
i

ii

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

Master’s Thesis

General Architecture for Development of Multiplatform
E-Learning Applications

Bc. Štěpán Tesař

Supervisor: Ing. Filip Ježek

Study Program: Biomedical engineering and informatics

Field of Study: Biomedical informatics

May 10, 2015

iv

v

Acknowledgements
I would like to express an unending gratitude to my parents for all the support during my
time at the university, and to my supervisor, Ing. Filip Ježek, for guidance and advice with
this work. Furthermore, I would like to thank the faculty staff for the provided challenges
and opportunities, and my colleagues and fellow students for warm memories and mutual
support during the studies.

vi

vii

Declaration
I hereby declare that I have completed this thesis independently and that I have listed all
the literature and publications used.
I have no objection to usage of this work in compliance with the act §60 Zákon č. 121/2000Sb.
(copyright law), and with the rights connected with the copyright act including all changes
in the act.

In Prague on May 10, 2015 .

viii

Abstract

In this master’s work, a conceptual workflow and open tools were implemented, to provide
an instrument for rapid development of educational software. The aim was to create a
standardized environment, where only the case specific content has to be provided, and all
of the user interface and functional behavior is handled by the supporting software. For
these purposes, several existing projects and frameworks had to be interconnected, and a
strongly content-independent, modular user interface had to be constructed.

The focus was on educational applications applicable in a university environment. There-
fore, the finished application has to fulfil basic expectations of an e-learning software, mean-
ing that it does not only display the content, but also provides a simulated classroom
behaviour. The students can be presented with tasks and quizzes they have to solve, and
the application reacts differently according to their answers. There are also some more ad-
vanced targets, such as necessity to display various visualizations of physiological models,
or possibility to deploy the finished application on current technological solutions used by
students, such as tablets, notebooks and desktop computers with various operation systems.

ix

x

Contents

Abbrevations xv

Glossary xvii

1 Introduction 1

2 Main goals 3
2.1 Objective . 3
2.2 Application requirements . 4

2.2.1 Content types . 5
2.2.2 Content organization . 5
2.2.3 User interaction . 7

2.3 Production requirements . 7

3 Analysis and design proposal 9
3.1 Tools selection . 9

3.1.1 Physiological model . 9
3.1.2 Graphical engine . 10

3.1.2.1 Options . 10
3.1.2.2 Unity . 11

3.1.3 Formated text containing pictures . 13
3.2 Architecture design . 13

3.2.1 Connecting Bodylight framework . 13
3.2.2 Application structure . 14

3.3 GUI design . 17
3.3.1 Layout . 17
3.3.2 Design features . 19

3.3.2.1 Scalability . 19
3.3.2.2 Mobile device optimisation 19
3.3.2.3 Home screen . 20
3.3.2.4 Modularity . 21

3.4 Identity . 21

4 Realisation 25
4.1 Development environment . 25
4.2 Implementation in Unity . 26

xi

xii CONTENTS

4.2.1 GUI Layout . 26
4.2.2 Drag and Drop system . 26
4.2.3 Adding content . 28
4.2.4 Custom editors . 28
4.2.5 Action bar content . 29
4.2.6 Content prefabs . 30
4.2.7 HTML content . 30

4.2.7.1 Awesomium . 30
4.2.7.2 HTML parser . 30
4.2.7.3 Linking . 31

4.2.8 Input and output bars . 32
4.2.9 Platfrom-specific behaviour . 33
4.2.10 Options for vector graphics . 34

4.2.10.1 Displaying vectors in Unity 34
4.2.10.2 Rasterising vector graphics 35
4.2.10.3 Creating a 3D mesh . 36
4.2.10.4 Conclusions . 36

4.2.11 Advantages of professional version . 37
4.2.11.1 Video content . 37
4.2.11.2 Advanced HTML content . 37
4.2.11.3 Custom splash screen . 38
4.2.11.4 Plugins and core code access 38

4.3 Bodylight adjustments . 38
4.3.1 Compatibility issues . 38
4.3.2 Connecting model . 39
4.3.3 Custom visualisations . 40

4.4 Deployment . 40
4.4.1 Known problems . 41

4.4.1.1 Html parser . 41
4.4.1.2 Deploying with a model . 41
4.4.1.3 Other . 42

4.4.2 Build settings . 42
4.4.3 Tested platforms . 42

4.5 Example application . 43
4.5.1 Silverlight comparison . 43

5 Discussion 47
5.1 Attained goals . 47

5.1.1 Content types . 47
5.1.2 Screens and content structure . 48
5.1.3 Unified interface . 48
5.1.4 Platform independence and scalability 48
5.1.5 Open licence and low cost . 49
5.1.6 Bodylight connectivity . 49
5.1.7 Overall competition . 50
5.1.8 Development time reduction . 50

CONTENTS xiii

5.1.9 Future work . 51
5.2 Conclusion . 52

Bibliography 54

A AcidBase release notes 55

B RadApp user manual 63

C RadApp technical reference 91

D CD contents 137
D.1 AcidBaseApp . 137
D.2 Documentation . 137
D.3 Radapp . 137

xiv CONTENTS

Abbreviations

• 2D/3D - 2 or 3 dimensional

• API - Application Programming Interface

• CSS - Cascade Style Sheets1

• DPI - Dots per Inch - a pixel density measurement

• GUI - Graphical User Interface

• HTML - HyperText Markup language1

• MVC - Model, View, Controller (design pattern)

• MVVM - Model, View, ViewModel (design pattern)

• SVG - Scalable Vector Graphics (graphics file format)

• UI - User Interface

1A W3C language standard (see www.w3schools.com)

xv

xvi CONTENTS

Glossary

Graph structure - "In mathematics, and more specifically in graph theory, a graph is a
representation of a set of objects where some pairs of objects are connected by links." 1

Portrait and Landscape mode - are two possible orientations of a screen of a mobile
device, that has one edge of the screen longer than the perpendicular one (i.e. the screen
ratio is not 1:1). The ’portrait’ mode refers to the state when the screen is bigger along
the vertical axis, making it narrow, but high. This mode is typical for smart phones, and it
is more suitable for reading or taking portrait pictures (hence the name). The ’landscape’
mode is the state when the width of the screen exceeds its height, making it more suitable
for watching movies or browsing pictures and, as the name suggests, taking pictures of
landscapes.

