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Abstract
Cílem této bakalářské práce bylo nastudovat metodu [2] escape behaviour a využítj i pro
sledování pohyblivého cíle rojem MAV. Řídící model použitý v této metodě byl původně
navrhnut pro fungování s překážkami ve tvaru koule a tak má být do tohoto algoritmu
integrována metoda pro počítání vzdálenosti mezi MAV a libovolnou překážkou. Na zá-
věr má být ověřena tato implementace simulacemi pohybu roje v kancelářském prostředí
a prozkoumáno chování roje v úzkých uličkách. Vyvinutý algoritmus má být upraven
tak, aby nedocházelo ke kolizím mezi jednotlivými letouny.
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Abstract
Aim of this bachelor thesis was to study method [2] of escape behaviour and utilized it
in a task of following a moving target by a swarm of MAVs. The control model used by
this method was originally designed only for obstacles in shape of sphere and so into
the algorithm is to be integrated a library for computing distance between the MAV
and arbitrary obstacles. And finally to verify this implementation with simulations of
movement of the swarm in an office environment and study behaviour of the swarm
in narrow corridors. The developed algorithm should be improved to avoid collisions
between individual quad-rotors.
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1 Introduction

There was made a bachelor thesis by Jan Vakula [1] in 2012 describing amongst other
things control model for swarm of unmanned aerial vehicles (UAV) - quadrocopters
to be precise. This model was also implemented so it can be used for simulating of
behaviour of the swarm. It is designed to be a distributed algorithm, which means that
each quad-rotor does his own computations according to its surroundings and does not
communicate with rest of the swarm. The control model is inspired by behaviour of
schooling fish. It means that each individual in the swarm reacts on the movement of
others visible to it.

The algorithm as it stands can simulate movement of the swarm towards defined
goal across obstacles in 3D space. It is possible to configure number of quad-rotors in
the swarm, coordinates of obstacles, initial position of the swarm and goal. Important
limitation of this algorithm is, that it can work only with obstacles in shape of sphere.

This thesis is based on the mentioned algorithm, and its main aim is to make it more
flexible, so it can be used in real devices one day. Obviously, such application needs
to be able to work with more than only sphere obstacles. For this purpose ability to
represent complex environment and compute distances from the obstacles is needed.
There are various libraries already implemented able to this. As the most suitable for
this project seem to be GJK library.

For the drones to be able to move between complex obstacles, especially indoor where
are smaller spaces with lot of objects, it is often not possible to use static goal. It is
so because even though the UAVs are able to detect obstacle in front of them, if it is
large, they might not be able to effectively avoid it, and possibly not at all. Apart from
that, it is sometimes desirable that the UAVs move along predefined path. That is why
implementing methods for moving target is another goal of this thesis. Furthermore,
to be efficient, the algorithm has to be also able to find possible trajectory trough set
of control points.

To even start planning, the environment firstly needs to be represented as a graph.
Afterwards, using some planning method can be found a path. There are different
methods designed for this but their results still vary a lot. It is desirable that the
route keeps distance from obstacles rather than being just shortest possible. Suitable
graph for this application is a structure called Voronoi diagram. Edges of this graph
are created in a way that they have same distance from the neighbouring points. It
means that if the path was bounded by two obstacles, it would lead straight in between
them.

Another step is choosing right planning algorithm. There are more those that would
suffice but the best choice seems to be A* algorithm. It is not difficult to implement
and yet fast, compared to other common planning algorithms such as BFS.

Library combining both generation of Voronoi diagram and path planning using A*
was created by Bc. Martin Bláha as a part of his dissertation. This library is used in
this thesis for computing route for the goal.
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1 Introduction

Firstly the swarm behaviour model had to be rewritten from Matlab to C++ because
the other libraries are written in this language. And after this, all these three parts
had to be adjusted so they can be merged together. Also functions for easier setting
of the environment were implemented. There were made a series of simulations testing
behaviour of this algorithm in different situations. Especially on movement in corridors
because there appeared some difficulties at the beginning. So this thesis also focuses
on enhancing the control algorithm to avoid collisions which occurred in some cases
before.

As the thesis had been written there was added one more point as a request from
another teacher interested in this field. And that is to explore influence of width of the
corridor and number of MAVs in it on shape of the swarm. In ideal case, find some
specific function describing it. These data could be used later for deciding which path
should the swarm take when choosing between several corridors or whether it would no
be efficient to split.
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2 Swarm

The thesis mentioned in Introduction [1] contains implementation of control model of
physics of the UAVs and also model for its behaviour as part of the swarm. Both these
models are described in [2] and briefly introduced in the following paragraphs.

2.1 Quadrocopter

Experiments with quadrocopters are quite popular nowadays and many research teams
are working with them. Even though its control is one of the more difficult speaking of
aerial vehicles, it has several positives:

∙ It has no limitation on minimum flying speed as a plane does.
∙ It is capable of precise movement (depending on its controller and hardware). And

also can be stabilized on certain position.
∙ It has a good maneuverability because it can change directions almost instantly

and is capable fo vertical take-off and landing.
∙ It has simple mechanical structure compared to typical helicopter.

It is suitable for many applications such as cooperative surveillance, reconnaissance
and monitoring tasks, search and rescue missions, searching for sources of pollution,
sensory data acquisition and various military applications [2]. Because of its maneu-
verability it is also usable indoors where it can encounter narrow corridors or acute
turns.

It usually has four identical propellers aligned into square where one pair perpendic-
ular to the other one spins clock-wise and the other pair in opposite direction. This
UAV has 6 degrees of freedom: three translational and three rotational(yaw, pitch and
roll). These movements are controlled by 4 inputs - propellers motors which can be
independently controlled. Model of such quad-rotor is defined by following differential
equations and illustrated in figure 1. All symbols are described in table 1.

𝑥̇ = 𝑣

𝑚𝑣̇ = 𝑚𝑔𝑒3 − 𝑓𝑅𝑒3

𝑅̇ = 𝑅Ω̂

𝐽Ω̇ + Ω × 𝐽Ω = 𝑀

3



2 Swarm

Figure 1 Quadrotor model

Symbol Description
{⃗𝑖1, 𝑖⃗2, 𝑖⃗3} reference frame
{⃗𝑏1, 𝑏⃗2, 𝑏⃗3, } the body-fixed frame
𝑓𝑖 ∈ 𝑅3 the thrust of the 𝑖-th propeller along the −𝑏⃗3
𝑓 =

∑︀4
𝑖=1 𝑓𝑖 the total thrust of all motors

𝑥 ∈ 𝑅 the location of centre of the mass 𝑚

𝑀 ∈ 𝑅 the total moment in the body-fixed frame
𝑅 ∈ SO(3) the rotation matrix from the body-fixed frame to the inertial frame
𝐽 ∈ 𝑅3×3 the inertia matrix with respect to the body-fixed frame
hat map ·̂ 𝑅3 → so(3) is defined so that: 𝑥̂𝑦 = 𝑥 × 𝑦 for all 𝑥, 𝑦 ∈ 𝑅3

Ω ∈ 𝑅3 the angular velocity in the body-fixed frame

Table 1 Table of symbols used in equations in the UAV control model.

