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Abstract

The aim of this thesis is to stabilize a single-track mobile robot in a vertically upright position while
the robot is in motion as well as while it is motionless.
This system is modeled using a MATLAB Simulink environment and applied to a real system built
with a help of LEGO Mindstorms building kit.
In the first section of the thesis a lateral stabilizating model and a planar model of motion are described
with all the derivations.
Further, the real system is presented with a description of a construction, an identification and the
limitations linked with the LEGO Mindstorms building kit and the LEGO sensors. The comparison of
the real and identified systems is also a necessary part of this section.
The final section is indicative of a real model control description and a real measured data presentation.
The real measured data is realized on the built single-track mobile robot.

Aim of the thesis

1. Construct a prototype of a single-track mobile robot from a LEGO Minstorms kit.

2. Identify a dynamic model of the robot.

3. Develop and implement a controller for lateral stabilization of the robot.

4. Develop and implement a controller for the robot in forward motion.
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Abstrakt

Tato práce se zabývá řízením jednostopého vozidla z hlediska laterální stabilizace v klidu i v pohybu.
Zaměřil jsem se předně na namodelování samotného systému v prostředí MATLAB Simulink a následně
na aplikaci získaného modelu na reálný systém, který byl realizován s využitím sestavy LEGO
Mindstorms.
V práci nejprve popisuji modelování z hlediska samostantné laterální stabilizace, následně je v první
sekci přidán planární pohybový model.
Dále je představen reálný model, jeho konstrukce, identifikace a omezení, která s sebou přináší sestava
LEGO Mindstorms s příslušnými senzory. Porovnání identifikovaného a reálného modelu je nezbytnou
součástí této sekce.
Cílem poslední sekce této práce je popsat samotné řízení reálného modelu, představit naměřená reálná
data realizovaná na skutečném modelu jednostopého vozidla.
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v forward velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [m/s]

xx
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2 1 INTRODUCTION

1 Introduction

Every motorbike moving down the street obviously needs a driver who keeps it in the vertically upright

position. The first motivation for this thesis was an idea of how to keep the motorbike in the upright

position just by itself without the intervention of the driver. Few relatively actual researches deal with

this issue.

Three methods of a lateral stabilization are published. The most frequent solution is a reaction

wheel control. This method is published as an analogy in the form of a reaction wheel pendulum

[10, 11, 12, 13], or in the applied form as the reaction wheel control of a selfbalancing motorbike [9]. A

slightly different method is published in [15], but it is basically the same as the reaction wheel. The

smoothest method is the lateral stabilization using a gyroscope. Gyroscopic stabilizer is presented in

[14].

The first selected solution was the reaction wheel pendulum [1]. Taking into consideration all the

simplifications, we can liken the single-track robot standing still to the reaction wheel pendulum. This

type of pendulum is essentially an inverted pendulum with a rotary wheel attached on its free end.

A more accurate description is shown in the first section of this thesis. The reaction wheel is able

to stabilize the inverted pendulum, or the single-track robot in the position vertically up due to its

dynamics. Some functional prototypes were already realized with satisfactory results, but never using

the LEGO Mindstorms building kit and therefore this thesis was created.

The reaction wheel influences the pendulum with or without an external drive. A DC-motor or other

types of drives are necessary to control a pendulum position using the reaction wheel. A laboratory

model is presented in the Figure 1.

Figure 1: Laboratory model of the reaction wheel pendulum. Available from [16]

In the section 2.3, the detailed derivation of this model as well as the control derivation are shown.
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This method was evaluated as the most feasible solution for the real model and was designed despite

the LEGO construction limitations.

The gyroscopic control is presented as the second selected method. Main derivation of this method

is made in the appendix A. The gyroscopic control is based on two-axis gimbal which are acctuated by

a DC-motor and which balance the body of the single-track robot and prevent it from falling down

using an interaction between the moments of force. The rotation axis of a gyroscope is generally

perpendicular to the rotation axis of the robot. The gyroscope spins with a constant angular velocity

and an influence to the robot’s body is produced by changing a yaw velocity of gyroscope’s rotation axis.

This method proved to be very impressive. The C-1 model of the motorcycle with the gyroscopic control

is able to use, its design is presented in the following Figure with appropriate link to manufacturer.

Figure 2: Real motorcycle controled by gyroscopic effect. Available from [18]

After a lateral stabilization it is necessary to set the model in motion. The planar model of motion

described in the section 2.4 is really simple when the lateral stabilization is solved and the results are

once again quite interesting, see the Figure 22a. The important fact is that a robot’s handlebar is

assumed to be actuated by a drive and therefore it cannot move freely. A free handlebar brings other

difficulties which are not needed to be dealt with in this thesis.

Further, the thesis pursues the realization of a real model. The construction limitations are obvious,

but the final construction is durable and quite good looking (Fig. 3). The identification usually goes

before control and this thesis is no exception. Some interesting identification experiments are presented

with satisfactory results. The control is derived and applied to the real model, it is all described in the

section 4.
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Figure 3: Single-track mobile robot constructed with a help of the LEGO Mindstorms building kit.
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2 Model

The main problem of keeping the single-track mobile robot in an upright direction can be solved in

several different ways. The reaction wheel control and the gyroscopic control were chosen during the

analysis of single-track mobile robot lateral stabilization. The reaction wheel was selected as the most

feasible method which could be applied to the real model and the gyroscopic control as the most

interesting and elegant way to the single-track mobile robot lateral stabilization. Both methods and

appropriate models are described in this section. A DC-motor is a drive in both methods and according

to this fact its dynamics is described here.

2.1 DC-motor Dynamics

2.1.1 Equations of Motion

The dynamics of the DC-motor is described by these equations.

L
di(t)
dt

= −Ri(t)− keω(t) + u(t)

J
dω(t)
dt

= kti(t)− bω(t)− τz(t) (1)

τ(t) = kti(t)

where the torque constant kt is identical to the back EMF constant ke in other units.

variable unit description

i A current

u V voltage

τz Nm total external load moment of force

ω rad/s angular velocity

ϕ rad angle of arbor

τ Nm motor torque

R Ω resistance

L H inductance

J kgm2 moment of inertia

b kgm2
/s friction constant

ke V/rad/s electric constant

kt Nm/A torque constant

Table 1: Used variables
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2.1.2 State Space Model

One system simplification is possible because of uncomparatively fast time constant of motor current

to the rest of the states.

di(t)
dt

= 0

The state space model is defined according to the equations 2.