Responsive design - refers to a design of user interface, that responds to the change of
the screen size, not only in the terms of scaling the GUI components (see Scalability), but
also by rearranging them in such a way, which allows easy reading and navigation through
the screen content, and matches conventions typical for devices with such screen sizes. E.g.
on small mobile devices are usually the menus hidden, and shown after a press of a button.
On larger screens, the menus can be shown all the time along one side of the screen, since
the main content would not take up all of the width anyway.

Scalability - a feature of graphical user interface (GUI), which allows non-fixed screen
size. The GUI will adapt as the screen size changes by scaling the GUI components as
well (at least along one of the screen axes). Scalability can be implemented for example by
creating a ’Responsive Design’ (see previous term).

1cited from en.wikipedia.org/wiki/Graph_(mathematics)

xvii

xviii CONTENTS

Chapter 1

Introduction

Developing any application requires not only a specific skills, but also takes a large amount
of time. There are tools, frameworks and principles to reduce this time, that target wide
market and usually provide vast number of tools that the user-programmer can use to create
his application. A user interface (UI) usually has to be created from a scratch by a designer,
and programmers have to set up the background logic, data storage and resolve deployment
issues etc. What is missing in this approach is an area-specific focus, that removes some
of the options and freedom in customization of the application, but largely reduces the
time required to get from concept to final deployed application. "A well-defined e-Learning
architecture helps dramatically in cutting costs and increasing the speed of development
while it sustains quality results."[12] This is greatly possible in educational applications,
which generally have the same, or at least very similar, requirements and goals.

"The tutorial software creation process is slowly becoming a blend and a combination of
pedagogical experiences and the creativity of enthusiasts. It is mostly work for specialized
teams using highly specialized development tools and it is beginning to look more and more
like an engineering project."[16] This thesis covers a concept that tries to allow even less
technically grammar people to create simple educational tools, and to reduce the application
development process into only two steps. Firstly, creating the content itself - writing texts
and providing relevant pictures or videos, which, necessarily, has to be done by the specific
field expert (E.g. medical teachers - doctors). And secondly, setting this content up in an
already existing environment, with a limited or zero programming knowledge, which could
possibly be also done by the same person who collected or created the content, thus reducing
time and cost. The first step is always necessary, and is the only part that is truly unique
to any educational application. Focus of this work is then to provide such an environment,
where required types of content could be created or imported, interconnected and presented.

The aim is to create a relatively simple instrument that provides the same options as
a simple office presentation (text, pictures, videos), but also adds value to this concept
by providing a graph-like structure of content (as opposed to a purely linear structure of
a presentation), which by itself provides many options of use (thumbnails of pictures in
text, quizzes, interactive content in general etc.), and also by providing options to simply
create both desktop and mobile applications. Because of focus on technical and medical

1

2 CHAPTER 1. INTRODUCTION

education, the support to implement a mathematical model in the Modelica language1 of
physical systems is also provided. This is also done in such a way, which does not restrain
the programmer from implementing advanced behavior. Also, it creates a unified interface
to speed up the connection of the model to the application. As much as the connection to
the rest of the application can be made easy, the design and creation of the model itself will
remain a task for a person with particular skills. "On the level of constructing simulation
models, cooperation has to be established among system engineers (skilled in mathematical
modeling), physiologists and physicians eventually, if the model is supposed to be applied
in clinical medicine."[14]

1’language to conveniently model complex physical systems’ - www.modelica.org

Chapter 2

Main goals

In this chapter, major objectives of this thesis are set, along with a general path, which
should lead to their accomplishment. Several problems were encountered during the devel-
opment, and while the general objectives remained the same, some revisions of priorities
had to be made multiple times.

2.1 Objective

Creating an application is an extremely time-consuming task including several layers of
focus. There are many methods of approach to software development[1], but they ultimately
all include similar steps. From collecting requirements, through designing the application
structure and visual style, selecting the target platform and required testing. Relative
amount of time spent on different tasks vary from method to method, but it is a matter of
fact, that by using the correct tools, the time can be reduced. For eLearning applications, a
majority of the development process is similar: the actors (students, teachers), the general
requirements, and even more specific functional demands are usually virtually the same (see
2.2).

The demand for eLearning applications is indisputable[17]. There are several popular
tools for rapid eLearning application development[5], which are very general and provides
lot of tools, that are usually unnecessary for highly specific applications in a specific field
(such as medical training). For example, if there is no need to extensively customise the
user interface, a huge part of development process suddenly ceases to exist. Keeping the
same UI throughout multiple (eLearning) applications can also be beneficial for the users,
since they will not need to familiarize with new the environment in each application.

As a review by Justin Ferriman states, "the best program for eLearning development
really comes down to personal preference as well as the type of content you are training to"[5].
This reasoning led to a concept of a very new and specific tool for eLearning development.
One that would even more reduce the time required for development by implementing as
much of common properties of the final applications, and thus removing the need to develop
them for each application separately. This is possible for a price of a less customizable
visual, but even functional, components of the application. Brief research of current software
solutions has also shown, that complex mathematical model simulation (with visualizations

3

4 CHAPTER 2. MAIN GOALS

and for mobile devices) frameworks are basically non-existent. Which is a further motivation
for creating such platform.