2.2 Flocking equations
Another thing to be discussed is stabilization and control of the whole swarm. The
equations stated below are based on a control technique proposed in [2] which is in-
spired by BOID model [3]. The BOID model was developed to simulate schooling
fish behaviour. The technique from [2] is based on visual relative localization between
members of the swarm. It means that each individual is controlling itself and moves ac-
cording to movement of its neighbours which is the same as can be seen in fish schools.
This behaviour enables the quad-rotors to react really quick on changes in the environ-
ment, because they do not event need to see it. They only moves according to their
neighbour. Moreover control system discussed in [2] also consists of obstacle avoidance
ability, though only for sphere obstacles. It is thoroughly described in the article so in
the next paragraphs is only light outline.

The controller computes position of each quad-rotor separately. The next position
of the 𝑖-th quad-rotor is computed from a force F𝑖 defined in equation (7). Which is
force by which the surroundings acts on the UAV. This force consists of three elements:

4



2.2 Flocking equations

1) Effect of other individuals, 2) goal effect and 3) obstacle effect. These three forces
are described in the next paragraphs. Variables used in equations in this section are
described in table 2.

Symbol Description
R𝑖 is the position vector of the 𝑖-th quadrocopter
𝐻𝑖 is the heading direction vector of 𝑖-th quadrocopter
L𝑖𝑗 L𝑖𝑗 = R𝑖 − R𝑗Is vector from the 𝑖-th to the 𝑗-th quadrocopter
L𝑖𝑔 is vector from the 𝑖-th quadrocopter to the goal
L𝑜𝑖 is vector from obstacle to 𝑖-th quadrocopter
Ψ𝑖𝑜 is the angle between L𝑟𝑏𝑖

and 𝐻𝑖

Table 2 Table of symbols used in the flocking equations

2.2.1 Other individuals forces

Since the UAVs are supposed to behave like a swarm, the individuals have to keep
the swarm compact but on the other hand must keep enough distance from each other.
That is a reason why the force between 𝑖-th and 𝑗-th quad-rotor is designed as a spring-
damper model. This force is described by differential equation:

F𝑖𝑛𝑑𝑖𝑗 = 𝐾𝑑(‖L𝑖𝑗‖ − 𝐿𝑟)L𝑖𝑗 + 𝐷𝑑
dL𝑖𝑗

d𝑡
. (1)

Where 𝐷𝑑 and 𝐾𝑑 are constants of the regulator and 𝐿𝑟 is the desired distance. The
final force is defined as a sum of forces generated by other individuals. Magnitude
of these forces is set by a distance weight function 𝑒𝑖𝑗 . Formula for the final force
representing effect of other individuals in the swarm is than:

F𝑖𝑛𝑑𝑖
=

𝑁∑︁
𝑖,𝑗 ̸=𝑖

𝑒𝑖𝑗F𝑖𝑛𝑑𝑖𝑗 . (2)

Where the distance weight function serves for emulation of a range of visibility of the
UAV, that means that only close neighbours which can be visually localized have effect
on the resulting force. This is important for a realistic swarm behaviour. Function 𝑒𝑖𝑗

is described by formula:

𝑒𝑖𝑗 = 1
𝑒𝑎L𝑖𝑗−𝑏 + 𝑐

+ 1
𝑒0.5𝑎L𝑖𝑗−𝑏 + 𝑐

. (3)

2.2.2 Goal effect

In order to be able set some point which is the swarm supposed to reach, there is a force
which attracts it towards this point called goal effect. It is designed as spring-damper
model and is defined by differential equation:

F𝑔𝑜𝑎𝑙𝑖 = 𝐾𝑔 · L𝑖𝑔 + 𝐷𝑔
dL𝑖𝑔

d𝑡
, (4)

Where 𝐷𝑔 and 𝐾𝑔 are constants of the regulator and L𝑖𝑔 is the wanted distance from
goal. But this equation would mean that with distance from goal rises also magnitude
of the attractive force. Which would mean that when the swarm si far from the goal

5



2 Swarm

this force would be too large. So for cases where magnitude of L𝑖𝑔 is too big there is
another formula:

F𝑔𝑜𝑎𝑙𝑖 = 𝑊𝑔
L𝑖𝑔

‖L𝑖𝑔‖
. (5)

2.2.3 Obstacle effect
Since in the model has to be also accounted avoiding obstacles there is obstacle effect.
It is repulsive force defined by its magnitude and vector from centre of the obstacle to
the quad-rotor. Reaction from set of all visible obstacles 𝒪 for 𝑖-th quadrocopter is:

F𝑜𝑏𝑠𝑖
=

∑︁
𝑜∈𝒪

𝛿 · 𝑒𝑜𝑖 · H𝑜𝑖

‖H𝑜𝑖‖
. (6)

Where 𝑒𝑜𝑖 = 𝑏𝑜𝑒𝑎𝑜‖L𝑜𝑖‖ is the distance function, 𝛿 = (1 + cos(Ψ𝑖𝑜)) is the direction
dependency function, H𝑜𝑖 = (H𝑖 × F𝑖𝑜) × H𝑖 is vector perpendicular to the direction
vector of the 𝑖-th UAV, where H𝑖 is the direction vector of the UAV.

Figure 2 Graphical representation of variables used in computation of the obstacles effect.
(source: [2])

2.2.4 Conclusion
Finally, the total force that acts on the 𝑖-th UAV is sum of the effects mentioned above:

F𝑖 = 𝑊𝑖𝑛𝑑 · F𝑖𝑛𝑑𝑖
+ F𝑔𝑜𝑎𝑙 + 𝑊𝑜𝑏𝑠 · F𝑜𝑏𝑠𝑖

. (7)

Prerequisite of this algorithm is the obstacles being spheres and knowledge of their
radius and centre coordinates. So this project is focused on modifying this algorithm
for its better utilization, by enabling usage in environment composed of polyhedrons.

6



3 Distance computation

Since the algorithm for simulation of behaviour of swarm from Jan Vakula [1] works
only for sphere obstacles, its applicability is very limited. For more realistic scenarios it
is crucial to obtain information on distance of MAV from complex obstacles. For such
purpose, a suitable library will be chosen and implemented into the current algorithm.

Most libraries used for operations with three dimensional objects are designed for
collision detection. But the mechanisms for computing other thing such as intersection
depth are similar. Which goes also for minimal distance computation. As two possi-
ble choices able of finding the closest points between two 3D objects appeared to be
SWIFT++ and GJK.