ẋ = Ax+Bu

y = Cx+Du (2)

 dω(t)
dt

dϕ(t)
dt

 =

 −kekm

RJ − b 0

1 0

 ω(t)

ϕ(t)

+

 km

RJ −1

0 0

 u(t)

τz(t)


τ =

[
−ktke

R 0
] ω(t)

ϕ(t)

+
[

kt

R 0
] u(t)

τz(t)

 (3)

All the types of LEGO motors are presented in [5]. The motor with the ideal combination of rotation

speed and stalled torque is used in the construction. The NXT motor is chosen.

2.2 Lateral Dynamics Model with Reaction Wheel

The reaction wheel, sometimes also referred to as the momentum wheel, is a simple rotating wheel

which is attached to the shaft of a DC-motor. The wheel is placed in the vertical axis of the robot.

Mutual torque between the wheel and robot can be used to control the vertical position of the robot.

The robot with the reaction wheel can be likened to the reaction wheel pendulum [1].
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m  ,J
B

m   ,J
W W

l

l 1

2

B

A

B

(a) Physical dimensions

A

B

φ

ω

B

B

ω
W

φ
W

(b) State variables

Figure 4: The principle of single-track mobile robot lateral stabilization is described with the reaction

wheel pendulum. The robot is standing still and balancing. The direction |AB| marks the body of the

robot and the circle with its center in B interpretes the reaction wheel.

The moment of force τ formed by the reaction wheel acts in the point B, but the influence on the

body which is called “actuator moment” is in the point A with opposite sign.

All the variables shown in the Figure 4 are described in the following table.

variable unit description

mB kg mass of body

mW kg mass of reaction wheel

l1 m distance from pivot to center of mass of body

l2 m distance between centers of mass of body and reaction wheel

JB kgm2 moment of inertia of body about it’s center of mass

JW kgm2 moment of inertia of reaction wheel about it’s center of mass

ϕB rad angle of body

ϕW rad angle of reaction wheel

ωB rad/s angular velocity of body

ωW rad/s angular velocity of reaction wheel

τ Nm reaction wheel torque

kB N/m viscous friction of body (in point A)

kW N/m viscous friction of reaction wheel (in point B)

Table 2: Used variables
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2.2.1 Equations of Motion

The equations of motion derivation preceded description of the system. The reaction wheel pendulum

has one DOF. The relation for the distance to the wheel’s axis is added here because of simplification.

l = l1 + l2

The body’s moment of inertia with respect to the point A is defined using the Huygens–Steiner theorem.

JB = JW +mBl
2
1 +mW l

2 (4)

The kinetic energy T [J ] and the potential energy V [J ] are defined

T = 1
2JBω

2
B + 1

2JWω
2
W

V = g cos (ϕB) (mBl1 +mW l)

2.2.1.1 Equations of Motion without Friction

The equations of motion are determined using the Lagrange’s method.

d

dt

(
∂L
∂q̇

)
+ ∂L
∂q

= 0 (5)

First step is to define the Lagrangian function L and the generalized coordinates and velocities, q, q̇.

L = T − V

q =

 ϕB

ϕW


q̇ =

 ωB

ωW

 (6)

After differentiation

d

dt

(
∂L
∂q̇

)
=

 JBω̇B

JW ˙ωW


∂L
∂q

=

 −g sin (ϕB) (mBl1 +mW l)

0

 (7)
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The basic equations of motion of the reaction wheel pendulum are derived.

ω̇B −
g · (mBl1 +mW l)

JB
sin (ϕB) = 0

JW ˙ωW = 0 (8)

Note that the friction and other interaction are neglected in this chapter.

2.2.1.2 Equations of Motion with Friction

Some modifications had to be carried out in order to make the theoretical model more realistic. All

the frictions and interactions between the body and the reaction wheel are neglected in the previous

section. That includes mainly the friction at points A and B (Fig. 4). The final state equations are

determined.

ω̇B = 1
JB

[g sin (ϕB) (mBl1 +mW l)− τ + kWωW − (kW + kB)ωB ]

ω̇W = 1
JW

[τ − kW (ωW − ωB)] (9)

ϕ̇B = ωB

These state equations contain all the frictions, interactions and torque from the reaction wheel.

2.2.2 State Space Model

It is important to define all the states, inputs and outputs. This state space model has only one

input, the moment of force τ and only one state to observe as the output, the angle of body ϕB . One

simplification is also applied to the model, the angle of wheel ϕW is neglected because of its irrelevance.

The state vectors of the system are

x (t) =
[
ωB (t) ϕB (t) ωW (t)

]T
u (t) = τ (t) (10)

y (t) = ϕB (t)

Here it is also defined that all the variables and states are variable in time. This fact is not going to be

highlighted any more in this thesis.

The equations 9 could be now rewritten to matrix representation.

ẋ = Ax+Bu+ h(x,u)

y = Cx+Du (11)
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ẋ =


−kB+kW

JB
0 kW

JB

1 0 0
kW

JW
0 − kW

JW

x+


− 1
JB

0
1
JW

u+


g sin(ϕB)(mBl1+mW l)

JB

0

0


y =

[
0 1 0

]
x (12)

This state space model is nonlinear because of the first equation describing the variable ωB. The

linearization has to be made in a suitable stationary point called the equilibrium.

2.2.2.1 Linearization

First of all, the ideal equilibrium has to be found. All the possibilities of the equilibrium are given by

the equation

ẋ = 0 (13)

For the input operation point

uε = 0

the solutions of equation 13 are

xε1 =
[

0 0 0
]T

xε2 =
[

0 π 0
]T

(14)

The main intention is to hold the body of the model in the vertically up position, therefore upper

equilibrium xε1 is taken as the equilibrium.

xε = xε1

Rewriting the first equation as

ẋ1 = f1 (x, u) (15)

using the Taylor series and neglecting the quadratic and higher degrees, the linearized deviation model

is defined as

ẋ1 = f1|x=xε
+
[
∂f1

∂xi

]∣∣∣∣
x=xε

∆x+
[
∂f1

∂u

]∣∣∣∣
x=xε

∆u (16)

Where i = 1...n and n is the number of states. The deviation symbol ∆ in front of the vectors is not

necessary to write because of the zero operation point.
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∆x = x− xε = x

∆u = u− uε = u

The final linearized equation is determined as follows.

