
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

BACHELOR'S THESIS

Data movement in hybrid clouds

Pohyb dat v hybridním cloudu

Author: Matej Uhrín
Supervisor: Ing. Tomá² Vondra

Academic year: 2013/2014

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

BACHELOR PROJECT ASSIGNMENT

Student: Matej U h r í n

Study programme: Open Informatics

Specialisation: Computer and Information Science

Title of Bachelor Project: Data Movement in Hybrid Clouds

Guidelines:
1. Study the field of private and public cloud computing, mainly functionality of Amazon Web Services
 compatible clouds. Study the possibilities for backup and on-line replication of databases, e.g.
 MySQL or PostgreSQL. Verify the functionality of replication with an open-source web application of
 your choice.
2. Propose a method of profiling the demand of read/write and replication of a database on disk and
 network traffic. Perform measurements on more than one chosen web application.
3. Design a method to decide, whether it is more economical to run an application in multiple locations
 in hybrid cloud mode with all database acceses going through an internet line, replicate the
 database between locations, or when it is not economical at all.
4. The inputs should be the amount of read and write requests, the amount of data stored, the price for
 data storage (on both sites), price of data transfer and disk access.

Bibliography/Sources:
[1] Gunther, Neil J.: Analyzing Computer System Performance with Perl: PDQ. Springer 2011,
 chapter 11.
[2] Menascâe, Daniel A., et al.: Performance by design: computer capacity planning by example.
 Prentice Hall Professional, 2004, part I.
[3] Bossche, Van den, Kurt Vanmechelen, and Jan Broeckhove: "Online cost-efficient scheduling of
 deadline-constrained workloads on hybrid clouds." 2013.
[4] Li, Ang, et al.: "CloudCmp: comparing public cloud providers." Proceedings of the 10th ACM
 SIGCOMM konference on Internet measurement. ACM, 2010.
[5] Hajjat, Mohammad, et al.: "Dealer: application-aware request splitting for interactive cloud
 Aplications." Proceedings of the 8th international conference on Emerging networking experiments
 and technologies. ACM, 2012.
[6] Lněnička, Martin: "The Design of User Interface for a Cloud Storage Selection with AHP in Python."
 Proceedings of 4. Masarykova PhD., Hradec Králové, 2013.

Bachelor Project Supervisor: Ing. Tomáš Vondra

Valid until: the end of the summer semester of academic year 2014/2015

 L.S.

doc. Dr. Ing. Jan Kybic
Head of Department

 prof. Ing. Pavel Ripka, CSc.
Dean

Prague, January 10, 2014

České vysoké učení technické v Praze
Fakulta elektrotechnická

Katedra kybernetiky

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

Student: Matej U h r í n

Studijní program: Otevřená informatika (bakalářský)

Obor: Informatika a počítačové vědy

Název tématu: Pohyb dat v hybridním cloudu

Pokyny pro vypracování:

1. Prostudujte problematiku privátního a veřejného cloud computingu, zvláště funkce cloudů
 kompatibilních s Amazon Web Services. Nastudujte možnosti zálohování a on-line replikace
 databází, např. MySQL nebo PostgreSQL. Ověřte funkčnost replikace na open-source webové
 aplikaci dle svého výběru.
2. Navrhněte metodiku profilování náročnosti čtení/zápisů a replikace databáze na diskový a síťový
 provoz. Měření proveďte na více než jedné zvolené aplikaci a vyhodnoťte.
3. Navrhněte metodu rozhodování, zda je při provozu aplikace využívající relační databázi a běžící na
 více lokalitách v režimu hybridního cloudu výhodnější používat pro všechny přístupy internetovou
 linku či provádět mezi lokalitami replikaci databáze, případně kdy není vůbec výhodné aplikaci takto
 provozovat.
4. Vstupy by měly být množství přístupů pro čtení, množství zápisů, množství uložených dat, cena
 uložení dat (na obou místech), cena přenosu dat a diskových přístupů.

Seznam odborné literatury:
[1] Gunther, Neil J.: Analyzing Computer System Performance with Perl: PDQ. Springer 2011,
 chapter 11.
[2] Menascâe, Daniel A., et al.: Performance by design: computer capacity planning by example.
 Prentice Hall Professional, 2004, part I.
[3] Bossche, Van den, Kurt Vanmechelen, and Jan Broeckhove: "Online cost-efficient scheduling of
 deadline-constrained workloads on hybrid clouds." 2013.
[4] Li, Ang, et al.: "CloudCmp: comparing public cloud providers." Proceedings of the 10th ACM
 SIGCOMM konference on Internet measurement. ACM, 2010.
[5] Hajjat, Mohammad, et al.: "Dealer: application-aware request splitting for interactive cloud
 Aplications." Proceedings of the 8th international conference on Emerging networking experiments
 and technologies. ACM, 2012.
[6] Lněnička, Martin: "The Design of User Interface for a Cloud Storage Selection with AHP in Python."
 Proceedings of 4. Masarykova PhD., Hradec Králové, 2013.

Vedoucí bakalářské práce: Ing. Tomáš Vondra

Platnost zadání: do konce letního semestru 2014/2015

 L.S.

doc. Dr. Ing. Jan Kybic
vedoucí katedry

 prof. Ing. Pavel Ripka, CSc.
děkan

V Praze dne 10. 1. 2014

Název práce: Pohyb dat v hybridním cloudu

Autor: Matej Uhrín

Obor: Otev°ená Informatika

Zam¥°ení: Informatika a po£íta£ové v¥dy

Druh práce: Bakalá°ská práce

Vedoucí práce: Ing. Tomá² Vondra, Katedra kybernetiky, FEL, �VUT

Abstrakt: Tato práce analyzuje problematiku hybridních cloud· a specializuje se na
webové aplikace v reºimu hybridního cloudu. Obsahem téhle práce je návrh metody
rozhodování, zda je p°i provozu aplikace vyuºívajíci rela£ní databázi a b¥ºící na více
lokalitách výhodnej²í pouºívat pro v²echny p°ístupy internetovou linku nebo provád¥t
mezi lokalitami replikaci databáze. Tato práce dál de�nuje v²echny prom¥nné, se
kterými metoda pracuje a popisuje proces pro�lování obecné aplikace. Práce kon£í
ukázkou pouºití metody na dv¥ pravd¥podobn¥ nej£astej²í webové aplikace.

Klí£ová slova: Hybridní cloud, predikce ceny, databázová administrace, databázová
replikace, zát¥ºové testy, systémová analýza

Title: Data movement in Hybrid Clouds

Author: Matej Uhrín

Abstract: The main focus of this work is on hybrid clouds and web applications run-
ning in hybrid cloud mode. This thesis provides a method to decide, whether it is
more economical to run an application in multiple locations in hybrid cloud mode
with all database acceses going through an internet line or replicate the database.
This thesis further speci�es metrics and variables used in the decision method. More-
over, a pro�ling process on how to perform measurements and collect the mentioned
variables is explained. The work �nishes with method being tested on two of the
most common web applications.

Key words: Hybrid cloud, cost prediction, database administration, database repli-
cation, load-testing, system analysis

Acknowledgements

I am thankful to Tomá² Vondra for his patience with me and quick replies to my
numerous questions. I am also thankful to my family for all the support they have
given me.

Prohlá²ení autora práce

Prohla²uji, ºe jsem p°edloºenou práci vypracoval samostatn¥ a ºe jsem uvedl ve²k-
eré pouºité informa£ní zdroje v souladu s Metodickým pokynem o dodrºovaní etických
princip· p°i p°íprav¥ vysoko²kolských zav¥re£ných prací.