3.1 SWIFT++
SWIFT++ [4] is a large package for collision detection, capable of detecting intersection,
computing approximate and exact distance and has also other features. It is able to
work with a scene composed of general rigid polyhedral models. It is implemented in
C++ as the name suggests. It supports different formats of description of the obstacles.
It is also possible to use non-convex objects because it has decomposer. Decomposer is
a function for preprocessing of objects and one of it tasks is decompose it into convex
parts.

3.2 GJK
Apart from SWIFT++, GJK is name for an algorithm named by initials of its authors
Gilebert – Johnson – Keerthi. Depending on its implementation it is able of computing
intersection depth, detect collisions or compute minimal distance between pair of objects
in 2 or 3-dimensional space. If used with Qhull [5] library it can even work with non-
convex objects.

The original algorithm was described in 1988 and it went through various develop-
ments until now. There had been made progress in computational time and different
methods are used since then. This is possible thanks to better hardware and more
sophisticated code. Once grasped it is very easy to implement and therefore there are
many variations made by different people now. Most of definitions and facts about gjk
in this section is taken from [6].

3.2.1 Introduction

It is an iterative method computing euclidean distance between objects in m-dimensional
space and depending on particular implementation can find minimum distance, detect
intersection between objects or count penetration depth. The algorithm is fast because
the computation time is linearly dependent on number of vertices of the given objects
and can be even reduced to almost constant time. Main reason behind its quickness
is that gjk uses so-called support mapping functions for describing geometrical objects

7



3 Distance computation

and reducing the whole task of computing distance between two objects into simpler
one consisting only of one object and the origin. Finding the point closest to origin
goes through iterative constructing of simplexes inside the object and finding closer
ones every iteration until the result is found. All of these steps will be explained in
following subsections.

3.2.2 Basic Concepts
In following paragraphs are explained basic concepts used.

Convex object

Object is convex if every pair of its vertices can be connected with a straight line which
is completely contained within the object.

Simplex

M-simplex [7] is object consisting of m-dimensional polytopes which are the convex hull
of m+1 vertices in m-dimensional space. It this case the most used are triangle and
tetrahedron. Other examples can be seen in Figure 3.

Figure 3 Simplices: from left to right: 0-simplex: point, 1-simplex: line, 2-simplex: triangle,
3-simplex: tetrahedron

Minkowski Difference

One of the GJKs features that make distance computation much easier is its possibility
to compute only distance between one object and origin instead of two objects. That
is possible using Minkowski difference which is variation of more known concept called
Minkowski sum. The euclidean distance between two convex sets A and B is defined:

𝑑(𝐴, 𝐵) = min{‖x − y‖ : x ∈ 𝐴, y ∈ 𝐵}, (8)

and according to [8], definition of Minkowski difference C is as follows:

𝐶 = 𝐴 − 𝐵 = {x − y : x ∈ 𝐴, y ∈ 𝐵}. (9)

Hence the desired point v(C ) ∈ C is closest to the origin according the following equa-
tion:

𝑑(𝐴, 𝐵) = ‖𝑣(𝐴 − 𝐵)‖ = ‖𝑣(𝐶)‖ = min{‖x‖ : x ∈ 𝐶}. (10)

Example of Minkowski difference for two non-intersecting polygons can be seen in Fig-
ure 4. The Minkowski difference simplifies the problem a lot from two reasons:

1. Searching for shortest distance between polygon and point is much easier than
between two polygons.

8



3.2 GJK

2. As can be seen in the example Figure 4 some of the points are inside of the
polygon, and thus the hull of the new object A-B consists of less vertices than the
two original polygons. This means that less points need to be computed.

The same method can be used for detecting intersection of two objects. In such case
the origin is inside the resulting shape.

Figure 4 Minkowski difference of two polygons A and B. Source: [9]

Support Mapping Function

Usage of support mapping in GJK is another mechanism employed for reduction of
computational time. It is a way of description of geometrical objects. Output of
this function for convex set C is a point within this set which is the most extreme in
direction of specified vector 𝑣. In this case where the purpose is finding the minimum
distance to origin the vector 𝑣 aims toward it. Since gjk is usable with convex objects
of arbitrary shapes and number of dimensions there are needed different mappings for
each individual classes of objects. Computation of support points for most common
geometric primitives can be described with simple algebra.

Polytope is a geometrical object with flat sides in space of any number of dimensions.
Basic polytopes are points, line segments, triangles and tetrahedron but the polytope
can be also any convex polygon or polyhedra. Support function ℎ𝐶(𝑣) with support
point 𝑠𝐶(𝑣) for polytope C and vector 𝑣 is defined as:

ℎ𝐶(𝑣) = 𝑠𝐶(𝑣) · 𝑣 = max{𝑣 · x : x ∈ 𝐶}. (11)
It means that computational time of support point for polytope linearly depends on

number of vertices. Moreover, in some cases the task can even be reduced to almost
constant time. To achieve such time dependency is needed adjacency graph of all
vertices. Where each edge of the polytope corresponds with edge of this graph. Having
the adjacency graph, searching for the next support point takes much less time because
the next point is most probably near the previous one. This technique of using local
search is called hill climbing.

Graphical demonstration of result of support function of polytope C with vector 𝑣
aiming to origin is in Figure 5. Mapping function for spherical extensions such as

9



3 Distance computation

sphere, cone or cylinder are defined as well, it makes more convenient treating of some
non-convex shapes which are a union of convex polytope and its spherical extension
i.e. pillar with hemispheres at its ends. Spherical extensions can also represent shell of
safety around some object.

Figure 5 Support function of polytope C with vector 𝑣 aiming to origin

3.2.3 The Algorithm

The implementation used in this thesis serves for computation of distance a coordinates
of a couple of support points for two convex sets 𝐴 ⊂ 𝑅𝑚 and 𝐵 ⊂ 𝑅𝑚.

Main Algorithm

As stated above, GJK first computes the Minkowski difference 𝐶 = 𝐴 − 𝐵 = {x − y :
x ∈ 𝐴, y ∈ 𝐵} and then searches for only one support point 𝑣(𝐶) closest to origin.
In order to find the 𝑣(𝐶), it constructs sequence of simplexes which converge to 𝑣(𝐶).
Before run of the algorithm, there is need to define some assumptions:

∙ Let 𝑉𝑘 ⊂ 𝐶 be list of vertices of simplex in 𝑘-th 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 k>=0.
∙ Let 𝑣𝑘 ⊂ 𝑉𝑘 be the point which is closest to the origin.
∙ Let function 𝑔(𝑥) be defined as:

𝑔𝐶(𝑥) = |𝑥|2 + 𝑘𝐶(−𝑥), (12)

where following statements are true for 𝑥 ∈ 𝐶1:
1. if 𝑔𝐶(𝑥) > 0 there is a point 𝑧 in the line segment formed by co {𝑥, 𝑠𝐶(−𝑥)}

satisfying |𝑧| < |𝑥|. Where notation co { } is defined in [6] and means convex
hull of points of the set.