ẋ1 =
[
−kB+kW

JB

g(mBl1+mW l)
JB

kW

JB

]
x+

[
− 1
JB

]
u (17)

2.2.2.2 Linearized State Space Model

The linearization in equlibrum xε is successfully done and now the linearized state space model is

possible to make according to the general state space equations 2. The state vectors are defined in the

equations 10 and the matrices of system are determined as follows

A =


−kB+kW

JB

g(mBl1+mW l)
JB

kW

JB

1 0 0
kW

JW
0 − kW

JW

 B =


− 1
JB

0
1
JW

 (18)

C =
[

0 1 0
]
D = 0

Applying to equations 2.

ẋ =


−kB+kW

JB

g(mBl1+mW l)
JB

kW

JB

1 0 0
kW

JW
0 − kW

JW

x+


− 1
JB

0
1
JW

u
y =

[
0 1 0

]
x (19)

This is the linearized state space model of reaction wheel pendulum valid around the equilibrium xε .

2.2.3 Reaction Wheel Position Analysis

The distance of the reaction wheel from the body’s center of gravity is determined as the most important

parameter. The ideal position was found right in or below the center of gravity because of the lower

value of input τ or the smaller maximal speed of reaction wheel ωW .

The infuence of the reaction wheel position with respect to the body´s center of gravity is presented in

the Figure 5.
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Figure 5: Initial torque peak needed for stabilization from constant nonzero tilt angle ϕB (0) =

0.1745 rad related to the reaction wheel distance from the center of gravity of the robot.

The position with the smallest value of l2 is theoretically the ideal position of the reaction wheel

because of decreasing requirements on the torque τ . This is in fact not possible to accomplish on the

real model. This fact is considered during the construction and the reaction wheel is settled to the

robot’s center of gravity to the lowest possible position.

2.3 Lateral Dynamics Model with Gyroscope

τ
A

τB

φ
B

(a) Actuator moment τA and moment of force produced

by gyro τB with relation τB = −τA.

τ =-τB A

ω
W

o1

o2

(b) Position of gyroscopic actuator with description of

moments direction.

Figure 6: Description of gyroscopic effect where ωW is the constant angular velocity of gyrowheel

ensuring the lateral stabilization and producing the actuator moment τB .

Model of the single-track mobile robot controlled by the gyroscopic effect is shown in the Figures 6,

7. A disc in the middle of the robot’s body is represented by the rectangle. The moment of force τB
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produced by the disc influences the body as the moment of force τA.

ωW

o1
o2

φ
G

τ =-τ
τ

A

G

B

Figure 7: Description of gyroscopic effect with the rotation of gyrowheel by the angle ϕG. The moment

of force τG is the torque produced by gyrowheel, the moment τB , or −τA is the actuator torque.

2.3.1 Equations of Motion

The equation 63 is rewritten for the purposes of this thesis according to the Figures 6, 7.

τB = JWωGωW

τA = −τBcos (ϕG) (20)

Body dynamics substituted by an inverted pendulum is the same as in the section 2.2, it is not necessary

to rewrite these equations again.

Detailed derivation of gyroscopic effect is given in the appendix A.

2.3.1.1 Equations of Motion with Friction

The state equations are determined by assuming only the friction of the body.

ω̇B = 1
JB

[−JWωGωW cos (ϕG) + g sin (ϕB) (mBl1 +mW l)− kBωB ]

˙ωW = 0

ϕ̇B = ωB (21)

ϕ̇G = ωG
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2.3.2 State Space Model

A mathematical model of the single-track mobile robot gyroscopic control is defined according to the

equations 21.

x =
[
ωB ϕB ϕG

]T
u = ωG (22)

y = ϕB

The variable ˙ωW = 0 , because ωW is kept constant. It is not a state. Considering previous fact only

the variable ωG is able to change the rate of the moment of force , τB or τA as shown in the equation

20.

The nonlinear state space model is defined using the matrix description (eq. 11).

ẋ =


− kB

JB
0 0

1 0 0

0 0 0

x+


0

0

1

u+


−JWωWωG cos(ϕG)

JB
+ g sin(ϕB)(mBl1+mW l)

JB

0

0


y =

[
0 1 0

]
x (23)

2.3.2.1 Linearization

The equilibrium is chosen as follows.

xε =
[

0 0 0
]T

The linearized deviation model is derived according to section 2.2.2.1.

ẋ1 =
[
− kB

JB

g(mBl1+mW l)
JB

0
]
x+

[
−JWωW

JB

]
u (24)

2.3.2.2 Linearized State Space Model

The linearized state space model and the state vectors are defined in this section pursuant to the

equations 2. The state vectors:

A =


− kB

JB

g(mBl1+mW l)
JB

0

1 0 0

0 0 0

 B =


−JWωW

JB

0

1



C =
[

0 1 0
]
D = 0

The linearized state space model in the equilibrium xε =
[

0 0 0
]
T :
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ẋ =


− kB

JB

g(mBl1+mW l)
JB

0

1 0 0

0 0 0

x+


−JWωW

JB

0

1

u
y =

[
0 1 0

]
x (25)
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2.4 Planar Model of Motion

After derivation of the lateral stabilization it is necessary to take a look at the factor of motion. The

single-track mobile robot is set in motion by actuating of the rear wheel. The motion and rotation of

the front wheel influences the lateral stabilization quite a lot. It also should be realized that when the

robot moves into the curve, his vertical axis is inclined as shown in the final figure of this section. The

planar model of motion using the reaction wheel for lateral stabilization is determined here according

to [17]. The planar model of position is not omitted as well.

2.4.1 Equations of Motion

B A

a

b

l

(a) Side view at the single-track mobile robot with de-

fined important distances a, b, l. Rectangle in the middle

represents the reaction wheel.

A
B

RR/cos(α)

α

α

η
.

a  ,a  ,aω η η.
. ..

v

B

(b) View from above at the single-track mobile robot

with defined front wheel rotation α and effects to body

aωB , aη̇ , aη̈, R represents necessary distance to define

yaw rate η̇.

Figure 8: Single-track mobile robot geometry with all defined parameters and demonstration of

arrangement.

New parameters have to be defined to derivate the motion model. The description of these parameters

can be found in the following table.
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variable unit description

a m distance between centers of wheels

b m horizontal distance to center of mass

l m vertical distance to center of mass

R m distance to yaw center of rotation

m kg mass of motorcycle

v m/s forward velocity

α rad angle of front wheel

η rad yaw angle

η̇ rad/s yaw rate

η̈ rad/s2 yaw acceleration

a ˙ωB
rad/s2 roll acceleration

aη̇ rad/s2 normal acceleration toward center of turn

aη̈ rad/s2 yaw acceleration

Table 3: Used variables

The motion model geometry is shown in the Figure 8. There are two views in the Figure 8, the side

view and the view from above. Rotation around the center of mass is described by the yaw angle η.