2.2 Application requirements

The created product will serve as a tool to create educational applications. As opposed
to entertainment or business applications, such software has a purpose of providing useful
information in an engaging way. It does not generally serve to store or organize data, to
simplify any work process, tasks or communication. The usual audience (students) should
be able to receive necessary context or visual aid. To define specific requirements, it must be
firstly defined what creates a good eLearning architecture. For this specification, provided
is an enumeration of "characteristics of a good e-Learning architecture" by Ray Jimenez[12]:

1. It identifies the quality outcomes suitable to e-Learners

2. The components and its purposes are specific

3. It is easy to replicate and transfer from one person to another

4. It is documented, shared, and distributed

5. The software selected fits a specific function

6. It is easy to tweak and/or improve

7. It is easy to determine the cost and to manage it

8. It aids in meeting timelines

9. The skill sets required are easy to determine and assess1

Further in this section, there is a definition of what the finished product should provide.
This set is derived from the previous list of good characteristics, and it directly dictates how
the framework for creating such applications has to be conceived. There are both functional
and non-functional requirements, which are divided to logical categories:

1. Content types

• Text
• Images
• Videos
• Interactive animations

2. Content organization

• Separate screens
1The whole list is a citation[12]

2.2. APPLICATION REQUIREMENTS 5

• Combined content

• Information transfer

• Graph structure

3. User interaction

• Switching between screens

• Manipulating screen

• Unified interface

2.2.1 Content types

As mentioned in previous paragraphs, the truly unique part of any educational application
is its basic content. Every computer presentation already provides most of the types of
content, that are necessary for most educational purposes.

Text is obviously the most important, basic type of content that can be provided. The
interface should allow basic formatting options, so that the produced text is customizable
and pleasant to read.

Images are a basic visual aid component of most presentations. Therefore it is not nec-
essary to uphold its importance in any educational project.

Videos similarly as images can serve multiple purposes, from simple looping animations
to underline principle that is being explained, to longer informative films.

Interactive animations are one of the goals of this work, that can elevate the appli-
cations above simple presentation. By giving the student the ability to manipulate with
the content, comes a far easier way of understanding the principles behind the presented
concepts. In this thesis the goal goes even further, to provide an actual simulation of a
physical system, based on modelled physical rules written in the Modellica language, where
the user can influence its inputs, and observe how does the output change.

2.2.2 Content organization

In order to make an application useful, it is important not only to provide relevant content
of certain quality, but also to find a way to present the content as a whole. Each unit of
content should provide certain information, but it also has to fit the overall picture.

6 CHAPTER 2. MAIN GOALS

Separate screens of content should stand independent of each other, and user should
be able to differentiate between them without any problem, so there is no loss of context
or confusion. A "screen" is meant to be a unit of content, not physically constrained -
as in computer screen - but grouped by specific topic or purpose. Since the application
should provide all the necessary material for the given subject, it has to be divided into
well-arranged units. Such units should then be presented separately, but obviously allow
transitions from and to each other, as described further.

Combined content is simply a way of expressing the categories (described in section
2.2.1) are not fixed, and the media can be mixed together. It is very usual to include a
small informative graphic in a long text, or vice versa - to provide short explanation under
a large image.

Information transfer renders important, if the application wants to present a content
depending on user’s previous actions. This simple mechanism allows to create a ’cross-roads’
content, where the student has to make a decision. For example to select a correct answer.
Based on this answer, the other content can be manipulated, or even a completely different
content can be displayed.

Graph structure is an implication of the previous paragraph, but also provides useful
options by itself. For example, there can be a smaller preview of a larger image embedded
in a long text, and after clicking this image, the user can be directed to a screen with the
original, large image, with further note. The original approach was to create a tree structure,
but it is much more convenient to allow for loops in the graph, since even for a complex
quiz structures, there is usually some common content, and the little differences based on
previous answers can be solved by the information transfer principle.

Start Question 1

Question 2

Failed

Success

End

Figure 2.1: Example of a possible content structure

2.3. PRODUCTION REQUIREMENTS 7

2.2.3 User interaction

The way user interacts with the content is partially implied by the structure of the content
itself. Presented here are additional principles that should be abode in order to further help
the user to orient in the given software.

Switching between screens should be as simple as in any other presentation, in both
directions. As the content will be connected in an unconstrained graph structure, it is
important to correctly manage the history of displaying content, which would enable a
suitable navigation system for the user.

Manipulating screen must not disturb the user and has to be simple and intuitive.
Manipulating the screen means navigating within one content unit. E.g scrolling a text or a
picture that does not fit the computer resolution. In case of interactive content, the interface
providing the user’s input should have clear function and be always visible when desired.

Unified interface is a simple way to make the user familiar with all parts of the appli-
cation very quickly. After the student uses one control mechanism of the application, this
mechanism should be accessible in the same way and position, regardless of in what state the
application is in (in terms of displayed content). The simplest example is a "close window"
button in most of current desktop operating systems, which is always in the top right corner
of the window.

2.3 Production requirements

A set of non-functional requirements for the software development and deployment is sum-
marised here. The developed framework should fulfil most of these requirements without a
need to further modify its output.

• Platform independence

• Scalability

• Permissive licence

• Low financial cost

• Interconnection with existing frameworks

Platform independence is the strongest production requirement that has been set for
this work. In today’s world of personal mobile devices, the need to publish an application
on a broadest spectrum of them is obvious[8]. It ensures that the final application will be
deployable on most of the current devices, but also produces the need to carefully select the
development strategy.