2. 𝑥 = 𝑣(𝐶) if and only if 𝑔𝐶(𝑥) = 0.
3. |𝑥 − 𝑣(𝐶)|2 ≤ 𝑔𝐶(𝑥).

There follows the algorithm:
1. Initialization

1Proof can be found in [6]
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∙ k=0;
∙ Set of vertices of the simplex in 𝑘-th iteration is 𝑉𝑘 = ∅;
∙ Set 𝑣𝑘 to be an arbitrary point within 𝐶 ;

2. Determine support point 𝑣𝑘 = 𝑠𝐶(−𝑣𝑘) in direction −𝑣𝑘;
3. If 𝑔𝐶(𝑣𝑘) = 0, set 𝑣(𝐶) = 𝑣𝑘 and stop;
4. Set 𝑉𝑘+1 = 𝑉𝑘 ∪ {𝑠𝐶(−𝑣𝑘)}, where 𝑉𝑘 ∈ 𝑉𝑘 has m elements or less and satisfies

𝑣𝑘 ∈ co 𝑉𝑘;
5. Increment k and proceed to step 2;
Figure 6 illustrates example of the main algorithm for polytope 𝐶 = co {𝑧1, . . . , 𝑧5}

in 𝑅2

Sub-algorithm

The main algorithm, requires computation of new 𝑣(co 𝑌 ),𝑌 = {𝑦1, . . . , 𝑣} ∈ 𝑅𝑚,
where 𝑌 = 𝑉𝑘 every iteration. Johnson [10] originated a procedure for doing this. This
method is described in next paragraphs. It is efficient when 𝑣 is small and yields a
representation:

𝑣(co 𝑌 ) =
∑︁
𝑖∈𝐼𝑠

𝜆𝑖𝑦𝑖, (13)

∑︁
𝑖∈𝐼𝑠

𝜆𝑖 = 1, 𝜆𝑖 > 0, 𝑖 ∈ 𝐼𝑠 ⊂ {1, . . . , 𝑣}, (14)

𝑌𝑠 = {𝑦𝑖 : 𝑖 ∈ 𝐼𝑠} is affinely independent, (15)

where 𝑠 indicates a particular member of the family of all non-empty subsets of 𝑌 .
In step 4) of the main algorithm, stated above, 𝑌𝑠 becomes 𝑉𝑘 and since it is affinely
independent it has minimal number of elements. This simplifies computation in the
next iteration. Because 𝑣 is small, it is effective to check all possible combinations of
subsets 𝑌 in order to find one fitting to equations (13) to (15). Number of combinations
can be obtained from:

𝜎 =
𝑣∑︁

𝑘=1
[ 𝑣!
𝑘!(𝑣 − 𝑘)! ] (16)

Geometrical explanation is that all open subsets of the polytope co 𝑌 need to be checked
whether they contain 𝑣(co 𝑌 ). The following theorem characterizes the representation
(15). Let 𝐼 ′

𝑠 be the complement of 𝐼𝑠 in 𝐼 and 𝑌𝑠, 𝑠 = 1, . . . , 𝜎 be an ordering of the
subsets of 𝑌 . Real numbers Δ𝑖(𝑌𝑠), 𝑖 ∈ 𝐼𝑠 , and Δ(𝑌𝑠) are defined:

Δ𝑖({𝑦𝑖}) = 1, 𝑖 ∈ 𝐼,

Δ𝑗(𝑌𝑠 ∪ {𝑦𝑗}) =
∑︁
𝑖∈𝐼𝑠

Δ𝑖(𝑌𝑠)(𝑦𝑖 · 𝑦𝑘 − 𝑦𝑖 · 𝑦𝑗), where

𝑘 = min 𝑖, 𝑖 ∈ 𝐼𝑠, 𝑗 ∈ 𝐼 ′
𝑠.

Δ𝑗(𝑌𝑠) =
∑︁
𝑖∈𝐼𝑠

Δ𝑖(𝑌𝑠). (17)

Number of operations for all subsets of 𝑌 is relatively low, i.e. 𝑣 = 3 requires 6 inner
product evaluations and 12 multiplies. There are 3 conditions which must be fulfilled
for (15) to hold:

11
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1. Δ(𝑌𝑠) > 0 =⇒ 𝑌𝑠 is affinely independent
2. Δ𝑖(𝑌𝑠) > 0 for each 𝑖 ∈ 𝐼𝑠 =⇒ 𝑣(co 𝑌𝑠) is in relative interior of co 𝑌𝑠

3. Δ𝑗(𝑌𝑠 ∪ {𝑦𝑗}) ≤ 0 =⇒ 𝑣(co 𝑌𝑠) = co 𝑌
And for coefficients 𝜆𝑖 from applies2:

𝜆𝑖 = Δ𝑖(𝑌𝑠)/Δ(𝑌𝑠) (18)

So for a finite set 𝑌 = {𝑦1, . . . , 𝑦𝑣} ⊂ 𝑅𝑚, and ordering 𝑌𝑠, 𝑠 = 1, . . . , 𝜎, of all subsets
of 𝑌 the algorithm processes like this:

1. 𝑠 = 1;
2. if Δ(𝑌𝑠) > 0 and Δ𝑗(𝑌𝑠) > 0, 𝑗 ∈ 𝐼𝑠, and Δ𝑗(𝑌𝑠 ∪ {𝑦𝑗} ≤ 0), 𝑗 ∈ 𝐼 ′

𝑠, define 𝑣(co 𝑌 )
by equations (13) and (18) and stop;

3. if 𝑠 < 𝜎, increment s and go to step 1
4. stop and indicate failure

Figure 6 Graphical example of run of the Main algorithm of GJK

This implementation of sub-algorithm comes from [10] written in 1987 but with
modern hardware and different authors come other methods for the sub-algorithm.
The enhanced version of gjk used in this thesis made by Dr. Stephen Cameron [11]
uses so-called hill climbing when computing support points. It means that results from
previous iteration are used for quick finding of new support point. This method is
effective while computing large convex hulls because it searches first points adjacent to
the previous support point.

3.2.4 Implementation
In order to use the GJK in the current algorithm one of them had to be rewritten to
different programming language because implementation of gjk by Stephen Cameron

2Proof of this theorem can be found in Appendix II of [6].
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Figure 7 Tetrahedron

is in C++ and the swarm behaviour was implemented in MATLAB. It was decided to
use C++ mostly because if the code should be used in real device some day, it would
probably be C or C++.