The yaw rate and yaw acceleration directly relate to the yaw angle. The yaw rate is defined by the

velocity v and the distance R.

η̇ = v

R

The parameter a is defined as the distance between the points A,B, where these points are located in

the middle of wheels. Using the Pythagoras Theorem and the approximation for small angles, where

cos(α) = 1 and sin(α) = α, is defined

a = R cos (α) sin (α) ≈ Rα

R = a

α

The parameters a ˙ωB
aη̇, aη̈ are conclusively dependent on the size of ωB , η̇, η̈ changes. The normal

acceleration aη̇ will exist even if the yaw rate η̇ is constant and the motorcycle is travelling in a circular

path, this acceleration is associated with the direction change of velocity. The accelerations a ˙ωB
, aη̈

are the tangencial accelerations associated with ϕB and η. The values of accelerations are following

a ˙ωB
= lω̇B

aη̇ = v2

R
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aη̈ = bη̈

Applying the Newton’s Second Law of Motion

mgl sin (ϕB) = ma ˙ωB
l +maη̇ cos (ϕB) l +maη̈l + JBω̇B (26)

After substitutions

ω̇B

(
l + JB

ml

)
= g sin (ϕB)− v2

R
cos (ϕB)− bη̈

Using the relationship (v is defined as constant velocity)

η̈ = d

dt

( v
R

)
= d

dt

(vα
a

)
= v

a
α̇

The final equation of motion is defined

ω̇B

(
l + JB

ml

)
= g sin (ϕB)− v2

a
cos (ϕB)α− bv

a
α̇ (27)

2.4.1.1 State Equations

The next step in the derivation process is the combination of equation 9 with the model defined in

the section 2.2. The move effect has to be included only in the first state equation from the section 2,

which is rewritten there

ω̇B = 1
JB

[g sin (ϕB) (mBl1 +mW l)− τ + kWωW − (kW + kB)ωB ] (28)

The other equations are the same. The state equations of the motion model controlled by the reaction

wheel are following

ω̇B = 1
JB

[
(mBl1 +mW l)

(
g sin (ϕB)− v2

a
cos (ϕB)α− bv

a
α̇

)
− τ + kWωW − (kW + kB)ωB

]
+

+1
l

(
g sin (ϕB)− v2

a
cos (ϕB)α− bv

a
α̇

)
˙ωW = 1

JW
[τ − kW (ωW − ωB)] (29)

ϕ̇B = ωB

2.4.2 State Space Model

According to the state equations 29 the nonlinear state space model in the matrix description 11 is

determined
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x =
[
ωB ϕB ωW α

]T
u =

[
τ α̇

]T
(30)

y = ϕB

ẋ =


−kB+kW

JB
0 kW

JB
0

1 0 0 0
kW

JW
0 − kW

JW
0

0 0 0 0

x+


− 1
JB

(
1
l + (mBl1+mW l)

JB

) (
− bva

)
0 0
1
JW

0

0 1

u+ (31)

+


1
JB

[
(mBl1 +mW l)

(
g sin (ϕB)− v2

a cos (ϕB)α
)]

+ 1
l

(
g sin (ϕB)− v2

a cos (ϕB)α
)

0

0

0


y =

[
0 1 0 0

]
x

2.4.2.1 Linearization

Linearization is realized in the following equilibrium

xε =
[

0 0 0 0
]
T

The linearized deviation motion model controlled by the reaction wheel is derived according to the

section 2.2.2.1.

ẋ1 =
[
−kB+kW

JB

(
1
l + (mBl1+mW l)

JB

)
g kW

JB

(
1
l + (mBl1+mW l)

JB

)(
−v

2

a

) ]
x+

+
[
− 1
JB

(
1
l + (mBl1+mW l)

JB

) (
− bva

) ]
u (32)

2.4.2.2 Linearized State Space Model

The definition of the state vectors

A =


−kB+kW

JB

(
1
l + (mBl1+mW l)

JB

)
g kW

JB

(
1
l + (mBl1+mW l)

JB

)(
−v

2

a

)
1 0 0 0
kW

JW
0 − kW

JW
0

0 0 0 0



B =


− 1
JB

(
1
l + (mBl1+mW l)

JB

) (
− bva

)
0 0
1
JW

0

0 1

 (33)
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C =
[

0 1 0 0
]
D = 0

The definition of the final linearized state space model is also necessary

ẋ =


−kB+kW

JB

(
1
l + (mBl1+mW l)

JB

)
g kW

JB

(
1
l + (mBl1+mW l)

JB

)(
−v

2

a

)
1 0 0 0
kW

JW
0 − kW

JW
0

0 0 0 0

x+

+


− 1
JB

(
1
l + (mBl1+mW l)

JB

) (
− bva

)
0 0
1
JW

0

0 1

u (34)

y =
[

0 1 0 0
]
x

Position of the robot in the space with the body’s angle of rotation is defined by these three equations

ẋ = v cos(θ)

ẏ = v sin(θ) (35)

θ̇ = v

l
tan(α)

where x, y are the coordinates with their velocities ẋ, ẏ and θ, θ̇ describes the directional rotation and

velocity of the body.
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3 Identification

The design of the real model is described in this chapter, it contains a description of construction,

identification methods and also the limitations. The comparative simulations of real and identified

models are presented at the end of this chapter. All the derived parameters are shown in the table

below.

3.1 Robot’s body

The real model of the single-track robot is realized with a help of the LEGO Mindstorms building

kit. Due to the simplicity of mechanical setup, the reaction wheel was used in the real model as a

stabilizing actuator.

The care is given primarly to the vertical axial symetry in the real model design. The moment of force

of reaction wheel is dependent on the wheel’s mass, it is not possible to construct the sufficiently heavy

reaction wheel only with the LEGO components. According to this fact the load from an external

source has to be used. The reaction wheel position is located directly in the middle of the robot’s body

and disturbs the structural strength of the robot. This problem is solved by fixing the front and rear

parts of the body in the places above and below the reaction wheel.

Two LEGO NXT Motors are used to the actuation with the reaction wheel and it also contributes to

the total strength of the real model. The construction also contains two gyroscopic sensors, the LEGO

NXT Intelligent Brick and one LEGO NXT Motor for the rear-wheel drive.

The final costruction of the single-track robot is presented in the pictures below.

Figure 9: Real model of the single-track mobile robot made with a help of the LEGO Mindstorms

building kit.