8 CHAPTER 2. MAIN GOALS

Scalability only expands the previous requirement. Since the development is to be kept
platform independent, there is no guarantee of a medium on which the application will
run. The graphical user interface (GUI) has to be designed with this problem in mind, and
therefore be automatically or at least very easily adjustable to any potential screen size.

Permissive licence makes the developed framework widely usable, since it is far simpler
to promote a tool that can be further modified, improved, but most importantly, a tool that
the user can use without any commitment. This approach also creates a community that
can add to the software, and the software contributes to a global library of free projects
that anyone can utilize. An interesting quote: "Consider the saying ’If you want something
done right, do it yourself.’ in the case of product and service development, the adage holds
true for users in part because a manufacturer cannot know what users want as well as they
themselves do."[23], also points out more advantages of an open source approach. When
users are allowed to adapt the product to maximally fit their needs, the potential reach
becomes practically limitless.

Low financial cost is required mainly because of the academic background of the produc-
tion and also to make the previous goal possible. This obviously creates certain challenges in
finding a suitable tools for development. Staying true to this and the previous goal will pro-
duce a framework that can create applications that might help not only a classic university
students, but also provide knowledge to areas where is a lack of classic education. "In recent
years, the development of eLearning had resulted in less emphasis on openness and access,
and more emphasis on commercialization, profit or at least cost-recovery in post-secondary
education. Nevertheless, distance education still has a critical role in serving those who have
difficulties for personal, social or economic reasons in accessing conventional campus-based
education. (...) Distance education, whether based on e-learning or older technologies of
print and broadcasting, remains a powerful tool for economic development and personal
advancement"[22]

Interconnection with existing frameworks is specifically required to support the func-
tional Interactive Animations requirement. A framework exposing a convenient simulation
interface (Bodylight framework [11]) has been already in development in the faculty de-
partment, and it is most convenient to cooperate with its authors to expand it and utilize
it for the goals of this work. This will be required to allow simulation capabilities in the
framework.

Chapter 3

Analysis and design proposal

Present here, is an accumulated knowledge from the researched area, which has been party
done prior to, but by part also during, the main implementation process. There are several
layers of implementation, and each presents its own problems. Each layer then produced
new findings, that had to be retrospectively applied to the previous ones, which often led
to changes of design. This chapter describes design of each layer by its own, but also in the
context of the overall work.

3.1 Tools selection

Essential part of a general architecture development is the selection of suitable tools. Since
the aim is to allow its usage to as many developers as possible, a sufficiently widespread
technologies had to be selected, while keeping the main goals of work in mind.

3.1.1 Physiological model

There are limited tools for a physiological system modelling. Recently, the discussion in this
area has shown large benefits of Modelica in the field of physiological modelling[7]. Also
covered by Kofranek, Matejak and Privitzer: "Modelica allows a much clearer than other
simulation environments, to express the physiological nature of the modeled reality."[15].

The one logical alternative, simulink1, is less appropriate as well for such application.
"The structure of the model in Simulink corresponds to the structure of computational steps,
while the Structure of Modelica model reflects the structure of the modeled physiological
reality.[15].

There are implementations of model oriented design in applications (For example in
efficient building design, see [19]), but these are one-instance products without published
open framework and tools, that could be reused for rapid application development in other
fields. A quick look into the current market shows that there is only one framework in
development that aims to provide rapid development of applications with Modelica models,
and that is Bodylight. This framework is by far not a competition, since a large part of it

1’a block diagram environment for multidomain simulation and Model-Based Design.’ -
www.mathworks.com/products/simulink/

9

10 CHAPTER 3. ANALYSIS AND DESIGN PROPOSAL

will be used within this work, which will help to further expand the original framework in
the sense of creating a new layer of UI, that is both independent on Bodylight, but is also
prepared to be connected with it. Furthermore, a 3D support is not a strong domain of the
original Bodylight framework, which is a feature that the new framework should provide
with ease.

As previously mentioned in 2.3, bodylight is a framework developed by fellow department
members, and is designed to allow controlled simulation of a model created in the Modelica
language. This framework also includes procedures for creating the visualisation of such
simulation. In this work, it will be necessary to extract the basic parts, and create matching
interface for the newly created solution of visualisation.

Bodylight is developed in the .NET framework2, and written in C# and F# program-
ming languages. The end-user interface is implemented in XAML and distributed via Mi-
crosoft Silverlight platform (adapted from [11]). It might be challenging to create a package
fully compatible with another tool. It was therefore important to select such programs that
will have the same code basis and provide sufficient binding support.

3.1.2 Graphical engine

3.1.2.1 Options

Since one of the targets is to provide environment, where users will be able to integrate 2D
and 3D content, it is required to select such development environment, that will contain
a graphical engine with such capabilities. There are further requirements for the selected
graphical engine: There have to be tools, developed specifically for such engine, that will
allow simple, visual composition of the application content. The tools also have to be
customisable, so that a UI composition and settings system, fitting the needs of the future
framework, can be created. During development (and partly even when using the framework
for creating more complex applications), there will be some programming work involved.
This also has to be integrated seamlessly with the graphical engine.