Obstacle definition

GJK library uses unusual concept for defining obstacles. Because of its support function
and need to maintain graph of adjacent vertices, the object structure is defined by three
attributes:

1. Number of vertices - integer specifying number of vertices
2. Vertices - two-dimensional array, where rows are coordinates of individual vertices
3. Rings - one-dimensional array specifying which vertices are connected by edge

The third parameter may be little harder to understand. For obstacle of 𝑛 vertices, it is
an array of numbers, where the first 𝑛 numbers, define indices at which starts list of adja-
cent vertices for each vertex in this array. Order of the vertices corresponds with the ver-
tices array. Each list of the connected vertices ends with negative number. So for tetra-
hedron in figure 7 the variables are: number of vertices= 4, vertices= {𝐴, 𝐵, 𝐶, 𝐷} and
rings= {4, 8, 12, 16, 𝑖𝐵, 𝑖𝐶 , 𝑖𝐷, −1, 𝑖𝐴, 𝑖𝐶 , 𝑖𝐷, −1, 𝑖𝐴, 𝑖𝐵, 𝑖𝐷, −1, 𝑖𝐴, 𝑖𝐵, 𝑖𝐶 , −1}.

Where 𝑖𝑘 is index of 𝑘-th vertex in vertices array. In this way it is possible to define
any convex object. In case of the object is point the rings=0.

Representation of complex environment

Input of GJK must be only convex objects. The MAVs are considered to be points, so
there is no problem. In case of obstacles, it is more complicated. But it is usually no
problem to divide a non-convex object into few convex ones and less vertices means much
smaller rings variable. Probably the easiest and fastest way of creating the environment
is to represent every obstacle by one or more arbitrarily distorted blocks. It also makes
specifying rings less difficult. Using the same rings "template" while changing only
coordinates of individual vertices is really fast and convenient. But it is still possible
to use convex objects of any complexity.
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4 Moving target

After making the swarm able to move between convex obstacles, there is need to define
its target. Using only one static goal point is not usable with this kind of controller be-
cause it would lead the swarm right through the obstacles and it would have difficulties
bypassing huge ones, especially walls perpendicular to its direction. Such situations is
sketched in figure 8. So the target must guide the swarm along some defined route in
between the obstacles. Target moving along a path is good in many ways. It leads
the swarm around obstacles while keeping specified distance from them. This means
that the drones should not encounter situations where they can not get through the
environment. Thanks to this would be also possible assign some other vehicle as the
goal so it would serve as a leader of the swarm.

To be able to use moving goal, its route must be firstly found. Path can be manually
defined by points through which the swarm must go, and in some cases it may be even
the best way, but it is not efficient in more complicated environment. More usable is
to use method for path planning which takes start and end point or some checkpoints
and finds short and safe path.

Figure 8 Example of case where static goal is not usable, because the MAV (Micro aerial
vehicle) is pulled straight into a wall.

4.1 Graph
In order to plan path, the environment has to be represented as a graph. There are
various ways to do that and each method has its pros and cons. The first solution that
anyone could come up with is to just divide the space by a 3D grid but that is not the
best solution for this application. It would be needed to remove edges which go through
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obstacles. And even though it would probably work good for finding the shortest path,
it would not be suitable path for following by the swarm. Truth is the shortest route
is actually not the best one in most cases, because it would lead too close to obstacles
sometimes. Possibly even through places where not even a single quad-rotor fits.

Since it is highly desirable for the target to maintain a distance from the obstacles
there is graph which is commonly used in robotics and fulfils all requirements for this
algorithm.

4.1.1 Voronoi Diagram
This text is based on survey [12]. Voronoi diagram is a one of the most fundamental
structures in the computational geometry which is used in many scientific branches.
It takes a set of points in space or plane and divides it accordingly to the nearest-
neighbour-rule. That means every point is assigned with a region closest to it. In two
dimensional space voronoi diagram for few points can look like in figure 9.

This definition is easy to understand but for completeness the usual generic definition
given in [12] is mentioned there. Let 𝑆 be a set of 𝑛 points (called sites). For two distinct
sites 𝑝, 𝑞 ∈ 𝑆, the dominance of 𝑝 over 𝑞 is defined as the subset of the plane being at
least as close to 𝑝 as to 𝑞.

dom(𝑝, 𝑞) = {𝑠 ∈ 𝑅𝑚|𝑑(𝑥, 𝑝) ≤ 𝑑(𝑥, 𝑞)} (19)

As can be seen dom(𝑝, 𝑞) is a closed cell bounded by bisector or plane perpendicular
to segment |𝑝𝑞|. This so-called separator divides the space into points closer to p and
those closer to q. The region of site 𝑝 ∈ 𝑆 is the portion of the space lying in all of the
dominances of 𝑝 over the remaining sites in 𝑆. Mathematical definition is:

reg(𝑝) =
⋂︁

𝑞∈𝑆−{𝑝}
dom(𝑝, 𝑞). (20)

As can be seen, the Voronoi diagram is designed to work with sets of points. But
environment in this application consists of convex polyhedrons. The algorithm made
by Martin Bláha solves it by representing the each face of the polyhedra with dense
grid of points. In result, it works as if it was continuous surface, because the algorithm
afterwards removes most of edges which go through the obstacles and the planning
algorithm does not use them.

4.2 Planning algorithm
Having the graph of the map, all that remains is to choose and implement some suitable
algorithm. There are many algorithms and their variations able to find the shortest
trajectory but they are can differ a lot. Even though they would eventually find the
same result some are much faster because they expand less nodes or require less math-
ematical operations. The algorithms can also differ in used metrics but than even the
same algorithm would return different result while using i.e. Euclidean and Manhattan
distance.

Figure 10 serves for illustration of how much depends on choice of the algorithm.
BFS - breadth-first search algorithm is used only for comparison so there is not an
explanation but it can be found in [13]. Let just say it uses less sophisticated way of
choosing nodes to be expanded. As can be seen both algorithms found same result
(white line) but number of expanded nodes (not white or black) differs a lot.
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Figure 9 Voronoi diagram in 2-D [12]

Algorithm made by Martin Bláha used in following simulations is A* which is not
hard to implement and efficient.

4.2.1 A*

The A* is an algorithm using heuristic function to expand as least nodes as possible.
This function serves for deciding which node should be expanded next by estimating
cost of the path if it would go through this node. Little altered definition of the one in
[13] is given in next paragraphs. All symbols used there are defined in table 3.

Computing the optimal distance from start to the current node 𝐶*(𝑥) can be done
somewhere during the run of the program, when there is no possibility of finding lesser
cost, but there is no way to compute 𝐺*(𝑥) and so its value must be reasonably under-
estimated by some heuristics. That means at least the euclidean distance, but the aim
is to compute cost 𝐺̂*(𝑥) as close as possible to 𝐺*(𝑥).