3.1.1 System Parameters

The equations 9 are rewriten here to demonstrate the unkown parameters. These parameters are bold

in the equation 36. The other parameters are known, or rather directly or indirectly measured by the

robot´s sensors. The simplification (mBl1 +mW l) ∼= (mB +mW ) l was applied as well.
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ω̇B = 1
JB

[g sin (ϕB) (mB +mW ) l− τ + kWωW − (kW + kB)ωB ]

ω̇W = 1
JW

[τ − kW (ωW − ωB)] (36)

Results are presented in the following table before the description of identification itself.

parameter unit value

JB kgm2 0.0400

JW kgm2 0.0092

g m/s2 9.8067

l m 0.1090

mB kg 1.0000

mW kg 1.1000

kB N/m 0.4000

kW N/m · 10−5 2.1756

Table 4: Identified parameters

The parameters of mass were directly measured with scales. The usual value was used for the

gravitational acceleration.

3.1.1.1 Center of Gravity Determination

The single-track robot is hung upside down to the zero operational point and then the whole body

is accelerated by an external force. The distance to the center of gravity l is determined from the

Christiaan Huygens’ law of period of the pendulum (eq. 37), using the small-angle approximation.

T = 2π

√
l

g
⇒ l = T 2g

4π2
.= 10.9 cm (37)
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Figure 10: The center of gravity measurement, the body is accelerated by an external force. The value

of period is measured and distance to the center of gravity is computed using the Christiaan Huygens’

law (eq. 37).

3.1.1.2 Parameters Estimation of ARX

The other parameters are identified by using parameters estimation of the AutoRegresive model with

eXternal input (ARX) with the least squares method. The outline of these method’s derivation is

presented acording to [2]. This method is based on performing N measurements and obtaining N

difference equations with up to 2n unkown coefficients in the following form

y (k) = −a1y (k − 1)− ...− any (k − n) + b0u (k) + ...+ bnu (k − n) + e (k)

y (k + 1) = −a1y (k)− ...− any (k − n+ 1) + b0u (k + 1) + ...+ bnu (k − n+ 1) + e (k + 1)
... (38)

y (k +N − 1) = −a1y (k +N − 2)− ...− any (k +N − n− 1) +

+b0u (k +N − 1) + ...+ bnu (k +N − n− 1) + e (k +N − 1)

Where e represents the estimation error.

This system of equations is in the terms of matrices formulated as follows.


y(k)

y(k + 1)
...

y(k + N − 1)

 =


−y(k − 1) . . . −y(k − n)
−y(k) . . . −y(k − n + 1)

... . . .
...

−y(k + N − 2) . . . −y(k + N − n− 1)

∣∣∣∣∣∣∣∣∣
u(k) u(k − n)

u(k + 1) u(k − n + 1)
...

...
u(k + N − 1) u(k + N − n− 1)





a1

...
an

b0

...
bn


+

+


e(k)

e(k + 1)
...

e(k + N − 1

 (39)
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y = Zθ + e (40)

The minimization of a quadratic criteria on the estimation error leads to the optimization problem

with the following solution including the pseudo inversion.

θ̂ =
(
ZTZ

)
−1ZTy (41)

The initial estimation of the parameters JB , JW , kB , kW are obtained with this method. The parameters

of moments of inertia were further modified by taking the mathematical expression of moment of

inertia into consideration. The equation 4 was used for the moment JB and the moment JW was

modified according to the following equation.

JW = 1
6mWa

2
W

Where aW = 0.12m represents the diameter of reaction wheel.

The final simulations which compare the real model with the identified influenced the identification of

parameters as well.

3.2 NXT Motor

The NXT Motors with built-in rotation sensor that mesures speed and rotation are used. This type of

motors reports the results of measurement to the NXT Intelligent Brick.

Figure 11: NXT motor, available from [5].

The motor constants are taken from [5, 6] and they are presented in the following table.
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constant unit description value

ke V/rad/s electric constant 0.4952

R Ω resistance 5.2628

L H inductance 0.0047

Imax A maximal curent 0.6000

Umax U maximal voltage 8.1700

Table 5: NXT motor constants

The input to motors is the voltage, but the output of model is the moment of force. A conversion of

the voltage to the moment of force is necessary. Momentum characteristics is presented in the Figure

12a and its derivation is shown in the section 3.2.1.
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(a) NXT motor momentum characteristics, according to third

degree polynomial approximation U (τ) in least squares sense.
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(b) NXT motor angular velocity characteristics with no load

describing maximal angular speed ωW with respect to input

voltage U

Figure 12: NXT motor characteristics, relation between moment of force τ and motor input voltage U ,

angular speed ωW limitation

The internal implemented speed PID regulator is necessary to be switched off, because the model

needs to control the torque instead of the speed reference.

According to the figure 12b a new NXT motor limitation was determined. It is the rotational speed

dynamical saturation which is dependent on the input voltage, or input torque. This limitation is

possible to be represented by the following relation.

ωW = 1.7793U − 0.1545 (42)

Finding the relation between the quantities U and ωW the maximal angular velocity is defined with

respect to the maximal input voltage presented in the table 5.

ωWmax
= 14.3824 rad/s
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3.2.1 Momentum Characteristics

The value of the maximal moment of force was defined as τmax
.= 0.342 Nm in the Figure 12a. An

experiment leading to this characteristics and maximal value is presented in this section.

The special support construction shown in the following picture was made for the NXT Motor.

Figure 13: Support construction for the maximal moment of torque measurement.

The experiment is based on the definition of the moment of force.

τ = ‖r‖ ‖F ‖ sin (θ)

Where r is the vector from the point from which the torque is measured to the point where the force

is applied, F is the force vector and θ is the angle between vectors F and r. For this experiment, the

following is valid θ = π
2 ⇒ sin (θ) = 1 and ‖r‖ = 0.01 m. The measured quantity is mass and the force

F , or rather the torque τ is obtained as a product of mass and gravitational acceleration .

The NXT motor with its construction is fixed to the table and the motor pushes in the distance

of ‖r‖ to the digital scale. The final characteristics is shown in the Figure 12a and it’s polynomial

approximation is determined as

U
.= 48.6606τ3 + 18.6752τ (43)

As a comparison according to [1], respectively the equation 1, the relation between the quantities U

and τ is defined, neglecting friction forces and the electrical dynamics of the DC-motor.

τ = keI = kuU ⇒ U = τ

ku
(44)

ku = keImax
Umax

= 0.0364 (45)
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This relation is found as inadequate for the NXT motor taking into consideration the measured

chracteristics in the Figure 12a.