There are several graphical engines, that are popular among developers of 3D games,
and the question of selecting the right one is what everyone has to face before starting
the development process. One comparison summarises the presented choices as such: "It’s
ultimately up to you to decide which one works best for your project. One thing is certain;
there is not a shortage of game engines at your disposal."[18] while reviewing currently
most promising platforms, which is Unity, Source 2, Unreal Engine 4 and CryEngine. Since
the goal of this thesis is not creating a 3D game, but a system for developing elearning
applications, which will generally not require a particularly strong graphical engine (only
basic 3D animations without advanced effects are needed). Thus, the conclusion of the
previously mentioned review: "All of these game engines would be a great choice for your
game development process. Unity is great for mobile, 2D and 3D games. Unreal Engine 4
gives you the ability to create games with photorealistic graphics or simple 2D side scrollers
with a reasonable pricing model of a 5% royalty, and CryENGINE has amazing graphical
capabilities as well, and next-gen platform features with a pricing model that can be more

2’a technology that supports building and running the next generation of applications and XML Web
services’ - msdn.microsoft.com

3.1. TOOLS SELECTION 11

appealing than UE4’s depending on your studio"[18]. This gives a first hint, that Unity
might be the engine of choice for this thesis purposes.

Another big requirement is a possibility of development for multiple platforms (at least
major mobile - iOS, Android, Windows - and desktop - Windows, Mac OSX, Linux). The
environment also has to be financially affordable (preferably free). Research in this area
gave a different set of results (Xamarin, Kivy, Unity, Titanium Appcelerator, Sencha Touch,
Enyo) than the graphical engines in previous paragraph, with only one item common to
both sets: Unity. As mentioned in a related Jarcas Studios editorial[21], Unity has several
advantages over other multi-platform environments. As the author states: "The dev process
has been painless. The community is great. The Asset Store is a lifesaver. Load time
is only a second or two. Package size is large, but not ridiculous"[21]. Further research
only confirmed, that Unity is the perfect tool for this thesis assignment. Another reviewer
concludes: "It’s very easy to get started with Unity, and you can instantly see the result
of what you are working on in the editor without having to wait for the game to compile
and build. This is huge! From the interface all the way down to the workflow and how
art is imported, you can see the brilliant execution the Unity’s idea of ’democratizing game
development’ in what we think is the best game software around today."[25], after listing
the 10 reasons why to choose Unity (list adapted from the previously cited article[25]):

1. Free to get started with

2. Multi-platform

3. Thriving, supportive community

4. Asset store

5. Scripting languages (Javascript, C#)

6. Ability to create 2D games

7. Multiplayer support

8. Online tutorials and classes

9. Unity conferences

10. Ease of use

After researching other possibilities, none matched the needs of this thesis as closely as
Unity.

3.1.2.2 Unity

Unity3 is an extensive software designed for development of games. It is currently a well
performing, yet still expanding platform, that is rising in popularity among developers. It

3’a flexible and powerful development platform for creating multiplatform 3D and 2D games and interac-
tive experiences’ - unity3d.com/unity

12 CHAPTER 3. ANALYSIS AND DESIGN PROPOSAL

has been selected for the application logic and UI development for several reasons. Although
some of the presented arguments do not apply to this thesis requirements (multiplayer
support or conferences), it provides several key features:

• Multi-platform development support

• .NET framework utilisation

• Free license available

• Integrated tools for UI development

• Extensive 3D support

Multi-platformity is a strong part of Unity, since it is based on the Mono Project 4. The
official Unity web page states that ’Unity now supports 21(!) platforms’[20]. The supported
platforms include all major operating systems for both desktop and mobile devices, as well
as several gaming consoles and smart TVs. There is also option to deploy the application for
web player, which works through plugin for the majority of current internet browsers. Fur-
thermore, Unity developers recently released a working preview of deployment to WebGL.
"WebGL is a 3d graphics library built into the browser, which allows JavaScript programs
to do 3d rendering inside any supported browser without requiring any plug-ins."[4], which
ensures lasting support for web deployment in the future.

The Mono Project is an open-source .NET framework implementation, which guarantees
compatibility with other projects created within the same framework. This is important
for interconnection with the Bodylight framework, which also utilizes .NET. This should
ensure correct operation of Bodylight libraries within Unity, with only little alterations to
the framework code.

Unity provides a free license in the shape of Unity 5 Personal Edition, which includes
most of the features, but lacks advanced developer support. There are some advantages
of the professional (paid) versions of Unity, which are discussed in section 4.2.11. Still,
the most important features are available in the free version as well. Most interesting are
components for effortless composition of GUI. These components can be also used for more
elaborate scenes, where they do not serve to create UI, but as parts of an animation. This
is all backed by a strong 3D engine, which allows elaborate 3D scenes, object interaction,
and is perfect for the purpose of creating model visualizations.

Unity was also decided upon to explore a new branch of Bodylight possibilities. The
original visual part of Bodylight is implemented in Silverlight, and further aim of the frame-
work is to create a meta-structure that could be easily deployed on any architecture, re-
implementing the visual side in Unity will provide valuable insight into different approach,
which can then be used when creating the meta-specifications. It was also not clear, if this
connection will be even possible, and the experience of the struggle will be very valuable for
future development of bodylight alone.

4’an open source implementation of Microsoft’s .NET Framework’ - www.mono-project.com

3.2. ARCHITECTURE DESIGN 13

3.1.3 Formated text containing pictures

To allow simple content creation, there has to be a specified way of describing the text struc-
ture, including position of pictures. "With the advent of the World Wide Web, structured
text (in the form of HTML) has become a dominant medium for online information"[3]. It
is convenient to use the most widespread markup language: HTML.