At first 𝑄 = 𝑥𝐼 and 𝐶*(𝑥𝐼) = 0. The next steps then are always according to same
pattern:

1. From 𝑄 is chosen site 𝑥 with the highest priority and removed from this set.
2. For all neighbouring sites of 𝑥 are computed 𝐶(𝑥′

𝑖) = 𝐶*(𝑥) + 𝑙(𝑒𝑖) and 𝐺̂*(𝑥′
𝑖)

where 𝑥′
𝑖 are the neighbouring sites and 𝑒𝑖 cost of edge from 𝑥 to 𝑥′

𝑖 .
3. If these sites are not in Q yet they are put in according sum of their cost-to-go

and cost-to-come. If they already are in the list and have higher value than the
new one, then they are replaced.

4. If the goal has not been found yet the process goes all over again.

No matter what kind of heuristic function is used the A* algorithm always (if possible)
finds the shortest route to goal. But choosing concurrently fast to evaluate and also
efficient heuristic function might matter a lot if computational time is important.
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a) BFS - Breadth-first search algorithm

b) A*

Figure 10 Illustration of how much can differ number of expanded nodes between two path
planning algorithms. White line is the found route and coloured edges surround expanded
nodes
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Symbol Description
𝑋 is a non-empty state space
𝑥𝑖 ∈ 𝑋 is one state(node) where 𝑥1 is the start state and x’ is the next gen-

erated state
𝑋𝐺 ⊂ 𝑋 is a goal set.
𝐶(𝑥) denotes the cost-to-come from start which is distance from 𝑥𝐼 to 𝑥

and 𝐶*(𝑥) is optimal value thus the shortest possible
𝐺(𝑥) denotes the cost-to-go from x to some set in 𝑋𝐺 and 𝐺*(𝑥) is optimal

cot-to-go
𝑄 is sorted priority queue of unexpanded states
𝑙(𝑒) is cost of edge

Table 3 Table of symbols used in description of A* algorithm

4.3 The target
Having the path for the goal planned there is need to define movement of the target
along this path. Firstly because output of the algorithm is polyline defined by its
vertices which is not enough points, it has to be sampled so the goal can move in
smaller steps. Since speed of the swarm is not constant the target must move according
to position of the swarm so it does not move too much ahead. Because of this, there
must be decided important parameter and that is distance which should the goal keep
from the swarm. Let centre of the swarm be average of positions of all MAVs. Than
l can be denoted as a minimum distance from centre of the swarm to the goal. There
are two options now:

1. Make size of 𝑙 dynamic, meaning that it would be radius of the swarm + some
constant. This would mean that the MAVs can never reach the goal unless it
stops. Positive of this would be that the MAVs do not have to slow down but
on the other hand, the more spread the swarm would be, the further would be
also the goal. This could eventually cause that the MAVs find themselves in the
situation outlined in Figure 12.

2. Make 𝑙 constant. Than the MAVs in front which get to the goal slows down which
lets the others to catch up and the swarm is not so widespread.

Both of these methods were tested and were found successful. Only in some cases
appeared the negative effect of dynamic 𝑙 mentioned above. Yet still, togetherness of
the swarm is important and so was used constant 𝑙. Last attribute of the moving target
is that it can move only forward along its route.

Setting of l depends on the specific application. If high consistence of the swarm is
desired then l should be smaller. This is because when the goal is near the swarm,
than the force that attracts the MAVs towards the goal, pulls them more together. But
since the MAVs are in dense group they are not so flexible and slower than when having
more freedom. On the contrary when l is bigger the swarm can spread wider and more
easily avoid the obstacles and thus move faster. Of course, strict following of the goal
can be the only key to better performance in some specific environment, but speaking
of some common office space, there should not appear so complicated cases. Figure 11
illustrates effect which can have choice of 𝑙.

𝑙 = 2 is probably the lowest possible value because it almost touches the swarm in
its standard shape. It can be seen that the distance from the centre is similar for all
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MAVs except of few exceptions. But with this size of 𝑙 the swarm never reaches the
goal in measured time apart from the other two cases. The last graph, where 𝑙 = 5,
shows greater dispersion of the swarm but reaches the goal at least twice faster. 𝑙 = 5 is
quite high because the swarm did not follow the target along the prescribed trajectory
much in this case. 𝑙 = 3.5 seems like a good compromise in this case and also other
simulations proved that it is suitable value.

However l remains an adjustable parameter and is to be set according to the particular
case. Even though its value must be within some bounds. If it was too low the swarm
would move slowly and the forces between individual MAVs could collide against each.
On contrary, if it was the other extreme and goal was two far, it would lost its purpose
of moving target, because if the MAV is in front of an obstacle and the goal is already
behind it the goal effect 𝐹𝐺 would pull it straight into the obstacle. Figure 12 is example
of such situation.

a) 𝑙 = 2 b) 𝑙 = 3.5

c) 𝑙 = 5

Figure 11 Illustration of effect of the distance 𝑙 between centre of the swarm and goal. Axis
𝑟 shows distance from the centre of the swarm. Blue colour represents individual MAVs and
red is average value. Green line symbolizes reaching of the end of the path.
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Figure 12 Illustration of case, where right setting of the distance between goal and swarm 𝑙

is crucial for its functionality. L⃗𝑔 is vector from the MAV to goal and L̃𝑜 is the vector
from the obstacle to the MAV.
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5 Simulations

The swarm controller was rewritten into C++ and modified for use with the GJK.
Algorithm for generating Voronoi diagram and path planning using A* was prepared
for usage and other scripts were implemented for more convenient usage. With all the
needed algorithms ready there is need to practically test its function.

Assignment of this thesis is to confirm functionality in office environment. For this
purpose was created model of two connected rooms containing common office equipment
represented by geometric primitives. In ....can be seen the test room.

Without any adjustments has the algorithm worked well in most cases, but in some
situations especially when the swarm was flying in narrow spaces occurred collisions.
Most of it solved setting maximum value for obstacle effect because when the quad-rotor
got too close to obstacle even though not colliding the 𝐹𝑜 send it completely away across
whole map through obstacles. Rest of the usual collisions solved little adjustment of
few constants, especially increasing the required distance between individual MAVs.

5.1 Configuration of the simulation
Setting up the simulation requires few steps going in logical order:

5.1.1 Defining obstacles
The environment can be defined in Matlab file "obstacles.m". There was made set of
functions to ease creating of the environment because defining each vertex is unnecessary
labour. For a better notion of the environment while designing it, this function also
generates preview in form of Matlab figure. The colour parameter serves only for better
distinction of the obstacles in the plot in Matlab. It also automatically converts the
obstacles into format used by GJK and Tunnel. There are four functions for creating
obstacles:

∙ "plot_block([𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑧1, 𝑧2],𝑐𝑜𝑙𝑜𝑢𝑟)". This function creates block with pro-
portions (𝑥2 − 𝑥1) × (𝑦2 − 𝑦1) × (𝑧2 − 𝑧1).