V Praze dne 23.5. 2014 .
Matej Uhrín

Table of content

1 Introduction 1

2 Theory 3
2.1 Cloud and Cloud Computing . 3

2.1.1 Infrastructure as a service . 3
2.1.2 Platform as a service . 3
2.1.3 Software as a service . 3

2.2 Cloud deployment models . 4
2.2.1 Private cloud . 5
2.2.2 Public cloud . 5
2.2.3 Hybrid cloud . 6

2.3 Replication . 6
2.3.1 Replication modes . 7

2.3.1.1 Synchronous . 7
2.3.1.2 Semi-synchronous . 7
2.3.1.3 Asynchronous . 7

2.3.2 Replication types . 8
2.3.2.1 Statement based replication 8
2.3.2.2 Row based replication 9

2.4 Testing replication in the cloud . 9
2.4.1 Test design considerations . 9
2.4.2 Master/Slave setup . 10

2.4.2.1 Backup . 10
2.4.2.2 Delayed slave . 10
2.4.2.3 Performance . 11
2.4.2.4 Load balancing . 11

2.4.3 Multi master setup . 13
2.4.3.1 Collisions . 14
2.4.3.2 Backup . 14
2.4.3.3 Performance . 14

3 Pro�ling 15
3.1 Tools . 15
3.2 Metrics . 16
3.3 Data transfer . 17

vii

TABLE OF CONTENT viii

3.3.1 Replication tra�c . 17
3.3.1.1 Tra�c uncertainty 18

3.3.2 Remote DB tra�c . 19
3.3.3 Client tra�c . 20

3.4 Disk storage and IOPS . 21
3.5 Performance . 21

3.5.1 Apdex score . 22

4 Decision Method 23
4.1 De�nition . 23

4.1.1 Instance . 23
4.1.2 Tra�c . 23
4.1.3 Storage . 24
4.1.4 Performance . 24

4.2 Further speci�cation . 24
4.2.1 Revision . 25

4.3 E-commerce website . 25
4.3.1 Latency vs. Performance . 28
4.3.2 Storing bigger data . 30
4.3.3 Conclusion . 30

4.4 Community blog . 31
4.4.1 Conclusion . 33

5 Summary 34

6 Appendix 35
6.1 Load testing the eCommerce application 35
6.2 Load testing the community blog . 37

Bibliography 40

List of notations

Shortcut Description
WAN Wide Area Network
TX tra�c Transmitted tra�c
RX tra�c Received tra�c
IaaS Infrastructure as a Service
PaaS Platform as a Service
SaaS Software as a Service
HaaS Hardware as a Service
DB Database
SBR Statement based replication
RBR Row based replication
bin-log Binary log
IOPS Input/Output operations per second

ix

Chapter 1

Introduction

The idea of 'renting' computational power has been around for a long time. In the
beginning, only few companies in the world owned a computer and not many people
actually needed one. For a person to use a computer he had to access mainframe,
do what he needed and pay for resources he used. It was either usage-time, storage
space or cpu cycles etc. This idea has been reborn on a much greater scale and it has
been given a new name: "The Cloud". The Cloud has now the potential to change
the World Wide Web as we know it.

This paper's main focus is on database administration in the Cloud. More speci�cally,
this paper concerns about web applications in the hybrid cloud and how well these 2
things go together.

The second purpose of this paper is to provide all the useful ideas and information I
have stumbled upon while working with clouds, databases and web applications.

Figure 1.1: Problem de�nition.

One of the possible set-ups in which a web application can take advantage of
the hybrid cloud is when a remote web server needs to be used. This paper aims to
mention/solve problems that can arise in this situation and provide a decision method

1

CHAPTER 1. INTRODUCTION 2

between 2 possible database set-ups in this scenario:

1. Replicate data between on-premise database and cloud database.

2. Remotely access single database located 'on-premise'.

and discusses the suitability of running web application in the above mentioned mode.
To distinguish replication and remote access, I will refer to them as the Replication
set-up and the Remote set-up or scenarios further down in the text.

This thesis is organized as follows: In chapter 2 I explain basic terms such as:
Cloud Computing, Replication, etc . I explain and test di�erent types of replication
set-ups. Discussed are performance speci�cs and backup possibilities in each set-up,
furthermore, I give necessary introduction to the load testing. This chapter can be
skipped if reader is familiar with replication, load-testing concepts and terms like
multi-master set-up and delayed slave.

In chapter 3 I de�ne system metrics that I will need and mention tools that I will
use to collect them. Moreover, I give a step-by-step guide on how to predict metrics
that can not be collected or accurately calculated.

In the �nal chapter 4 I de�ne the decision method and I use it on 2 applications. In
the application section I aim to explain why and when should one of the set-ups be
used and what to be aware of when using my method.

Chapter 2

Theory

2.1 Cloud and Cloud Computing

The cloud symbol has been used to portray the Internet or the WAN in network
diagrams and �owcharts since the very beginning. As a result, the general term
Cloud Computing has been adopted to refer to anything that involves delivering
hosted services over the Internet. In other words: such services that happen in the
Cloud. [10] These services are broadly divided into three categories:

2.1.1 Infrastructure as a service

IaaS, sometimes referred to as Hardware as a Service(HaaS), is a provision model in
which the client pays for virtual hardware.The provider owns and manages the real
hardware and is responsible for housing, running and maintenance. Most of the time
virtual hardware means virtual server instance, disk storage, virtual network, network
devices etc. The client pays per-use of resources both allocated and consumed.

2.1.2 Platform as a service

As the name suggests, PaaS provides a computing platform; be it database, web server
or programming language execution environment. It is useful mainly for developers, as
they can focus on developing their web application and do not have to worry about
management or execution.The platform is often �exible with respect to hardware
resources.(e.g. increase CPU if the tra�c is higher). Heroku is a great representation
of PaaS.

2.1.3 Software as a service

This acronym basically stands for a service running online with some form of access
and a level of customization for end users. Access is often web browser based. Service
can be either free or it can have a pricing model e.g. pay-per-use or free-premium.
The main advantage of SaaS is the total absence of management costs and easy access
from all around the world. Its disadvantage could be that end users cannot see what

3

CHAPTER 2. THEORY 4

the application really does or that the server operators are given the power to change
the software in use. Well known examples of SaaS services are Google Apps and
Spotify.

Figure 2.1: Level of involvement comparison[13]

It is clear that if I decide to self-host my application, I have to manage all of the
resources displayed in 2.1.

Bottom-line:
To di�erentiate a cloud service from traditional hosting: Cloud service has three
distinct characteristics [10]:

1. It is sold on demand, typically by the minute or the hour.

2. It is elastic: a user can have as much or as little of a service as they want at
any given time.

3. The service is fully managed by the provider (the consumer needs nothing but
a personal computer and Internet access).

2.2 Cloud deployment models

There are numerous approaches to clouds and how they can be used to the customer's
advantage. For a very speci�c application a speci�c deployment model can be used.
The most general ones are:

CHAPTER 2. THEORY 5

2.2.1 Private cloud

It is a model in which cloud infrastructure is used by a single organization meaning
that it is a proprietary network running cloud computing technologies. Examples
of such technologies are distributed computing and virtualization. Private cloud is
sometimes referred to as Corporate cloud or Internal cloud.

Figure 2.2: Private cloud running OpenStack as an IaaS

Private cloud has been heavily criticized. The main reason for this criticism is
that you still have to own and therefore buy and maintain all the hardware. You
still have to provide place and most probably upgrade hardware in the long run. In
exchange you will get secure environment and more control over your data storage
thanks to absolute control over your servers.

2.2.2 Public cloud

Public cloud provider makes resources(instances, volumes, applications...) available
to the general public over the internet. Customers usually pay per usage of instances,
storage... .

Figure 2.3: AWS(Amazon web services) as a public cloud

CHAPTER 2. THEORY 6

Public cloud seems to provide a perfect solution for start-ups. Inexpensive set-up
and zero termination costs make it a wise choice for someone who is 'trying his luck'
with a start-up and seemingly unlimited computational power could help also.

2.2.3 Hybrid cloud

Hybrid cloud is what you get when you combine public and private cloud. It is an
environment in which an organization manages some resources on-premises and some
are managed by a public cloud provider. It can be very useful if one wants to keep
sensitive data 'home' and still use public cloud resources. One of the disadvantages
might be the additional complexity of the development. One has to take care of both
'home' servers and AWS instances.

Figure 2.4: Hybrid cloud combining servers on-premise and payed instance from AWS

Hybrid cloud can also be used to run web application in a remote location while
still having the same application running back home.

Suppose I am running an e-shop in the Czech Republic and I want to open a 'branch'
for my Chinese customers. All I need to do is to buy a virtual server in Hong Kong
and install my application. What will happen if I decide to share data between them
? What should I use and most importantly, how much will it cost ? I will answer
these questions in the following chapters.