The Hyper-Text Markup Language is, in its basic extend, a very simple tool for format-
ting text. Although modern language specifications try to separate the visual formatting
from this language, and keep only the structural purpose[10], it is still one of the simplest,
and easily understandable options for text formatting. "It was designed to be sufficiently
simple so as to be easily produced by both people and programs (...)".[2] It is a perfect
compromise between extend and simplicity, for importing text into the Unity environment.
Since the thesis does not strive to provide online connectivity from applications created by
the framework, the task of providing simple html parsing support has a reasonable extend,
and would allow the users to provide large-scale texts with embedded pictures and easily
specified formatting. Using html also provides infinite options of reuse of the content with-
out any need of additional editing. As Saarela and Wium Lee state: "... the semantics of
the various elements are well known: all browsers and search engines know that the "H1"
element indicates a first-level headline. Thus, HTML has achieved a unique position as a
device-independent, ubiquitous document format."[24]. It is fair to mention, that the cited
article has been published in the year 1994. Since then, html has only developed even more,
and several new technologies have been built upon it. The classic tags and usage are there-
fore almost a basic knowledge of any person grammar in technology-related fields, and as
such is extremely easy to learn even for complete amateurs.

In Unity there already is a native support for a very tiny subset of HTML formatting in
its ’rich-text component’, which allows usage of basic tags to specify text color and bold or
italic style. The community discussion on this matter also clearly provides a wider demand
of integrating full html format support natively in Unity, which would probably also open
options of CSS formatting.

3.2 Architecture design

The selected tools have to be interconnected to form a distributable architecture, which can
then be used by programmers to create individual applications.

3.2.1 Connecting Bodylight framework

It is necessary to create such structure, which will allow creation of simple applications
without models, and therefore without the need to embed Bodylight framework with them,
while keeping a full support of all other features. On the other hand, it is equally important,
that the framework can be connected instantly on demand, and that the programmer only
has to implement the case specific behavior.

Bodylight implements an MVVM design pattern (Model, View, ViewModel), as visu-
alised in figure 3.1. There are structures that allow simple data-binding with visual compo-
nents of Silverlight. One of the challenges of this thesis is to use this interface to connect

14 CHAPTER 3. ANALYSIS AND DESIGN PROPOSAL

an entirely different ’View’ part, matching the framework’s interface and using the available
structures.

Model View Model View

Model translated
to C#

Runtime
Simulation

control,
application logic

Visual
components

1:n instance Binding

Figure 3.1: Bodylight structure, adapted from MEDSOFT 2013[11]

Since Unity is an extensive environment with its own graphical engine, there are some
principles in place that will dictate how the interconnection can be implemented. For exam-
ple, Unity has a built-in frame-rate system, that sends a signal to all components to refresh
themselves. This feature can prove useful, but will also mean, that the standard MVVM
approach will be impossible, since every visual component has to have an attached class,
implementing given Unity interface, that takes control of the visual side of the component.
This means that the final structure will be more inclined to an MVC pattern (Model, View,
Controller), as seen in figure 3.2. By connecting the Bodylight ViewModel variables through
an Event-listener, or Observer patterns, the binding-like nature of the connection can be
maintained.

This approach also solves one major problem before it even occurs. The Bodylight sim-
ulation has a real time synchronization mechanism, which allows production of simulations
independent on processor load. This means, that the simulation has to be provided by a
’tick’, that will determine the next derivation step in the simulation. Because of the Unity
frame rate system, the visual components can be simply synchronized with the simulation
by invoking the tick after Unity has finished rendering each frame. This will cause the sim-
ulation to keep the time dependent derivations in synchronization with actual time, and the
users will not experience speed variations. Just to clarify, this will not prevent stuttering,
or other types of lag caused by heavy load of computer components. But, on the contrary,
will prevent these lags to slow down the simulation output.

3.2.2 Application structure

Apart from connecting Bodylight, the structure of application in Unity has to be carefully
designed as well. The final framework has to be well structured, so if any programmer wants
to do greater alterations, there are no big obstacles in his way. At the same time though,
the framework is primarily designed to provide visual tools for application composition, and

3.2. ARCHITECTURE DESIGN 15

Model View Model

Model translated
to C#

Runtime
Simulation

control,
application logic

n:1 instance

Bodylight

n:1 instance

Unity

Control View

ViewModel
Connector

View controler

1:1 instance
Visual

Components

1:n instance

Figure 3.2: Bodylight connected to Unity

this will require a more complex structure of mutually dependent parts, that can handle
minimal user input, and compose the final application.

Content structure as a graph, is one of the main goals. As opposed to a linear content
structure, in the content graph, any content can be linked to arbitrary number of other
available contents, as described in 2.2.2. To allow this, a controller overseeing all the single
units of content has to be created. This class will manage signals from the displayed content,
and eventually display another content.

As seen in the figure 3.3, this component will have an array of previous components. This
will allow easy ’back’ function, without the necessity of keeping the whole virtual content
graph. Each content node holds references to its target nodes, and only the path back to
the starting node is being preserved. This is the optimal approach, because at no point of
the application is it necessary to know all links in the graph.

It is also useful to introduce an optional ’state’ parameter, which can be used to slightly
alter the content. As seen in the diagram, this parameter is passed to the method, that
handles displaying of new content, and it will be passed to the new content via its Show
method. This parameter can be used when making only slight changes to the content. The
user can implement a simple method that will switch between states, and can for example
set slightly different parameters to the Model, or display a different image, in otherwise
identical content.

The Show and Hide methods of Content can be used to run routines when initializing,
or disposing content that needs special treatment (such as custom models). This custom
behaviour has to be implemented by the user.

The diagram also shows, that each content has a ’next’ property, which points to another
instance of the Content type. By introducing this property, simple linear structure can take
place, in cases where there is no desire to split it into multiple paths. Otherwise, if there

16 CHAPTER 3. ANALYSIS AND DESIGN PROPOSAL

is such desire, the Content also holds reference to the ContentController, and can call its
ShowContent method with any parameters, since the list of possible contents will be available
to the user when creating the application. These assignments will be done visually through
Unity GUI, making most users completely separated from the need to write any code.