∙ "plot_hexahedron( [𝑥1, . . . , 𝑥8],[𝑦1, . . . , 𝑦8],[𝑦1, . . . , 𝑦8],[𝑧1, . . . , 𝑧8],𝑐𝑜𝑙𝑜𝑢𝑟 )". This
is more adjustable function for creating any convex hexahedron defined by its
vertices. Order of the vertices describes figure 13.

∙ "plot_table([𝑥, 𝑦, 𝑧], 𝑥𝑤𝑖𝑑𝑡ℎ, 𝑦𝑤𝑖𝑑𝑡ℎ, 𝑐𝑜𝑙𝑜𝑢𝑟)". Since table appears quite often in of-
fice environment there is function for creating it. [𝑥, 𝑦, 𝑧] are coordinates of vertex
which would have number 6 if the table top was the block in figure 13.

∙ "plot_chair([x,y,z],orientation,colour)". Same rules as for table applies for function
for chair, except in this case it is not a table top but the seat. Parameter orien-
tation has four possible values {𝑥+, 𝑥−, 𝑦+, 𝑦−} and specifies which direction is
the chair facing.

There is of course still the possibility to define any custom shapes as long as they
are convex. In such cases one more step is needed and that is generating (if not done
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5 Simulations

manually) of the rings parameter for gjk. For this purpose was implemented method
"path_to_gjk.py", which given set of vertices and faces computes the "rings".

Figure 13 Illustration of order of vertices for function "plot_hexahedron.m"

5.1.2 Planning trajectory
Generating Voronoi diagram and planning of the path is done in one step by script
"Tunel". Three things are there to set: start, end and offset. Parameter offset describes
how large space around the obstacles should be included in the Voronoi diagram. Useful
feature of this algorithm is that given arbitrary points start and end it finds the nearest
vertices of the Voronoi diagram. It means that the user does not have to think about
whether the points are in the graph.

In this step may occur problems with generating of the Voronoi diagram. This error
probably happens during transformation of the cells when using obstacles which have
one dimension many times bigger or smaller than the other two. It can by solved
by splitting the scene into individual rooms and omitting the walls, floor and ceiling,
because these are the critical shapes. It can be done because the diagram is created in
defined bounds, so it only requires setting small offset. This deficit needs to be solved
in the feature and will be discussed with the author or another solution will be found.

When the path is planned, the function "create_path.m" must be run, because it
samples the path and saves it into file for the GJK.

5.1.3 Run the Simulation
At last the main step. Running the simulation is done through "UAV_swarm". In order
to speed up the algorithm, there were added a method which decides which obstacles
need to be computed. The function must be simple if it should take less time than
computing of all obstacles. Let 𝑟𝑠 be called radius of the swarm which is distance
between centre of the swarm and the furthest individual. And the same parameter
is declared for obstacles, where 𝑟𝑜 is a radius between average of its vertices and the
furthest vertex. The centre of the obstacle and 𝑟𝑜 are computed during initialization
of the scene and there is no need to compute it again because the obstacles does not
change either shape or location. Than each loop of the algorithm, new set of obstacles
that are passed to GJK is computed. The obstacle is add to the set if distance between
centre of the swarm and centre of the obstacles is less than 𝑟𝑜 + 𝑟𝑠 + 𝑠, where 𝑠 is
predefined constant. Depending on setting of 𝑠, number of obstacles in radius around
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5.2 Results

the swarm will be computed by GJK. For successful avoiding of obstacles the 𝑠 should
be at least 2.

Before the run itself there can be defined these four options:
1. Number of MAVs in the swarm (1 - 25) - "swarm_size".
2. Number of steps where one step is equal to 0.015 second - "pocet_kroku".
3. Distance 𝑙 between the centre of the swarm and the target - "target_distance"

(differs with size of the swarm but should be at least 2 and 3.5 is proven to be
suitable value).

4. Distance 𝑠, deciding how far obstacles will be computed by the gjk - "com-
puted_distance" (minimal value is 2).

When the simulation is done, the data are save into file "output.m". The result can
be drawn in Matlab by "drawSimulation.m". There is also possibility to set up graphs
displaying data of interest.

5.2 Results

Fusing of the GJK with the former algorithm was successful and after some corrections
there no longer appear collisions if the goal path leads through enough space. Example
of successful avoidance of obstacle can be seen in figure 14. It can be seen that the
swarm is behaving as it is supposed and after passing the obstacle it merges back
together. Simulation in more complicated office-like environment is shown in figure 15.

Figure 14 Example of successful avoidance of two polyhedra obstacles

5.2.1 Corridors

There was made a request for research of effect of width of corridor on shape of the
swarm. This particular topic is interesting because knowledge of behaviour of the swarm
in corridors can help when planning route for the swarm. Before that the only mean of
evaluating some path was by its length. With data from following experiments, there
could be taken in account also i.e. minimum width of the corridor. Another thing to
be explored is effect of bend or change of width of the corridor.

The shape of the swarm is described by an ellipse fitted into set of points, where
each point is defined by 𝑋 and 𝑌 coordinates of one of the MAVs. The ellipse is
estimated by function [14] using the Least-Squares criterion. The estimation is done
for the conic representation of an ellipse (with a possible tilt). But only the proportions
are of interest there. Since the shape of an ellipse can be described by its two semi-axis
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5 Simulations

Figure 15 Example of run of the algorithm in office-like environment.

𝑎 and 𝑏 (see scheme in figure 16), these are the parameters which were compared during
the simulations.

The more points to fit in, the more accurate is the ellipse. Because of that, there
were only done test with swarms larger or equal to 15 MAVs. Even for swarm of 15
quad-rotors is the grap waving instead of being almost straight line. It was often not
possible to construct the ellipse with smaller swarms and so these data would not have
much value. The ellipse is also not possible to construct when the MAVs are aligned
into vertical plane. It is caused the by computing only 𝑋 and 𝑌 coordinates, and so the
algorithm sees the swarm as a line. When the corridor is too narrow and so that only
one row of MAVs fit into it, the ellipse can no longer be constructed. The computed
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5.2 Results

data are displayed in graphs in the subsections below this text.

For each size of the swarm were made graph showing dependency of the semi-axes
of the ellipse, which represents shape of the swarm, on time for different widths of the
corridor. It turned out that behaviour of the swarm is very similar for different sizes
of the swarm. The simulations showed that minimum width of the corridor where can
be constructed the ellipse is 5.5. and the maximum value is 7.5. From 7.5 and more is
shape of the swarm always the same. It is visible from the graphs, that even values of
𝑎 and 𝑏 for 𝑑 = 7 and 𝑑 = 7.5 are close. From the gathered data is also visible that the
swarm even in empty space moves in shape of an ellipse, because values for 𝑑 = 7.5 are
the same as if no obstacles were present.