2.3 Replication

Replication is the process of copying and maintaining database objects in multiple
databases that make up a distributed database system. [12]

If correctly set up, replication will improve the performance and protect the availabil-
ity of the application. In this chapter I will brie�y explain various types of replication
and discuss possibilities for backup and high-availability with di�erent set ups.[2]

CHAPTER 2. THEORY 7

2.3.1 Replication modes

2.3.1.1 Synchronous

All servers are always synchronized in synchronous replication. It is due to the fact,
that the transaction will be committed if and only if the disk writing was successful
on both sides. The slave sends the acknowledgement(ACK) after the data has been
successfully received and saved and the master has to receive acks from all slaves
to proceed. It is clear that this behavior negatively a�ects performance, however,
synchronous replication is useful if one seeks a guarantee of a zero-data loss.[15] [16]

Figure 2.5: Synchronous replication. Inspired by [15]

2.3.1.2 Semi-synchronous

The di�erence between semi-synchronous replication and synchronous replication is
that the slave sends acknowledgement 'sooner' than the actual disk write. Therefore,
the transaction is also committed 'sooner' by master. In the case of MySQL, slave
'acks' master after �data has been written to slave's relay log and �ushed to disk� and
�master does not wait for all slaves to acknowledge receipt�.([9] semi-synchro. ch.).

Figure 2.6: MySQL semi-synchronous replication

2.3.1.3 Asynchronous

There is no delay in the master's transaction commitment in case of the asynchronous
replication.�The master writes events to it's binary log and slaves request them when
they are ready. There is no guarantee that any event will ever reach any slave.�([9]
semi-synchro. ch.) On the other hand, slave or number of slaves do not greatly a�ect
the master's performance. Asynchronous replication is the one to be discussed in

CHAPTER 2. THEORY 8

this paper, mainly because of it's performance superiority in 'geo-replication' and the
possibility to work with high latency internet connection.[19]

Figure 2.7: MySQL asynchronous replication

2.3.2 Replication types

Before I discuss 2 possible replication types, let me brie�y explain the replication
process in MySQL. There are 2 log �les involved in the process:

1. binary log

2. relay log

The binary log and also relay log contains events describing database(DB) changes.
Master's bin-log holds data that the slave reads and copies into it's own local relay
log, which is being processed and containing events are being executed. The bin-log
may consist of a single binary log �le or a set of numbered log �les(The same goes for
relay log). In MySQL, there are 2 possible ways in which the events in bin-log can
be stored. It translates into 2 possible replication types.

2.3.2.1 Statement based replication

In case of SBR, actual statements are written into the bin-log. With that being
said, there are things one should keep an eye on: Non-deterministic statements(aka
unsafe st.) are statements which may not have the same result on master and slave.
Examples of such statements are[20]:

� UPDATE and DELETE using LIMIT clause and not using ORDER BY

� Statements using SYSDATE(), USER(), VERSION() ...

If any statement is considered unsafe it is logged with a warning.

When using SBR, I would also consider an advantage that the binary log is very easy
to interpret using mysqlbinlog utility and one can clearly see table changes thanks
to the statement format. See example below:

at 26837146
%#140516 15 : 50 : 42 s e r v e r id 2 end_log_pos 26837292 CRC32 . . .
SET TIMESTAMP=1400255442/* !*/;
DELETE FROM wp_options WHERE option_name='auto_updater . lock '

CHAPTER 2. THEORY 9

2.3.2.2 Row based replication

As the name suggests, 'row' changes are logged in case of RBR. This makes the
whole replication process safer, because all changes can be replicated.[20], although it
usually result in bigger log �les, because all changed rows have to be logged. Suppose
I have issued the following statement

DELETE * FROM user WHERE name LIKE "J%"

In case of SBR, bin-log would only contain the actual statement(+ some additional
lines). On the other hand, RBR bin-log would contain all the a�ected rows.

2.4 Testing replication in the cloud

In this section I would like to describe the actual replication set-ups and test their
usability for back-up and high-availability. Before I do so, let me answer the obvious
question: How do I test web applications ?

2.4.1 Test design considerations

Load testing is a broad subject and deserves a thesis of it's own. There are however
few basic things one MUST(or should) take into consideration when designing load
tests. For instance, there is no way a user can �ll in the form in under 2 seconds unless
it is an automated script. Furthermore, users usually use advanced web browser with
caching and HTTP header management.

A proper test should try to mimic the user's interaction with the application to get as
accurate behavior as possible and therefore a proper test should have natural thinking
time to each user's action e.g. 3 seconds for login, 5 seconds for form submit, 2
seconds for typing search phrase etc. Furthermore, if one wishes to mimic user's
actions, he should also add some form of cache so that the load-test will not load all
of the page content from scratch every single time. Moreover, a cookie management is
necessary for a load-tester who wishes to test any kind of admin or logged-in actions.

Why should one care about using HTTP headers in his tests ? Web browsers indicate
support for compression with the Accept-Encoding header in the HTTP request.

Accept−Encoding : gzip , d e f l a t e

If a web server sees gzip in this header, it will compress it's responses. As a result,
up to 70% reduction of a web application's 'weight' is possible.[3] and that surely is
a signi�cant di�erence.

This thesis is about cloud based web applications where outgoing tra�c has major
impact on the resulting cost. If I am going to predict cloud costs based on the result
of a load-test, I might as well want to get correct predictions.

CHAPTER 2. THEORY 10

2.4.2 Master/Slave setup

192.168.2.0/24

192.168.2.4

192.168.2.6

Apache Web server, MySQL master

MySQL slave
Internet

PC running load tests

Figure 2.8: Master/Slave setup, application running on 192.168.2.4

2.4.2.1 Backup

This is the very basic replication set-up. Although, there is no load balancer neither
as a stand alone server, nor as a built in web application feature, there are number
of ways this particular setup can be used. Suppose I need to create a full snapshot of
the current database using mysqldump without a�ecting the performance and/or
making my database inconsistent.

�To use replication as a backup solution, replicate data from the master to a slave, and
then back up the data slave. The slave can be paused and shut down without a�ecting
the running operation of the master, so you can produce an e�ective snapshot of �live�
data that would otherwise require the master to be shut down.�([9] repli. sec.)

Therefore, my best bet is to run the dump against the slave. It is possible to write
complex statistical scripts that would result in mayor performance decrease if they
were running on the master.It is however essential to not modify the slave data in
any way apart from master updates as the inconsistency can cause trouble.

To make this clear: I �rmly believe that a running MySQL slave should not be
considered as a backup. Why ? If I run DROP DATABASE command on master,
it will be replicated and executed on slave as well. Hence, my data is lost in a blink
of an eye unless I used delayed slave.

2.4.2.2 Delayed slave

Delayed replication means that a slave purposely lags behind the master by at least
a speci�ed amount of time.([9] delayed slave sec.) It can be very useful for disaster
roll-back, testing of system behavior when there is major lag between master and
slave or for comparing data changes over the day. Delayed slave is available on most

CHAPTER 2. THEORY 11

DB engines: MongoDB, MySQL since v. 5.6. In MySQL setting up delayed slave by
N seconds is done like this:

CHANGE MASTER TOMASTER_DELAY = N;

2.4.2.3 Performance

In this case I used a simulation system which consists of ubuntu 12.04.3 LTS servers
connected together within a single private subnet. Each server has 1 virtual CPU,
4 GB hard-drive and 1 GB ram. I managed all of my instances through openstack
dashboard. There is �rewall with custom access-list protecting my subnet and there
is public-ip address assigned to my application server. Each instance has MySQL
server installed and there is always asynchronous MySQL replication running be-
tween servers.

My sample application has all the basic functions that most web applications have
nowadays i.e. (form submit, home page visit, login, tag search). All the load tests
were �red from my home computer. I have used Apache Benchmark for simple testing
and JMeter as a load testing framework for custom actions that user might take.

It is clear that di�erent actions require di�erent time to be processed. Internet con-
nection, number of DB queries or plain old fashioned code complexity are things that
impact performance the most(In terms of response time).

2.4.2.4 Load balancing

I wanted to test whether having my mysql requests divided into read and write re-
quests will be bene�cial to my application i.e.: All the reads go to slave and all the
writes go to master. I wanted to test this even though my servers have default settings
and my application is not optimized.