ContentController
Content[] previous contents
Content current

ShowContent(Content, state)

Content
<<abstract>>

Content next
ContentControler controler

Show(state)
Hide()

1

n

1

1

Figure 3.3: Diagram of class structure taking care
of content organisation

The abstract marking of the Content
component illustrates, that there are multi-
ple types of content, and each can act differ-
ently. Multiple implementations will be pro-
vided to the user, and he can then only add
the specific texts or visuals. There should
be at least two basic types of Content: html
and model. Html will serve to display text
and pictures, while model will display a cus-
tom visualisation of a Modelica model. This
will allow automatic alteration of the Unity
GUI, so user is presented with relevant op-
tions, and can visually manipulate the con-
tent instances.

The realization in unity is not as
straightforward, as it might seem from the
previous diagram, but the principle is shown
correctly.

Model interface structure is one of the
more complex features, and is an example of
a part that had to be changed several times
in order to resolve newly discovered problems. The resulting solution is pictured in the
following figure.

ModelInterface
ModelVariable[] vars

GetAllVariables()

<<abstract>>

<<abstract>>

ModelVariable

<<abstract>>

ModelGraphics

1 n 1

1

Figure 3.4: General structure of the classes used to connect a Modelica model

All the classes in this diagram are labelled abstract, since all of them have multiple
specific implementations. The ModelVariable encapsulates behaviour of a single variable

3.3. GUI DESIGN 17

used in the model. It is necessary to use an extra class for each variable, and not only a
list of primitive types, to provide automatic behaviour. Apart from a value, the class also
contains a specification of interface for the visual component setting. Once created, the user
can manipulate its value freely, but the framework core will automatically take care of its
visualisation.

The ModelGraphics represents the graphical component that is used to either visualise,
or to manipulate the variable. Several different variable types, with matching visual com-
ponents have to be implemented to cover majority of possible use-cases.

ModelInterface implementation has to be left onto the user, since it is completely model-
specific. In the figure 3.2, this class is represented by the ’ViewModel connector’ block. This
is where user has to specify create instances for the model variables, assign observers to the
model and handle its changing. The visual components will provide new values, or interface
for displaying them. This is one of a few parts where user actually has to write code, but
by providing suitable implementations of ModelVariables, it should be made as simple as
possible. One of the requirements of this thesis, is an example of model backed application,
which can serve as a template for future developers.

3.3 GUI design

With knowing the main goals, and the required content structure, as described in the section
3.2.2, it is easy to define basic components. The GUI has to be universal enough, so that it
can support varying demands of developers, but still simple enough and user friendly.

The first question that comes into mind when thinking about multiple-content appli-
cation, is the navigation. From the diagram of content controller and content (3.3), it is
obvious that there have to be controls to move back in history, and also to go forward to the
next content in the linear structure. In case of a disambiguation, it is necessary to display
more buttons, that will redirect the user to different specified contents. This basic facts
were already obvious in the very early stages of development, and even the first prototypes
contained them (see picture 3.5).

3.3.1 Layout

After some prototype testing, and early stage application development, several principles
were set. It was decided that the main navigation bar, as seen in the aforementioned picture,
should remain the same throughout the application, with only a simple message, that can,
for example, shortly describe the current connect. Extended functionality (disambiguation
buttons) should be in a separate place, which will be displayed above the static navigation
bar. In the diagram on figure 3.6 below, this are is labelled ’Extended command bar’.
Furthermore, the inputs and outputs of model should also be unified, and be displayed
around the screen sides, which should provide space for multiple controls. All components
should only be displayed when needed, and hidden if empty, so they do not unnecessarily take
up space. Details of this design have been further tweaked throughout the development (e.g.
the widths and heights of the panels), but the general structure of the latest development
version follows the figure below.

18 CHAPTER 3. ANALYSIS AND DESIGN PROPOSAL

Figure 3.5: Early paper prototype of GUI design.

3.3. GUI DESIGN 19

Main navigation bar

Extended command bar

Model
input bar

Model
output barContent

Figure 3.6: Structure of the GUI. The extended command bar is meant to be semi-transparent.

This structure is based on physical prototype and early development GUI design testing.
The position of command bars at the bottom of the screen proved to be practical, as people
(at least in the target demographic) are used to reading from top to bottom. Therefore,
they will reach the navigation bar, and potential questions, after seeing the main content.
On the other hand, the inputs and outputs of the model will be displayed side by side with
the content, thus keeping the context.

3.3.2 Design features

3.3.2.1 Scalability

Scalability is an important condition, which the GUI has to meet, as the target platforms
can vary from big projection screens, to notebooks, and even smaller mobile devices. Even
though the main mobile device platform that is aimed for, are tablets (with relatively large
screen sizes) the possibility of smart-phone usage is not generally out of the question.

Fortunately, Unity has recently released a UI system, which allows visual positioning
and scaling of components. These components can be mutually bound, constrained or use a
variety of layout settings. This has allowed a design of the scalable GUI without any greater
problem. Responsive design has been researched as well, but it was decided that for the
targeted devices can use the same layout, only varying in the component relative scales.

3.3.2.2 Mobile device optimisation

Despite not planning a responsive design, the GUI still has to be adapted to mobile de-
vices not visually, but functionally. Mobile devices usually have fewer buttons (if any) and
generally different input methods. These have to be taken into account.

Moving to the next or previous content should be also possible by swiping the touch-
screen with a finger in the appropriate direction. This functionality has to be implemented
in such a way, that prevents interference with the content itself, and vice versa, manipulating
the content must not trigger events leading to showing different content.