3.3 Gyroscopic Sensor

HiTechnic NXT Gyro Sensors for the LEGO Mindstorms NXT were used. These sensors detect the

rotation, return the number of degrees per second of rotation and indicate the direction of rotation as

well. The measuring range is ±360 deg per second. The measurement of angular rotation runs only

around one axis.

Figure 14: HiTech NXT Gyro Sensor, availible from [7]. In the left figure sensor design. In the right

figure the axis of measurement.

3.3.1 Offset and Drift Corection

Offset error belongs in general to the most frequently occured sensors’ error. Each sensor has unique

offset value. Gyro sensor was totally motionless during the measurement and the offset value was

obtained about 595 deg/s.

It is necessary to measure not only the angular velocity but the angle too. The angle is obtained by

the angular velocity integration, respectively discrete integration. According to this fact the sensor

errors influence the angle more than the angular velocity.

The solution to this problem is called the calibration. It consists in the calculation of the anglular

velocity average value measured by the gyrocopic sensor e.g. during 5 seconds according to the sample

time. Output of the used gyro sensor after the calibration is presented in the figure below.
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Figure 15: HiTech NXT Gyro Sensor in a motionless state with a calibrated offset error.

It is obvious that the offset value is not constant. This problem is called a sensor drift. A sensor

drift is created by several factors, e.g. temperature. The HiTech NXT Gyro Sensors’ drift is seriously

affected by changes in input voltage. This affection is shown in the following picture, the NXT motor

was running during the measurement. This problem is detected also if the NXT battery is powered.
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Figure 16: HiTech NXT Gyro Sensor in a motionless state with noise by changes in input voltage.

The technique of constant but slowly updating the value of offset error was used in this project. The

high-pass filter was used with following results, the gyro sensor was totally motionless again. This

solution deals with the sensor drift very well, but does not solve this problem completely.
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Figure 17: HiTech NXT Gyro Sensor in a motionless state with calibrated offset and filtered drift.

3.4 Final Models Comparison

The final identification test was performed with the single-track robot hung in position upside down in

the zero operating point. The reaction wheel was accelerated by random input voltage. The response of

the real system, in contrast to the identified which includes all the nonlinearities, is called Identification

data fit. It is presented in the following Figure 18.

The identification was succesfully done, as a proof the validation data fit is presented as well. The

single-track robot was standing still in the upright position and in the Figure 19 is shown step response

which is compared with the identified model. The voltage value of step input is U = 8V.
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Figure 18: The response of identified and real systems to input voltage. Simulation in position upside

down in zero operating point.
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Figure 19: Step response of identified and real systems with the input voltage U = 8V. The single-track

mobile robot is placed in the position defined by the angle ϕB = π
2 rad after the falling down. This

position means that the robot’s body is lying on the ground. The contact between the body and the

ground blocks the reaction wheel rotation. According to this fact the reaction wheel is not rotating

any more after the collapse.
(
π
2 rad = 90 deg

)
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4 Control

4.1 Reaction Wheel Control System Design

By checking the eigenvalues of state matrix A (eq. 18), one unstable pole is found.

The linear continuous-time system is controllable if the controllability matrix (eq.46) is regular, i.e. if

it has the full row rank.

C =
[
B AB ... An−2B An−1B

]
(46)

where n is the number of states.

The controllability matrix of system (eq. 19) has rank three, there is no problem to control its states

using the input moment τ .

4.1.1 Linear Quadratic Regulator Design

For a continuous-time linear system described by state space model with a cost function

J =
∞̂

0

(
xTQx+ uTRu

)
dt (47)

where Q is a diagonal matrix defining the weights of states and R is a matrix defining the weights of

inputs, the feedback control law minimizing the cost value is defined as

u = −Kx (48)

The closed loop system, in which only the state matrix A is changed as follows, is defined after the

calculations, finding values of matrix K and application of the feedback.

AC = (A−BK) (49)

The important stability condition is satisfied by this closed loop system.

eig (AC) 5 0 (50)

The functionality of designed LQR is shown in the Figure 20.
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Figure 20: The reaction wheel pendulum controlled by the linear quadratic regulator. Initial conditions:

x0 =
[

0.0873 0 0
]T

. (0.0873 rad .= 5 deg)

4.2 Gyroscopic Control System Design

One unstable pole and one pole in zero are determined, but the row rank of controllability matrix C is

full. The linear quadratic regulator with ωG as the control input and ϕB as the control output is used

again.

4.2.1 Linear Quadratic Regulator Design

By applying the control law (eq. 48) and changing the state matrix A (eq. 49), the closed loop system

with all stable poles is derived. The simulations of designed LQR are shown in the following figure.
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Figure 21: Gyroscopic control with the LQR. Initial conditions: x0 =
[

0.1745 0 0
]T

. The angle

of the robot´s body is ϕB , the angular velocity of the body is ωB , the gyroscopic disc angle of rotation

is ϕG and ωG is its angular velocity. (0.1745 rad .= 10 deg)

4.3 Control Design of Planar Model of Motion

One unstable pole and one pole in zero were found by calculating the eigenvalues of matrix A (eq. 33).

The controllability matrix C has full rank, no uncontrollable state exists. Only the input τ is used as

the control input, α and α̇ are uncontrollable inputs.

4.3.1 Linear Quadratic Regulator Design

Applying the same control law as in the sections before the new stable system is derived. The simulation

of the designed LQR is shown in the Figure 22a.
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(a) Single-track mobile robot planar model of motion with the constant speed v = 1 m/s.

The quantities ϕB , ωB , ωW desribe the reaction wheel control and α, α̇ desribe the

rotation of the front wheel. Simulation represents the rotation of the front wheel

about the angle α = 0.1 rad and following straightening the direction of motion.(
0.1 rad .= 6 deg

)
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(b) Single-track mobile robot trajectory corresponding to 22a

Figure 22: Single-track mobile robot LQR control with the graphs of important variables and demon-

stration of the robot’s trajectory.



36 4 CONTROL

4.4 Real Control System Design

The final section deals with the real model control. The linear quadratic regulator was applied according

to the section 4.1.1. Using the Matlab environment the LQR design is reduced only to the design of

the weight matrices Q, R. The final quantified state matrices A, B are defined as

A =


−10.0005 56.1377 0.0005

1.0000 0 0

0.0024 0 −0.0024

 B =


−25.0000

0

108.6957

 (51)

where system with these state matrices (eq. 51) is unstable because of one positive pole p2 = 4.0075.

The privileged states are ϕB and ωW , according to this fact the matrix of state weights Q is determined.

The requirements to an input are given by selecting the significantly greater value of input weight in

the matrix R.