I solved the load balancing problem at application level by using php script called
hyperdb. This script takes care of choosing proper database server according to a
database de�nition �le. Hyperdb supports con�gurable priority for read and write
servers, failover scenario for downed host and many other options.

If we compare login responses(see 2.9 & 2.10), it is clear that load balancing between
master and slave did bene�t my application a little, but I believe the real strength of
load balancing shows when there are multiple slaves and heavy load of users.

I experimented with hyperdb priority groups a little and gave the same read priority
to both master and slave and logically kept the write permission only on master. This
way hyperdb chose read servers on random. Results were not much di�erent. Further
inspection on hyperdb proved that it also adds up small amount of time and resource
usage to each request.

CHAPTER 2. THEORY 12

Figure 2.9: Response over time without hyperdb

Figure 2.10: Response over time with hyperdb

CHAPTER 2. THEORY 13

2.4.3 Multi master setup

MySQL slave

Internet

PC running load tests

MySQL master

MySQL slave MySQL master

192.168.2.0 / 24

Web server

S1 M1

S2 M2

Figure 2.11: Multi master set up

Both masters are slaves to each other in case of MySQL asynchronous multi-master
replication. MySQL replication works by copying master's bin-log contents into slave's
relay-log and slave then begins to read and execute the updates present in the relay
log. Hence, If I want to redistribute updates further e.g. from M2 to M1 and then
to S1, I have to make sure that M1 will also "binlog" these updates. The thing I
need to add to each master's my.cnf con�guration �le is:

[mysqld]
log−s lave−updates

The question that arises from this statement is: If M1 sends update toM2. Will
M2 send the same update back toM1? Will it go on forever? The answer to the �rst
question is: "Yes, M2 will send the same update back to M1." M1 will, however,
make sure not to execute the update. (Replication sec. in [9] and [21])

Every bin-log and relay-log event includes server-id of the event. Server will only
process relay-log event if it has di�erent server-id than the server has. Furthermore, if
log-slave-updates option is turned-on, relay-log event will also be recorded in local
bin-log and distributed further.

Bottom line: If log-slave-updates is enabled, the replication tra�c between
servers will be doubled.

CHAPTER 2. THEORY 14

2.4.3.1 Collisions

In general, there are few crucial things that has to be checked in multi-master setup.
One of them is to be aware of possible collisions if for instance

AUTO_INCREMENT

option is used in queries. In my application, I only needed to set up:

1. auto_increment_o�set

2. auto_increment_increment

variables on both masters to ensure there will always be unique primary key for my
insert query. However, in many situations developers may be unable to use master-
master set-up, because of collisions that can not be sorted out so easily.

M1:
SET @@auto_increment_increment=2;
SET @@auto_increment_offset=1;
M2:
SET @@auto_increment_increment=2;
SET @@auto_increment_offset=2;

2.4.3.2 Backup

In the Master/Slave set-up 2.4.2, I have already mentioned using slave as some kind
of backup "partition" where I can create snapshot without a�ecting the overall per-
formance. It can come handy, but the real deal is consistent backup that will be ready
to be used the second my primary database server goes down and able to catch-up if
primary server ever goes back up. Such backup is often referred to as 'hot-standby'.
This term is used for a server that �can take over for the other node with minimal to
no warm up time�.[21] It is clear that such server should be able to handle all of it's
requests + requests from downed server.

If thoroughly load-tested, this simple setup(2.11)(together with the hyperdb applica-
tion load balancer) can be considered a 'hot-standby' backup scenario.

2.4.3.3 Performance

After running a few test scenarios against multi master setup(2.11) with di�erent
priorities, I have come to conclusion that this setup bene�ts application's performance
a lot. What I am basically doing is called horizontal scaling - "hiring more workers
to do the task" or subtask if we speak about read-only slaves.

Chapter 3

Pro�ling

Measuring a web application can be a tricky process, because of the inability to mea-
sure speci�c metric or that the speci�c application may require speci�c measurements.
The main purpose of this paper is a general approach to how a web application should
be measured in order to decide between theReplication set-up or theRemote set-
up. It is essential to choose the right measuring tools and the correct measurement
metrics.

3.1 Tools

Most operating systems already have built-in utilities that can measure system statis-
tics at the very basic level. However, measurement tools should be at least able to[1]:

1. Record and store data over time

2. Build custom metrics

3. Compare metrics from various sources

4. Import and export metrics

For instance: Unix iptables do provide built-in byte and packet counters, but to
record and store these numbers over time one will need to install additional software.

The perfect software for this job seems to be unix daemon Collectd. It uses Round-
Robin Database(RRD) to store data. Data can be stored locally, or it can be sent
over the network to remote monitoring server.

15

CHAPTER 3. PROFILING 16

Figure 3.1: Collectd over the network example

Thanks to numerous useful plugins and advanced con�guration options, collectd
is the main pro�ling tool I need to use.

3.2 Metrics

Collecting application level metrics is crucial for any advanced web application. Ex-
amples of application level metrics are:

� Blog posts per week

� New forum threads per day

� Chat messages per second

� Items purchased per day

� Photos uploaded per week

� Origin of visitors

...

These metrics can be used to calculate pro�t, to predict trends in the future, or even
to predict customer's behaviour. What is more, they can be surely transformed into
a lower level metrics such as:

1. Data transfer

2. Disk storage needed

3. Disk input/output operations

4. Performance

etc.

CHAPTER 3. PROFILING 17

These are exactly the metrics one would need to assume the costs and pro�ts in the
cloud(No matter the provider).

I should be able to assume them fairly accurate with very few tools while the applica-
tion is still running online without signi�ciant performance decrease. In the following
section I will de�ne the above mentioned metrics, describe how to e�ciently measure
them in case of web application powered by MySQL.

3.3 Data transfer

Most cloud providers di�er between incoming tra�c and outgoing tra�c(or RX and
TX). Therefore, I have to make sure that my tools allow me to di�er between RX
and TX too.

If I decide to move my web server into the cloud, it is obvious that the data transfer
costs will be represented by:

1. Replication over the internet or DB requests & data being transferred over the
internet.

2. Client tra�c.

3.3.1 Replication tra�c

To assume the replication tra�c I will take advantage of the binary log. �The binary
log contains events that describe database changes such as table creation operations or
changes to table data.�[9]. According to the database replication de�nition: Database
changes and table changes are replicated. Hence, the bin-log size more or less tells
me how much data one would have to replicate. Inspect the following MySQL set-up
of global variables:

| binlog_format | MIXED
. . .
| log_bin | ON
| log_bin_basename | /var / log /mysql/mysql−bin
| log_bin_index | /var / log /mysql/mysql−bin . index

I want to bring more attention to the binlog_format variable. Setting it up to
MIXED format means that MySQL will decide; whether it is more e�cient RBR
or SBR. The other options for binlog_format are: STATEMENT and ROW. The
binary log still fairly accurately re�ects the actual interface tra�c(Format does not
change this fact).

All I need to do is: Record the size change of �le mysql-bin.0000XY over time to
be able to make an educated guess on the replication tra�c. I can write a simple

CHAPTER 3. PROFILING 18

script to do so or I can make good use of MySQL plugin in collectd plugin library
and plugin's option: MasterStats.

<Plugin mysql>
<Database something>

Host " l o c a l h o s t "
Port "3306"

. . .
MasterStats true

</Database>
. . .

</Plugin>

This option will con�gure Collectd to periodically collect the results of mysql com-
mand SHOW MASTER STATUS. Although I did not set-up replication, MySQL
server still writes into the binary log and Position variable is the exact byte size of
the binary log �le.

mysql> show master status\G
*************************** 1 . row ***************************

F i l e : mysql−bin .000001
Position : 13542191

. . .

i.e. in this particular case the mysql-bin.000001 �le holds 13542191 bytes of data
to be replicated.

Finally, I end up with fairly accurate assumption of replication tra�c without going
through the process of setting up the actual replication.

Figure 3.2: Log position over time with noticable ramp-up

3.3.1.1 Tra�c uncertainty

Under special circumstances, predicting the replication tra�c can be a problem.
Speci�cally, if replication set-up takes advantage of slave compressed protocol,
the real tra�c will be lower than our prediction based on bin-log size. Exactly how

CHAPTER 3. PROFILING 19

much lower the tra�c will be depends on operating system and the actual implemen-
tation. For instance: MySQL uses zlip compression engine and according to [8] it
can compress the data to a third of it's original size.