During the simulations appeared an interesting phenomenon. All the data looks
according expectations, except for values for 𝑑 = 6. With this specific scenario the
swarm behave different and the ellipse was then computed according it. But when
the swarm was moved a little and went through the same corridor, it worked well.
Because of this anomaly were the values for 𝑑 = 6 not taken in account in the graphs
for dependency of size of the semi-axis on 𝑑.

As can be seen in figures 29 and 30 the results for different number of MAVS does
not vary much. Important fact to consider there, is that precision of the fitted ellipse
depends on number of MAVs and even 25 is not much for a precise fit. This can be
visible especially in graphs for 15 MAVs, because the characteristics are the most wavy.

From the current data it seems that for these sizes of swarm, does not the fitted
ellipse differ much for different numbers of MAVs. The more numerous swarm only
spreads wider vertically when flying through narrower corridor, but the width is almost
the same.

There has been also done test with corridors, which were bent in some place. But
nothing unusual appeared there. The swarm took the turn without problem and its
shape changed only if the next part was wider or narrower.

Figure 16 Scheme of measurement of dependence of semi-axis 𝑎 and 𝑏 on 𝑑. The dashed line
symbolizes direction of the swarm.
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15 MAVs

The results for swarm of 15 MAVs are:
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Figure 17 Graph of size of the semi-minor axis 𝑏 for different widths of the corridor, for swarm
of 15 MAVs
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Figure 18 Graph of size of the semi-major axis 𝑎 for different widths of the corridor, for swarm
of 15 MAVs
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Figure 19 Graph of dependency of size of the semi-minor axis 𝑏 on width of the corridor 𝑑 for
swarm of 15 MAVs. The red line is a polyline fitted on the measured data.
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Figure 20 Graph of dependency of size of the semi-major axis 𝑎 on width of the corridor 𝑑 for
swarm of 15 MAVs. The red line is a polyline fitted on the measured data.

20 MAVs

The results for swarm of 20 MAVs are:
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Figure 21 Graph of size of the semi-minor axis 𝑏 for different widths of the corridor, for swarm
of 20 MAVs
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Figure 22 Graph of size of the semi-major axis 𝑎 for different widths of the corridor, for swarm
of 20 MAVs
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Figure 23 Graph of dependency of size of the semi-minor axis 𝑏 on width of the corridor 𝑑 for
swarm of 20 MAVs. The red line is a polyline fitted on the measured data.
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Figure 24 Graph of dependency of size of the semi-major axis 𝑎 on width of the corridor 𝑑 for
swarm of 20 MAVs. The red line is a polyline fitted on the measured data.

25 MAVs

The results for swarm of 25 MAVs are:
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Figure 25 Graph of size of semi-minor axis 𝑏 for different widths of the corridor, for swarm of
25 MAVs
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Figure 26 Graph of size of the semi-major axis 𝑎 for different widths of the corridor, for swarm
of 25 MAVs
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Figure 27 Graph of dependency of size of the semi-minor axis 𝑏 on width of the corridor 𝑑 for
swarm of 25 MAVs. The red line is a polyline fitted on the measured data.
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Figure 28 Graph of dependency of size of the semi-major axis 𝑎 on width of the corridor 𝑑 for
swarm of 25 MAVs. The red line is a polyline fitted on the measured data.
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Comparison
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Figure 29 Graph comparing dependencies of sizes of the semi-minor axes 𝑏 on width of the
corridor for different sizes of the swarm.
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Figure 30 Graph comparing dependencies of sizes of the semi-major axes 𝑎 on width of the
corridor for different sizes of the swarm.
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6 Conclusion

There were created functions for more convenient setting of the scenario, so it is possible
to configure the simulation in few steps. Possible changes in the configuration were
described in chapter 5. Results of the implementation are showed and discussed

The aim of this thesis was to make the implementation of the control model of swarm
behaviour more variable so it could be one day used in a real quad-rotors. The original
algorithm for simulating behaviour of swarm of an unmanned aerial vehicles was en-
hanced of features which should contribute to this vision. The individual enhancements
are listed in next paragraphs.

There was added a possibility to use obstacles consisting of convex polygons using
GJK library. The MAVs are now able to avoid obstacles made of polygons and any
environment can be represented by polygons so the algorithm should be quite flexible
in this matter. The swarm should now be capable of moving without any collisions in
complex environment such as inside of a building.

It is now also possible for the swarm to follow some prescribed trajectory. Using
static goal in complex environment was not possible, because the swarm cannot avoid
big obstacles if they are in its trajectory. This feature could be also usable in many
tasks i.e. for monitoring of some area.

In case the path is not defined,the algorithm was made compatible with "Tunel",
which is script for creating Voronoi diagram of 3D environment and path planning
using A* algorithm. It is now possible to set start and end point in the environment
and the algorithm finds a followable path. But the algorithm needs to be a little,
because does not work with obstacles that has one dimension many times bigger or
smaller than the other two dimensions. This problem will be either solved with the
author or some other algorithm will be used.

There were also added functions for easier configuration of the scenario. So the
environment can be set up using function for creating blocks, custom hexahedrons or
tables and chairs. But there still remains possibility of defining custom obstacles as
long as they are convex.

In section 5.1 was made a list of possible changes in configuration of the simulation
and also step by step manual for creating a scenario for simulating.

Finally in section 5.2 were made experiments with the algorithm. And as can be seen
from the pictures of simulation the swarm behaves according to expectations. Also
research of behaviour of the swarm according to width of a corridor in which it moves
was done there. Its results are documented by a series of graphs in this section. From
the gathered data it seems that width of the swarm does not matter on size of it,
because it adapts to the corridor and spread vertically.

All parts of the thesis assignment were fulfilled:
∙ Method for moving target was implemented.
∙ Two libraries - GJK and Swift++ , which are capable of computing distance

between convex obstacles was studied and GJK was chosen.
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6 Conclusion

∙ The GJK library was implemented into the original algorithm.
∙ There were made many simulations in different scenarios and experimenting with

corridors of different width and the gathered data were analysed.
The algorithm as it stands is still not ready for usage in real devices, but it is few

steps closer now. There is still space for improvements in the path planning algorithm,
because it is still not fully working and the whole algorithm could be made quicker
by right optimization. Before tests with the real quad-rotors the constants of the
control model would have to configured for some particular device. The MAVs must be
also firstly equipped with sensors or cameras sufficient for reliable localization of the
neighbouring individuals and obstacle detection. Other thing that is needed is some
kind of localization system, so the location of the MAVs can be controlled in unknown
environment. Hopefully, this project will some day reach its final stage.
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