After using the Matlab to solve the optimization problem of minimizing the cost function J (eq. 47)

the discrete linear quadratic regulator is calculated according to the equation 48 and the closed loop

matrix AC (eq. 49) is determined.

AC =


−17.7110 −51.8715 −0.0005

1.0000 0 0

33.5263 469.6055 0.0022

 (52)

where the eigenvalues which fulfill the condition (eq. 50) are

λ1 = −14.0081

λ2 = −3.6984

λ3 = −0.0024

The maximal controllable value of the robot vertical angle displacement ϕB = 0.1222 rad .= 7 deg was

also found. It was estimated using the closed loop model (eq. 52) identified in the section 3which

includes the input saturation limit τsat = ±0.342 Nm.
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(a) Initial conditions: x0 = [0.1222 0 0]. Stable response.(
0.1222 rad .= 7 deg

)
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(b) Initial conditions: x0 = [0.1369 0 0]. Cannot be straight-

ened, unstable.
(

0.1369 rad .= 8 deg
)

Figure 23: Identified model response of the single-track robot with the reaction wheel to inicial

conditions.

Finally, the LEGO Mindstorms brick brings a lot of limitations. The gyroscopic drift problem turned

out as the crucial disadvatage which obstructs the lateral stabilization despite the filtration. The

high-pass filter solves the drift error relatively well but not completely. The single-track mobile robot

loses it´s zero reference point very quickly and then the keeping in the upright position is unattainable.

Getting the angle value of ϕB by the integration of measured value ωB increases the influence of drift

significantly. Due to this failure few real data measurements are presented in this section.
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Figure 24: Single-track mobile robot lateral stabilization, real data measurement using MATLAB

environment with RWTH Mindstorms NXT toolbox [19]
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The selfbalancing motorbike destabilizes itself during the stabilization effort. It is shown in the Figure

24. The robot exceeds the maximal controllable angle of body ϕB and the input voltage U reaches

the saturation limit. The reaction wheel cannot rotate any more when the robot’s body falls to the

ground. The contact between the body and the ground blocks the reaction wheel rotation. According

to this fact the behavior of the angular velocity ωW is obvious in the Figure 24.
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5 Conclusion

The mathematical models presented in the section 2 were succesfully determined by the attractive

results including the simulations of their control (Fig. 20, 21, 22). This theoretical part of the thesis

is worked out satisfactory and an output of this part is an evaluation of how feasible it is to design

the real model with a help of the LEGO Mindstorms building kit. It was decided according to the

theoretical results that the gyroscopic control is the most attractive method of single-track mobile

robot lateral stabilization, but the realization is very difficult from the design and material point of

view. It is presented in [18] that a gyroscopic control realization looks very impressive with sufficient

resources. The behaviour of a motorbike which is stabilized by the gyroscopes is very safe and reliable

and can resist to the various attempts of displacement. However, the building kit chosen for this thesis

does not provide the components to realize this method of control.

The reaction wheel control was chosen as the most appropriate method for the realization with a help

of the LEGO Mindstorms, but a lot of both expected and unexpected limitations were occured during

the identification (sec. 3). All these limitations are presented. They contain primarily the gyro sensor

drift, the maximal battery voltage or the limitations of NXT motor. The gyro sensor drift significantly

shifts the zero position of the single-track mobile robot despite a filtering and this fact makes the

vertically upright position difficult to control. Maximal NXT brick sample time is worth mentioning as

it is quite slow according to the computational complexity. A new version of LEGO Mindstorms is

called the EV3 [20] and its sample rate is a little bit better. The real model was constructed in spite

of all these disadvantages and sufficiently demonstrates the principles of reaction wheel control.

The control is discussed and described in the last section 4. The controlled real model behaviour is

expected but unsatisfactory. Some quite interesting balancing measurements are presented in this

section. However, unfortunately this model cannot be seen as a reliable selfbalancing motorbike. The

designed control is not sufficient, probably because of some not included nonlinearities. It is shown in

the presented tests that the robot destabilizes itself during the stabilization effort. This effect was not

solved by the LQR tunning.

The sensor’s drift minimization along with a method other than the high-pass filter could make the

lateral stabilization significantly better and more reliable. However, the NXT motor torque saturation is

finally determined as the biggest disadvantage. The maximal controlable angle of vertical displacement

which was defined as ϕB = 7° could be increased using the suitable type of DC-motor with sufficient

torque. These motors are unfortunately not offered by the LEGO manufacturer. Due to this fact

the DC-motor from an external source is recommended. Finally, one more improvement proposal is

possible, it is specifically increasing the reaction wheel weight. This weight was not increased in the

presented real model because the model strenght would be disrupted. However, the lateral stabilization

success is not guaranteed by taking into consideration all these improvement proposals. An effort to

design the LQR which would fulfill all the requirements will continue.
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I

A Gyroscopic Effect

First step to define the system controlled by a gyroeffect is to derive the physical principle of the

gyroscopic effect. This derivation is based on a rotation of a continuous body around an axis. Because

of the easier notation the bold marking of the time variables is used here in the contrast with the

previous sections.. The angular momentum of continuous body is defined as

L =
ˆ
r × (ω × r) dm (53)

The vectors can be divided into three basic axis.

L = Lxi+ Lyj + Lzk

r = rxi+ ryj + rzk (54)

ω = ωxi+ ωyj + ωzk

Applying the equations 54 to the equation 53

L =
[
ωx

ˆ
(y2 + z2)dm− ωy

ˆ
(xy)dm− ωz

ˆ
(xz)dm

]
i+

+
[
−ωx

ˆ
(xy)dm+ ωy

ˆ
(x2 + z2)dm− ωz

ˆ
(yz)dm

]
j + (55)

+
[
−ωx

ˆ
(zx)dm− ωy

ˆ
(yz)dm+ ωz

ˆ
(x2 + y2)dm

]
k

The moment of inertia and the product of inertia are now important to be defined and applied to the

equation 55.

Jx =
ˆ (

y2 + z2) dm
Jy =

ˆ (
x2 + z2) dm

Jz =
ˆ (

x2 + y2) dm
Dxy =

ˆ
(xy) dm

Dxz =
ˆ

(xz) dm

Dyz =
ˆ

(yz) dm

L = ωxJx − ωyDxy − ωzDxz − ωxDxy + ωyJy + ωzDyz − ωxDxz − ωyDyz + ωzJz

It is defined, that the body is in the origin of coordinate system and that the rotation axis pass through

the origin. According to this fact they are called principal axes of inertia, all the products of inertia

are equal to zero and the angular momentum is defined as
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L = Lxi+ Lyj + Lzk = ωxJxi+ ωyJyj + ωzJzk (56)

Φ
θ

θ

Φ
ψ .