If we speak about 'geo-replication', the next thing that must be mentioned is TL-
S/SSL. My experience is that the SSL encryption does not signi�ciantly impact
tra�c when used for replication unless additional compression is used.

3.3.2 Remote DB tra�c

It represents the DB requests and DB data that would transform into TX and RX
tra�c if I moved my database to a remote location.

To guess such tra�c I can use MySQL global_status variables: Bytes_received,
Bytes_sent and set up the Collectd to record the change of these variables over
time.

mysql> SELECT * FROM information_schema . g loba l_status
−> WHERE variable_name IN (' Bytes_received ' , ' Bytes_sent ') ;
+−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−+
| VARIABLE_NAME | VARIABLE_VALUE |
+−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−+
| BYTES_RECEIVED | 1534316315 |
| BYTES_SENT | 22984070129 |
+−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−+

However, it turns out that these variables are not very accurate when it comes
to assuming the actual tra�c �owing through the interface. Hence, I need to come
up with a better method. Very simple solution to this problem is to use built-in
byte/packet counters of unix iptables.

Inspect the following simpli�ed iptables set-up.

root@m:/# i p t a b l e s −A INPUT −p tcp −−spor t 3306 −j ACCEPT
root@m:/# i p t a b l e s −A INPUT −p tcp −−dport 3306 −j ACCEPT

The DB is on the same machine as web-server and thus it does not matter whether
I use INPUT chain or OUTPUT chain. One more thing I have to look for is how
the web-application is logging into the MySQL. If there is localhost being used, my
rules will not work. Why ? Because localhost is a special value that means "use a
Unix socket" to the MySQL client library and therefore it is a bypass of my tcp rules.

I solved this problem by creating virtual interface eth1:2 and con�gured my web
application to use it.

root@master2 :/# i f c o n f i g eth1 : 2 192 . 1 68 . 4 0 . 1 netmask . . .
root@master2 :/# i f c o n f i g
. . .
eth1 : 2 Link encap : Ethernet HWaddr fa : 1 6 : 3 e : db : d1 : 4 f

CHAPTER 3. PROFILING 20

i n e t addr : 1 9 2 . 1 6 8 . 4 0 . 1 Bcast : 1 9 2 . 1 6 8 . 4 0 . 2 5 5 . . .

Now the byte counters will work. Source port 3306 represents the actual data and
destination port 3306 represents database queries.

root@master2 :/# i p t a b l e s −L −n −v −x
Chain INPUT (po l i c y ACCEPT 3557 packets , 678567 bytes)

pkts bytes t a r g e t source − de s t i n a t i on
47395 63352592 ACCEPT 0 . 0 . 0 . 0 / 0 . . . tcp spt :3306
48194 7972091 ACCEPT 0 . 0 . 0 . 0 / 0 . . . tcp dpt :3306

. . .

After a straight-forward set-up of collectd iptables plugin I am able to see DB queries
and DB data in a nice graph.

Figure 3.3: MySQL requests(DB queries) over time

Figure 3.4: MySQL responses(DB data) over time

3.3.3 Client tra�c

Client tra�c is the tra�c generated by clients who use the application over a period
of time. It can be easily calculated 'per user'. What I mean by 'per user' is that I
can easily predict how much tra�c will a single user create. If I decide to include
geographic regions into my predictions, I need to know geographic location of my

CHAPTER 3. PROFILING 21

clients. The perfect tool for this job is Awstats. It analyzes server log �les and is
able to show where users are from. The output in percents can be used for further
calculations.

3.4 Disk storage and IOPS

�Volume storage for Standard volumes is charged by the amount you provision in
GB per month, until you release the storage. Volume I/O for Standard volumes is
charged by the number of requests you make to your volume. Programs like IOSTAT
can be used to measure the exact I/O usage of your system at any time. However,
applications and operating systems often cache at di�erent levels, so you may see a
di�erent number of I/O requests on your bill than is seen by your application.�[11]

That is pretty much it! There is perhaps one more thing to add: Most cloud providers
charge only for additional volumes one might want to mount to an instance. If
storage capacity of the instance is su�cient there is no need to calculate cost of
additional data storage + IOPS. The di�erence is: If the instance is terminated, all
data saved on the instance is lost, whereas data on additional volume is preserved.

I will, therefore, assume that if customer wants to run DB on the cloud instance, he
will pay for additional volume to secure his data from crash. On the other hand, if
the only thing he wants to run in the cloud is nginx web-server + php then instance
storage will su�ce.

I can use Collectd disk plugin to measure both needed disk storage and IOPS.

Figure 3.5: Disk IOPS over time shortly after loadtest start

3.5 Performance

Performance of a web application is often directly connected with user experience.
How should one measure user experience ? A simple approach is to measure response
times and decide whether they are reasonable.

CHAPTER 3. PROFILING 22

3.5.1 Apdex score

Apdex score is a measure of user satisfaction with application's response time[5].
Apdex is used by todays most famous cloud based load testing tools such as: NewRelic,
Blazemeter... . This method uses three performance zones:

1. Satis�ed

2. Tolerating

3. Frustrated

With these three zones de�ned, the apdex score is calculated like this:

Apdex =
Satisfied_Count+ Tolerating_Count

2

Total_Samples
(3.1)

It is clear that two separating thresholds T and F need to be de�ned[5]:

Satisfied = zero to T (3.2)
Tolerating = greater than T to F (3.3)
Frustrated = greater than F (3.4)

Figure 3.6: It is also recommended to de�ne the F threshold to be F = 4T .[14][17]

Response times can be collected over a long period of time or they can be the
output of a well designed load test. I will use load-testing, although the long period
collection is the better way to go. Load tests should be designed as explained in 2.4.1.

Keep in mind that the interpretation of apdex score should make sense. For instance:
If I run 20 minute load test and all of my response times will be in the satis�ed
zone apart from single one being in the tolerance zone, I will get for example A =
0.999456... instead of A = 1 which would translate to all users being satis�ed. In such
case making a statement that the application with A = 1 performs somehow better
is wrong. The data set acquired from 20 minute load test is too small to dwell on
number precision.

Chapter 4

Decision Method

At this point it should not surprise you that my decision method will be based on
the calculation of overall cost of each set-up and choosing the one with the lowest
cost. The whole idea is to assume the costs of replication and remote DB access by
analyzing chosen system metrics as described in the previous chapter.

4.1 De�nition

Basic de�nition of cost function is:

COSTT = INSTANCET + TRAFFICT + STORAGET + PERFORMANCET

(4.1)
Let me break it down and explain the variables on AWS example.

4.1.1 Instance

INSTANCET variable represents how much will I have to pay if I use speci�c in-
stance for speci�c amount of time T . Let me calculate instance cost of m3.medium
instance, which amazon o�ers for $0.070 per Hour.

M3.MEDIUMmonth = 0.070 · 24 · 30 = $50.4 (4.2)

4.1.2 Tra�c

TRAFFICT variable represents cost of outgoing and incoming tra�c during speci�c
amount of time. One should use modi�ed cost function if the billing strategy is
di�erent. For instance: Amazon charges only for outgoing tra�c.

TRAFFICT = USER_TRAFFICT +DB_TRAFFICT (4.3)

USER_TRAFFICT simply means tra�c generated by users using the applica-
tion over time and DB_TRAFFICT is the tra�c generated by either replication or
DB requests and responses over the internet.

23

CHAPTER 4. DECISION METHOD 24

Modi�ed tra�c cost function can be de�ned as:

TRAFFICT = TRAFFIC_OUTT + TRAFFIC_INT (4.4)

4.1.3 Storage

It is obvious that cloud providers charge for data storage. Usually the cost consists
of charges for stored data and the cost of input/output operations.

STORAGET = STORAGE_SIZE ·STORAGECOST + IOPST · IOPSCOST (4.5)

4.1.4 Performance

As I have already mentioned the user experience has signi�cant impact on how popular
the web application is; hence, it has direct impact on possible pro�t. I will, therefore,
de�ne the performance costs using the apdex score explained in 3.5.1:

PERFORMANCET = (1 − APDEX) · PENALTYT · USERS (4.6)

Suppose the team leader of the marketing division informed me that each frus-
trated user represents 1 dollar loss of pro�t per day, this leads me to de�ne PENALTYday =
1$.

