/
) http://www.graphviz.org/
) http://petr.olsak.net/csplain.html
5) http://petr.olsak.net/ctustyle.html
) http://www.graphviz.org/pdf/dotguide.pdf
) http://www.coreldraw.com/us/product/graphic-design-software/
) http://ggpserver.general-game-playing.de/
) http://tiltyard.ggp.org/

75


http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.tug.org/texlive/
http://www.graphviz.org/
http://petr.olsak.net/csplain.html
http://petr.olsak.net/ctustyle.html
http://www.graphviz.org/pdf/dotguide.pdf
http://www.coreldraw.com/us/product/graphic-design-software/
http://ggpserver.general-game-playing.de/
http://tiltyard.ggp.org/

	TITLE
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents/
	Tables/Figures
	Introduction 
	Related work 
	Approach of this thesis 
	Overview 


	Game Theory 
	Introduction 
	Game 
	Agents' strategies 
	Optimal strategy 

	Game representations 
	Normal form 
	Extensive form 

	Decisive game aspects 
	Utility 
	Move sequencing 
	Information provided 


	Computing Equilibria 
	Perfect-information games 
	Imperfect-information games 
	Full sequence method 
	Double-oracle method 
	Information set search 
	Regret minimization 
	Monte Carlo methods 


	General Game Playing 
	Game specification 
	Logic programming 
	GGP environment 
	GDL-I 
	GDL-II 

	Game management 
	GCL-I 
	GCL-II 
	Game flow 

	Game description reasoning 
	Learning in games 

	Player Shodan 
	Player construction 
	Layers 

	Communication 
	Representation and reasoning 
	Propositional network 
	Propnet issues 
	State machine 

	Game solving algorithm 
	MCTS with EXP3 
	Calculation of belief distribution 
	Calculation exceptions 

	Playing matches 

	Experiments 
	Settings 
	Time limits 
	Games played 

	One-player games 
	Two-player games 
	Against random 
	Against TIIGR 
	Against itself 


	Conclusion 
	Future work 

	References
	Specification 
	Domain Documentation 
	Game Info 
	Game State 
	Game Expander 
	Game Action 
	Implementing new domain 

	Infix Form GDL to Prefix Form 
	Transformation table 
	An example 

	Abbreviations and Symbols 
	Abbreviations 
	Symbols 

	CD Content 