.

.
z

C

y

A x

B

Figure 25: Gyroscopic effect scheme with reference ABC axes and angles with angular rotations

definition θ, φ, ψ, θ̇, φ̇, ψ̇

There are two systems shown in the Figure 25. The first is a rotation coordinate system with origin

at the pivot point of the gyro (xyz axes) which fulfills the condition of neglecting all the products of

inertia because they equal zero. The second is a fixed coordinate system which serves as a reference

(ABC axes).

θ̇ = nutation

φ̇ = precession

ψ̇ = spin

The rotation coordinate system follows only the gyroscopic nutation and precession. The angular

velocity of the rotation coordinate system xyz is given by

Ω = θ̇ + φ̇

The angular velocity of gyro with respect to the fixed coordinate system ABC is given by

ω = θ̇ + φ̇+ ψ̇

The Euler angles θ, φ, ψ define the displacement of gyro with respect to the fixed coordinate system

ABC.

The total moment of force supplied by gyro in each axis x, y, z is formulated.
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τ = dL

dt(
dL

dt

)
ABC

= L̇xi+ L̇yj + L̇zk + Lxi̇+ Ly j̇ + Lzk̇ = L̇xi+ L̇yj + L̇zk + Ω×L

τ = L̇xi+ L̇yj + L̇zk + Ω×L

According to the equation 56

τ = ˙Jxωxi+ Jyω̇yj + Jzω̇zk + [(Ωxi+ Ωyj + Ωzk)× (Jxωxi+ Jyωyj + Jzωzk)] (57)

where

Jx = Jx +mR2

Jy = Jy +mR2

Jz = Jz

For each axis individually

τx = Jxω̇x − JyΩzωy + JzΩyωz

τy = Jyω̇y − JzΩxωz + JxΩzωx (58)

τz = Jzω̇z − JxΩyωx + JyΩxωy

The angular velocities Ω and ω could be rewritten as follows.

Ω = θ̇ + φ̇

Ω = Ωxi+ Ωyj + Ωzk (59)

Ω = θ̇i+ φ̇ sin (θ) j + φ̇ cos (θ)k

ω = θ̇ + φ̇+ ψ̇

ω = ωxi+ ωyj + ωzk (60)

ω = θ̇i+ φ̇ sin (θ) j +
(
φ̇ cos (θ) + ψ̇

)
k

Substituing the relations (eq. 59, 60) into the equations 58 it is obtained

τx = Jxθ̈ − Jyφ̇2 cos (θ) sin (θ) + Jzφ̇ sin (θ)
(
φ̇ cos (θ) + ψ̇

)
τy = Jy

(
φ̈ sin (θ) + φ̇θ̇ cos (θ)

)
− Jz θ̇

(
φ̇ cos (θ) + ψ̇

)
+ Jxφ̇θ̇ cos (θ) (61)

τz = Jz
(
φ̈ cos (θ)− φ̇θ̇ sin (θ) + ψ̈

)
− Jxφ̇θ̇ sin (θ) + Jy θ̇φ̇ sin (θ)
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In one specific case, where the precession and spin are constant and nutation angle equals to 90° as

shown in the Figure 26.

θ̇ = 0

φ̈ = 0

ψ̈ = 0

θ

θ

Φ

ψ

.

.

.

z

C

y

A

x

B

mg

R

τx

Figure 26: Specific case of gyroscopic position with nutation θ = 90°

Then the solution becomes very easy.

τx = Jzφ̇ψ̇

τx = mgR (62)

The moment of inertia for a solid circular disk is defined as

Jz = 1
2mr

2

For a thin circular ring

Jz = mr2

where r is the radius of the disk or the ring.

The final moment of force, which is necessary to single-track mobile robot control, is derived.

τx = 1
2mr

2φ̇ψ̇ (63)
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B Contents of The CD Attached

1. Electronic Version of This Thesis (BAP.pdf)

2. Reaction Wheel MATLAB Model (reactWheelModel.slx)

3. Reaction Wheel MATLAB Script (reactWheelScript.m)

4. Gyroscopic Control MATLAB Model (gyroModel.slx)

5. Gyroscopic Control MATLAB Script (gyroScript.m)

6. Planar Model of Motion MATLAB Model (motionModel.slx)

7. Planar Model of Motion MATLAB Script (motionScript.m)

8. Identified MATLAB Model (identifiedModel.slx)

9. Identified MATLAB Script (identifiedScript.m)

10. LEGO Mindstorms Control MATLAB Script (legoControl.m)


	1 Introduction
	2 Model
	2.1 DC-motor Dynamics 
	2.1.1 Equations of Motion
	2.1.2 State Space Model

	2.2 Lateral Dynamics Model with Reaction Wheel
	2.2.1 Equations of Motion 
	2.2.1.1 Equations of Motion without Friction
	2.2.1.2 Equations of Motion with Friction

	2.2.2 State Space Model
	2.2.2.1 Linearization
	2.2.2.2 Linearized State Space Model

	2.2.3 Reaction Wheel Position Analysis

	2.3 Lateral Dynamics Model with Gyroscope
	2.3.1 Equations of Motion
	2.3.1.1 Equations of Motion with Friction

	2.3.2 State Space Model
	2.3.2.1 Linearization
	2.3.2.2 Linearized State Space Model


	2.4 Planar Model of Motion
	2.4.1 Equations of Motion
	2.4.1.1 State Equations

	2.4.2 State Space Model
	2.4.2.1 Linearization
	2.4.2.2 Linearized State Space Model



	3 Identification
	3.1 Robot's body
	3.1.1 System Parameters
	3.1.1.1 Center of Gravity Determination
	3.1.1.2 Parameters Estimation of ARX 


	3.2 NXT Motor 
	3.2.1 Momentum Characteristics

	3.3 Gyroscopic Sensor
	3.3.1 Offset and Drift Corection

	3.4 Final Models Comparison

	4 Control 
	4.1 Reaction Wheel Control System Design
	4.1.1 Linear Quadratic Regulator Design 

	4.2 Gyroscopic Control System Design
	4.2.1 Linear Quadratic Regulator Design

	4.3 Control Design of Planar Model of Motion 
	4.3.1 Linear Quadratic Regulator Design

	4.4 Real Control System Design

	5 Conclusion
	Appendix A Gyroscopic Effect
	Appendix B Contents of The CD Attached