PERFORMANCEmonth = (1 − APDEX) · 1 · 30 · USERS (4.7)

I should de�ne PENALTYday to be even higher considering that a frustrated
user might never return to use my application. Even small di�erence can have major
in�uence on resulting cost, hence, this variable should be well-de�ned and well thought
over.

4.2 Further speci�cation

To further simplify the cost functions, I will assume some variables according to real
system metrics.

As explained in 3.3.1, the 'replication' DB tra�c cost function for 30 days can be
rede�ned:

REPL_TRAFFIC30 ≈ LOG_POSs·BY TEPRICE·(30·24·60·60)·SLAV ESN (4.8)

Where LOG_POSs represents change of bin-log position per second. If I decide to
add multiple slaves, I surely need to multiply the whole equation by number of slaves:
SLAV ESN .

On the other hand remote DB tra�c can be assumed like this(Please see 3.4):

DB_TRAFFIC30 ≈ IPTABLE_RULEs ·BY TE_PRICE · (30 ·24 ·60 ·60) (4.9)

CHAPTER 4. DECISION METHOD 25

Here IPTABLE_RULEs is counter change of de�ned ip-table rule for either outgo-
ing or incoming tra�c. Result is clearly either outgoing tra�c or incoming tra�c.

Next I should assume the storage cost of replication scenario(see 3.4). I don't need
to rede�ne equation 4.5, although I should think it over. If I replicate data between
the servers, I can expect the data in the cloud to be roughly the same size and if the
user load is similar, I expect IOPS to be similar. At this point please see 3.4 in order
to understand why IOPST is the hardest variable to assume and can be inaccurate
if calculated from the results of short load test and transformed into one month as-
sumption. Thanks to pricing policy of most cloud providers, IOPST variable does
not play major role in resulting cost, although it should not be left out of an equation
completely. If I do not replicate, I can cross the STORAGET variable out.

PERFORMANCET mostly depends on hardware and server set-up. The only case
I can assume PERFORMANCET is if I replicate DB to a server with similar sys-
tem speci�cations and similar caching set-up. If it is not the case I can only make
an educated guess from app observation and common sense i.e. calculating possible
response times from number of DB queries per action...

4.2.1 Revision

Taking all of the above mentioned information into account I can design a new cost
function for each set-up:

REMOTE_COST (T) ≈INSTANCET + USER_TRAFFICT

+DB_TRAFFICT + PERFORMANCET

(4.10)

REPL_COST (T) ≈INSTANCET + USER_TRAFFICT + STORAGET

+REPL_TRAFFICT + PERFORMANCET

(4.11)

4.3 E-commerce website

I will verify the pro�ling and decision method on a sample application by collecting
speci�ed metrics 3.2 and creating a monthly cost graph with respect to number of
users.

The very �rst application I am going to pro�le is regular e-shop. Armed with Jmeter
load testing tool, Collectd metric collection program and equations 4.11, 4.10, I am
able to calculate the monthly charges of either set-up.

Load tests are designed the way explained in 2.4.1. In case of the e-shop, there are 2
step-by-step scenarios, which the Jmeter does: Buyer and Buddy. The buyer obvi-
ously buys stu�, therefore, he does all the actions one has to do to purchase something
from the shop namely: buy, �ll-in-form, pay and con�rm. The buddy only clicks

CHAPTER 4. DECISION METHOD 26

around, hence, his actions are: browse home page, choose random category, tag
search and random product.

Figure 4.1: Load test result shows response times of buyer's actions

In my case, customers are always: 10 % buyers and 90 % buddies. It translates
into 10 concurrent users being equal to 1 buyer plus 9 buddies, 20 = 18+2, 30 = 27+3
and so on. First o�, I need to distinguish between 'concurrent' and 'simultaneous'.
They are normally very similar terms but in load testing they have di�erent meanings.
Simultaneous means two or more requests at the same time. Concurrent is two or
more threads running in parallel.

I assume 100GB storage space to be su�cient and I de�ne pricing policy according
to AWS to be:

INSTANCEhour Tra�c_IN/GB Tra�c_OUT/GB STORAGE STORAGEGB/month 1M of IOPS

$0.070 $0 $0.12 100GB $0.05 $0.05

Table 4.1: De�ned pricing policy

With all the data available I am able to calculate the resulting cost and draw an
assumption graph. I left PERFORMANCET out of the equations in this case.

Empirical evidence suggests that cost linearly depends on number of users. Hence, I
have calculated �nal COST (USERS) functions by linear regression.

COSTREPLICATION(USERSN) = 0.45 · USERSN + 56.85 (4.12)

COSTREMOTE(USERSN) = 1.03 · USERSN + 54.22 (4.13)

CHAPTER 4. DECISION METHOD 27

USERS INSTANCET TRAFFIC_INT TRAFFIC_OUTT STORAGET Σ

10(9+1) 50.40 0.00 4.48 5.00+2.05 $61.93
20(18+2) 50.40 0.00 8.67 5.00+2.26 $66.32
30(27+3) 50.40 0.00 12.61 5.00+2.62 $70.63
40(36+4) 50.40 0.00 16.89 5.00+2.75 $75.03
50(45+5) 50.40 0.00 19.51 5.00+2.97 $77.88
60(54+6) 50.40 0.00 21.65 5.00+3.41 $80.46
70(63+7) 50.40 0.00 24.60 5.00+3.80 $83.79

Table 4.2: Replication set-up costs for T = 30 days.

USERS INSTANCET TRAFFIC_INT TRAFFIC_OUTT STORAGET Σ

10(9+1) 50.40 0.00 12.61 5.00+2.05 $63.01
20(18+2) 50.40 0.00 24.77 5.00+2.26 $75.17
30(27+3) 50.40 0.00 36.52 5.00+2.62 $86.92
40(36+4) 50.40 0.00 48.23 5.00+2.75 $98.63
50(45+5) 50.40 0.00 58.21 5.00+2.97 $108.61
60(54+6) 50.40 0.00 65.22 5.00+3.41 $115.62
70(63+7) 50.40 0.00 72.53 5.00+3.80 $122.93

Table 4.3: Remote DB set-up costs for T = 30 days.

10 20 30 40 50 60 70

60

70

80

90

100

110

120

130

Users

C
os
t[
$]

replication
0.45 · x+ 56.85

remote
1.03 · x+ 54.22

Figure 4.2: Cost assumptions for T = 30 days

CHAPTER 4. DECISION METHOD 28

It seems that replicating data between sites is the more cost-e�ective choice. Why is it
so ? As I have already mentioned the data movement or tra�c is the decisive factor.
In this case it is represented by only TRAFFIC_OUTT . Consider the following DB
queries:

SELECT * FROM products WHERE. . .
INSERT INTO orde r s . . .
SELECT * FROM chat WHERE. . .
. . .

In case of replication only the INSERT statement will be replicated(statement bin-
log format) or a�ected rows(row bin-log format). On the other hand, if I am not
replicating, I need to send all the queries and I should not forget about the fact that
only 10% of my users do 'write' actions.

4.3.1 Latency vs. Performance

I did not use PERFORMANCET variable in the previous assumption. How might
the performance a�ect the resulting cost ? What will happen if my web-server and
DB-server are '50 or more milliseconds apart' ?

To answer the above-mentioned questions, I will �rst introduce latency into my testing
environment. By issuing the following command on both servers, I set up delay to be
normally distributed with µ = 57.4ms and σ = 7.8ms.

tc qd i s c change dev eth1 root netem delay 57 .4ms 7 .8ms\
distribution normal

I added one more interface eth1 to each server for DB connection, to make sure that I
do not directly delay users of my application(using eth0). Delay at both sides sums up
to round trip delay(or Latency), which also has normal distribution(µ = 114.8ms,
σ = 15.6ms). For this particular set-up I took intra region New York to Rio De
Janeiro latency data from [18].

It would be a mistake to think that 115ms latency will add 115ms to app's response
times. It turns out that the number of DB queries per user's action will be the crucial
factor. If the application queries DB synchronously i.e. the application waits for every
single DB response, the time to process all the DB queries per single page/action is:

TIME ≈ (PREPATE_ST + EXECUTE_ST + LATENCY) ·QUERIESN

(4.14)
My e-shop queries DB synchronously. With that being said, I can assume apdex

from response times and number of DB queries per action. By inspecting my appli-
cation's source code or DB logs, I am able to count QUERIESN . Jmeter has nicely
formatted csv output of load test results. All I need to do is: Use response times
grouped by action, add +QUERIESN · µ_latency and calculate apdex.

CHAPTER 4. DECISION METHOD 29

Action QUERIESN Time assumption

Home Page 24 tr + 24 · µ_latency
Random product 32 tr + 32 · µ_latency

Category 27 tr + 27 · µ_latency
Tag Search 24 tr + 24 · µ_latency
Fill-in Form 48 tr + 48 · µ_latency

Buy 31 tr + 31 · µ_latency
Pay 60 tr + 60 · µ_latency

Con�rm 30 tr + 30 · µ_latency

Table 4.4: Response time assumption, tr represents measured response time

10 20 30 40 50 60 70

0.5

0.6

0.7

0.8

0.9

1

Users

A
pd

ex

10 20 30 40 50 60 70

100

200

300

400

500

600

700

Users

C
os
t[
$]

replication
0.45 · x+ 56.85

remote
8.79 · x+ 52.99

Figure 4.3: Apdex assumption for µ_latency = 114.8ms and �nal cost assumptions
for T = 30 days with PENALTYday = $0.5.

CHAPTER 4. DECISION METHOD 30

4.3.2 Storing bigger data

What would happen if I needed to store more than 100 GB of data? In today's world,
with emerging technologies like big data and seemingly in�nite storage capabilities,
this is an obvious question.

0 2 4 6 8 10 12
100

200

300

400

500

600

700

Storage needed[TB]

C
os
t[
$]

replication
remote

Figure 4.4: Cost assumptions for T = 30 days and USERS = 70.

If I needed to store terabytes of data, the remote-DB access might shine. In a
highly unlikely scenario where number of my clients is quite stable and I do not expect
to gain more clients. It is because of the absence of cloud storage costs STORAGET

in remote-DB equation. However, I still believe that the marketing division would be
upset with performance of application if half of the clients were frustrated.

4.3.3 Conclusion

By inspecting graphs on the previous page I can conclude that my model behaves
according to the de�nition. The higher the latency the bigger impact on user's sat-
isfaction and pro�t, therefore the cost of set-up should also be higher. It is clear
that if my application access DB remotely, it's apdex score will go down signi�cantly,
because of synchronous DB queries. Taking this into consideration, I can safely say
that replication is the way to go in this case.

CHAPTER 4. DECISION METHOD 31

4.4 Community blog

I will repeat the above mentioned process on community blog powered byWordpress.
To make it a bit more interesting, I will use RBR this time i.e.: I set MySQL to use
row format for a bin-log:

b in log−format = "ROW"

I expect the resulting cost to be higher in the replication scenario, because using
RBR will result in bigger bin-log and therefore bigger replication tra�c.

This time my load test user scenario has only single group called "Blogger", unlike in
the previous application I did not design my load test to create 90% read requests and
10% write requests. All bloggers do both read and write actions. Blogger's actions
are timed the following way:

home page category form submit comment tag search browse post
2 sec 2 sec 5 sec 4 sec 2 sec 2 sec

Table 4.5: Blogger scenario: actions and timing.

Unfortunately, Wordpress also queries DB synchronously and therefore executes
queries one by one. With that in mind, one would expect the replication scenario to
be the one to choose again.

Wordpress has many useful plugins like Query Monitor, which can be used to
determine number of DB queries for each action. I decided to use simpler approach
and added the following code snippet into theme's index.php �le.

<?php echo get_num_queries () ; ?>

The results are:

home page category form submit comment tag search browse post
20 30 34 34 26 33

Table 4.6: Blogger scenario: actions and DB queries.

The pricing policy is almost the same as the one I used in the eCommerze appli-
cation. However, I decided to change the following variables:

� Needed storage capacity: STORAGE = 1TB

� Pro�t loss for single user per day: PENALTYday = $0.2

I am planning to use 1 TB disk and I suppose that my blog is not making money,
hence, I only want small penalty if my visitors get frustrated with blog's performance.

CHAPTER 4. DECISION METHOD 32

USERS INSTANCET TRAFFIC_OUTT STORAGET APDEX PERFORMANCET Σ

10 50.40 5.40 51.20 + 8.72 0.993 0.41 $116.13
20 50.40 9.10 51.20 + 12.79 0.88 14.35 $137.85
30 50.40 9.58 51.20 + 12.43 0.753 44.37 $167.98
40 50.40 9.73 51.20 + 12.82 0.670 78.98 $203.13

Table 4.7: Replication set-up costs for community blog. T = 30 days.

USERS INSTANCET TRAFFIC_OUTT STORAGET APDEX PERFORMANCET Σ

10 50.40 11.23 0 0.5 30 $91.63
20 50.40 19.06 0 0.5 60 $129.46
30 50.40 20.08 0 0.499 90.06 $160.53
40 50.40 20.85 0 0.488 123.74 $194.99

Table 4.8: Remote DB set-up costs for community blog. T = 30 days.

10 15 20 25 30 35 40

100

120

140

160

180

200

Users

C
os
t[
$]

replication
2.91 · x+ 83.49

remote
3.41 · x+ 58.86

Figure 4.5: Cost assumptions for T = 30 days

COSTREPLICATION(USERSN) = 2.91 · USERSN + 83.49 (4.15)

COSTREMOTE(USERSN) = 3.41 · USERSN + 58.86 (4.16)

What is the e�ect of RBR on the tra�c? In this case, there is no signi�cant tra�c
di�erence between replication using STATEMENT format and replication using
ROW format for a bin-log. It is because none of "blogger's" actions a�ect numerous
rows and therefore both cases are very similar in terms of tra�c.

CHAPTER 4. DECISION METHOD 33

4.4.1 Conclusion

In spite of setting up "frustrated user penalty" for bad performance, it seems that
remote database is the way to go in this case. Why is it so? There are 2 reasons:

1. I did not divide my users to do 90% read actions and 10% write actions like I
did in the previous example. Hence, outgoing tra�c is now signi�cant even in
the replication set-up. However, the tra�c di�erence between replication and
remote access still remains: Replication needs to transfer only "changes" to the
database, whereas remote access needs to transfer everything.

2. Wordpress is quite slow and 40 users doing read and write actions apparently
�cross the limit line�. Therefore, app receives bad apdex score even in the
replication set-up.

Chapter 5

Summary

The main goal of this thesis was a method to decide, whether it is more economical
to run an application in multiple locations in hybrid cloud mode with all database
accesses going through an internet line, replicate the database between locations, or
when hybrid cloud is not economical at all.

I completely focused on decision between the replication scenario and the remote DB
scenario. The main reason for this is that the decision between using the hybrid cloud
or not using the hybrid cloud is very di�erent and it does not share the same metrics.
Therefore, I decided to leave the third option of not using hybrid cloud mode for
further research.

I discussed a cost prediction method that allow me to decide between either keeping
DB home or replicating DB into the cloud. Furthermore, I provided a complete
walk-through and explanation of metrics, variables, principles and ideas my method
is based on.

My intention to keep the method simple and understandable in a matter of minutes
was achieved. However, the method is not a step-by-step �cookbook� and therefore it
can not be followed blindly without any form of modi�cation. Special circumstances
might require special tuning of equations or collection methods. With that being
said, I �rmly believe that I accomplished the main goal.

My work can surely be improved in the future. To name a few possible improvements,
I would like to be able to predict costs for many di�erent cloud set-ups, I would like
to improve my performance penalty function, redesign my method to work with user
trends and various database engines... The whole subject of Cloud computing is full
of interesting ideas and it is well worth studying.

34

Chapter 6

Appendix

6.1 Load testing the eCommerce application

The following graph shows all the actions of 2 separate testing thread groups. I named
them �Buddy� and �Buyer�. The scenario has only 2 write actions con�rm and
�ll-in-form

Figure 6.1: 50 user load-test of the eCommerce application with remote DB access
and µ_latency = 114.8ms. Clearly, number of DB queries has major impact on
performance. QUERIESN(PAY) = 60 and QUERIESN(TAG_SEARCH) = 24

35

CHAPTER 6. APPENDIX 36

Figure 6.2: 50 user scenario equals max 14 hits/sec

Figure 6.3: When all the transactions are successful, I can safely use the output
values.

CHAPTER 6. APPENDIX 37

6.2 Load testing the community blog

The following graphs show one of the tests for community blog cost prediction. The
very �rst condition of a successful test is that all the transactions were successful,
meaning there was not a single failed attempt to submit a form or comment on blog
post etc. .

Figure 6.4: Load test of the community blog application with µ_latency = 114.8ms.
USERS = 10

Figure 6.5: Blog load test: 10 users represent max 4 hits/sec

CHAPTER 6. APPENDIX 38

Figure 6.6: All the transactions were successful(the test was also successful) I can
safely use the output values.

List of Figures

1.1 Problem de�nition. 1

2.1 Level of involvement comparison[13] 4
2.2 Private cloud running OpenStack as an IaaS 5
2.3 AWS(Amazon web services) as a public cloud 5
2.4 Hybrid cloud example . 6
2.5 Synchronous replication. Inspired by [15] 7
2.6 MySQL semi-synchronous replication 7
2.7 MySQL asynchronous replication . 8
2.8 Master/Slave setup, application running on 192.168.2.4 10
2.9 Response over time without hyperdb 12
2.10 Response over time with hyperdb . 12
2.11 Multi master set up . 13

3.1 Collectd over the network example 16
3.2 Log position over time with noticable ramp-up 18
3.3 MySQL requests(DB queries) over time 20
3.4 MySQL responses(DB data) over time 20
3.5 Disk IOPS over time shortly after loadtest start 21
3.6 Threshold de�nition recommendation 22

4.1 Load test result shows response times of buyer's actions 26
4.2 Cost assumptions for T = 30 days . 27
4.3 Apdex and cost predictions . 29
4.4 Cost assumptions for T = 30 days and USERS = 70. 30
4.5 Cost assumptions for T = 30 days . 32

6.1 Load test of the eCommerce app with 50 users 35
6.2 50 user scenario equals max 14 hits/sec 36
6.3 When all the transactions are successful, I can safely use the output

values. 36
6.4 Load test of the community blog with 10 users 37
6.5 Blog load test: 10 users represent max 4 hits/sec 37
6.6 All the transactions were successful(the test was also successful) I can

safely use the output values. 38

39

List of Tables

4.1 De�ned pricing policy . 26
4.2 Replication set-up costs for T = 30 days. 27
4.3 Remote DB set-up costs for T = 30 days. 27
4.4 Response time assumption, tr represents measured response time . . . 29
4.5 Blogger scenario: actions and timing. 31
4.6 Blogger scenario: actions and DB queries. 31
4.7 Replication set-up costs for community blog. T = 30 days. 32
4.8 Remote DB set-up costs for community blog. T = 30 days. 32

40

Bibliography

[1] ALLSPAW, John. The art of capacity planning: scaling web resources. " O'Reilly
Media, Inc.", 2008.

[2] BRADFORD, Ronald; SCHNEIDER, Chris; CALERO, Nelson. E�ective MySQL:
Replication Techniques in Depth. McGraw-Hill/Osborne, 2012.

[3] SOUDERS, Steve. High-performance web sites. Communications of the ACM,
2008, 51.12: 36-41.

[4] SOUDERS, Steve. Even faster web sites: performance best practices for web
developers. O'Reilly Media, 2009.

[5] SEVCIK, Peter. De�ning the application performance index. Business Communi-
cations Review, 2005, 20.

[6] GUNTHER, Neil J. Analyzing Computer System Performance with Perl:: PDQ.
Springer, 2011.

[7] MENASCE, Daniel A., et al. Performance by design: computer capacity planning
by example. Prentice Hall Professional, 2004.

[8] LENTZ, Arjen, et al. High Performance MySQL: Optimization, Backups, Repli-
cation, and More. O'Reilly Media, Incorporated, 2008.

[9] ORACLE. MySQL 5.6 Reference Manual [online]. 38742. vyd. 2014, 16.5. [cit.
2014-05-18]. Available at: dev.mysql.com/doc/refman/5.6/en/index.html

[10] ROUSE, Margaret. What is SPI (SaaS, PaaS, IaaS)?. Search Cloud-
Computing, Techtarget [online]. 2012 [cit. 2014-05-10]. Available at:
searchcloudcomputing.techtarget.com/de�nition/SPI-model

[11] Amazon EBS Pricing. Amazon Web Services [online]. 2014 [cit. 2014-05-10].
Available at: aws.amazon.com/ebs/pricing

[12] Database replication. ORACLE. Oracle Documents [online].
Release 8.0 A58227-01. 1997 [cit. 2014-05-10]. Available at:
docs.oracle.com/cd/A64702_01/doc/server.805/a58227/ch_repli.htm

41

BIBLIOGRAPHY 42

[13] Who Manages Cloud IaaS, PaaS, and SaaS Services. My Cloud
Computing Blog [online]. 2013 [cit. 2014-05-10]. Available at:
mycloudblog7.wordpress.com/2013/04/19/who-manages-cloud-iaas-paas-and-
saas-services/

[14] HARZOG, Bernd. New Relic RPM Product Review. The Virtualization Practice
[online]. 2009 [cit. 2014-05-10]. Available at: www.virtualizationpractice.com/new-
relic-rpm-product-review-2588/

[15] LOMNICKI, Michal. Database replication explained. X8 Software Development
Blog [online]. 2013 [cit. 2014-05-10]. Available at: x8.io/blog/2013/05/database-
replication-explained/

[16] ZAITSEV, Peter. Automation: A case for synchronous replication.
MySQL performance blog [online]. 2012 [cit. 2014-05-10]. Available
at: www.mysqlperformanceblog.com/2012/09/19/automation-a-case-for-
synchronous-replication/

[17] NIELSEN, Jakob. Response Times: The 3 Important Limits. Nielsen
Norman Group: Evidence-Based User Experience Research, Training,
and Consulting [online]. 1993, January 1 [cit. 2014-05-18]. Available at:
www.nngroup.com/articles/response-times-3-important-limits/

[18] Global Network Latency Averages. AT&T. AT&T Global IP
Network [online]. 2014 [cit. 2014-05-18]. Available at: ipnet-
work.bgtmo.ip.att.net/pws/global_network_avgs.html

[19] BROUWER, Peter. The Art of Data Replication. ORACLE. Oracle
Technical White Paper [online]. 2011, September [cit. 2014-05-18]. Avail-
able at: http://www.oracle.com/technetwork/articles/systems-hardware-
architecture/o11-080-art-data-replication-487868.pdf

[20] SCHNEIDER, Chris. Comparing MySQL Statement Based and Row Based
Replication. Database Journal [online]. 2011 [cit. 2014-05-10]. Available
at: www.databasejournal.com/features/mysql/article.php/3922266/Comparing-
MySQL-Statement-Based-and-Row-Based-Replication.htm

[21] SCHNEIDER, Chris. Working with MySQL Multi-master Replication - Keeping
a True Hot Standby. Database Journal [online]. 2010 [cit. 2014-05-10]. Available
at: www.databasejournal.com/features/mysql/article.php/3896061/Working-
with-MySQL-Multi-master-Replication�Keeping-a-True-Hot-Standby.htm

DVD contents

File/Folder Description
test_scenarios folder containing testing user scenarios for each tested application:

eshop.jmx, wordpress.jmx
confs folder containing server con�guration �les, DB sql �les and zipped

www apps: collectd.conf, master1.cnf, master2.cnf...
eshop_results folder containing numbered subfolders with load test results: re-

sponse.csv, transactions.csv...
blog_results folder containing test outputs from blog testing: response.csv,

transactions.csv...
30 folder containing example of test result for 30 users + apdex calcu-

lation script in bash
blog.ods open document �le I used for blog costs calculation.
eshop.ods open document �le I used for eshop costs calculation.
thesis.pdf PDF of my bachelor thesis

43