20 CHAPTER 3. ANALYSIS AND DESIGN PROPOSAL

In the matter of showing the previous content, it is also appropriate to mention another
example of mobile-specific behaviour, which is the usage of standard ’back’ button on An-
droid5 devices. This button, when pressed, should also be bound to the ’show previous
content’ action, as this is the expected functionality.

The content has to respond to the rotation of the screen, and the user should be able
to force the screen orientation as well (when the application is deployed on a device with
this functionality). This can be very useful when designing a model visualization with
fixed width, while the screen also has to display the input and output panels. Fitting such
components into a mobile device in a ’portrait’ mode might prove challenging, and in case
of a very narrow screen, perhaps even impossible. Forcing a ’landscape’ mode on the device
can solve any issues that would occur.

Native UI style In this context, it is also convenient to discuss the use of standardized
system designs. Each operating system has its own standardized visual style and design
patters, that create a unified experience throughout the system. These styles are deemed
’native’ in the context of the particular mobile system. Many developers adopt native styles
when developing applications for a particular system, or even create multiple visual styles,
each for different OS, when developing a multi-platform applications. Articles comparing
the mainstream mobile operating systems can be found on-line [9, 13].

Evaluation of the importance of adapting the UI to the native design, has been found
in a previously mentioned (3.1.2.1) editorial: "When I made my app in the Android SDK
a few years ago I went strictly native for UI design. I wanted my app to look consistent
with others. The thing I realized much later was that consistency doesn’t matter if nobody
else is being consistent. If you look at any of the top apps on the Google Play you’ll find
that nearly all of them use their own custom widgets/UI rather than ’standard’ Android
stuff. If anything, I noticed that the ’pros’ and big companies designed their own UIs and
the hobbyist devs used the standard stuff. So, if anything, I feel like using the standard UI
can have a negative connotation of looking amateurish. Anyway, I think the ultimate key is
making sure your UI is clean, intuitive, and good-looking... and you don’t need to go native
to do that."

To conclude, native style is not necessary, as long as the custom UI style is well designed.
Creating native design also basically means adopting the API of each system, and developing
separate UI for each of them. Both of these tasks would be extremely time consuming,
and therefore the proposition is to create one unified, well composed design for all target
platforms.

3.3.2.3 Home screen

Including a ’home screen’ is a standard practice of giving the user optional actions be-
fore showing the main application content. Instead of showing the content, users can find
various settings here. In case of this thesis, there are currently no plans of having any user-
changeable settings (to promote simplicity), and inclusion of a home screen might therefore

5’the operating system that powers more than one billion smartphones and tablets’ -
www.android.com/history/

3.4. IDENTITY 21

not be necessary or may even be contra-productive, since it is not a common practice on
mobile devices.

3.3.2.4 Modularity

Modularity is a feature of the framework. It is vital for its proper usage that programmers
can extremely easily customise parts of the UI. This can be done utilising the Unity ’prefab’
feature. Prefab - an abbreviation for prefabricate - is an aggregate of objects (UI elements
and attached scripts), that can be multiply instantiated, reused, or attached to another part
of the UI using a visual editor. By creating appropriate prefabs, with correctly structured
code, a very simple mechanism for visual GUI editing can be implemented.

Prefabs can be used to provide different templates for the content (html/picture/3D),
or optional extended command bar content. This bar will hold various types of actions,
depending on how the programmer will want the user to interact with the currently displayed
content. Proposed types of questions are standard yes/no question, a quiz question (multiple
options where one is correct) or a text-input question. The framework will provide prefabs
with finished structure, where the programmer only has to specify the question text and
answer of the target buttons, and, in case of the textual answer, the accepted text. For
example, pressing a button with the correct answer can lead the user to an interactive
animation, pressing the wrong answer can show extended explanation, so the student can
study why his answer was wrong.

3.4 Identity

Figure 3.7: RadApp logo.

To enhance the identity of the developed framework,
a concise name was selected: RadApp - as short for
Rapid Application Development Application. Since
an ’Application for applications’ is being created (or
more precisely, a framework for their rapid develop-
ment). On top of this name, a simple, modern logo
(fig. 3.7) was designed. Even though the product of
this thesis is not an actual application, but a work-
flow and tools within existing applications, the final
product of the framework usage will be applications,
and provided that the developers will not want to cre-
ate their custom graphics, a default framework logo
can be used in suitable places, such as application
icons, loading screens or GUI background pictures.

The logo was designed in such a way, that it can
be used as a brand logo, but also as an icon. Since
it is round, it fits well with the modern icon styles, and its general simplicity follows the
latest trends in logo design. This design can also be easily scaled to small proportions
that can be deployed on mobile screens. "That logos have to be scalable has always been
understood. But our perception of ’small’ has changed, in some cases ’tiny’ is being rather
generous. Dimension and detail are necessarily removed so that these logos read properly

22 CHAPTER 3. ANALYSIS AND DESIGN PROPOSAL

on mobile screens. Designs have become more and more flat. Surfaces are plain and defined
by mono-weight lines."[6]

The following images depict the use of the designed logo as a Windows desktop icon
(figure 3.8, and as an icon in the ’Apps menu’ and on the Android home screen (figure 3.9).
Both environments show the icon side by side with the operating system standard icons, to
demonstrate the compatibility with the overall visual style. Stock backgrounds were used
for these screen-shots.

As the logo visually fits on both operating systems, in different resolutions, the design
can be judged as successful . Unity has a native menu where it is possible to set icons for
all available platforms, that support icons, and this logo can be this way, so the icons are
always automatically deployed with each build for every platform.

Figure 3.8: RadApp logo as a desktop icon on Windows 8.1 operating system, next to a set of standard
icons.

3.4. IDENTITY 23

Figure 3.9: RadApp logo as icon for app deployed on a smart phone with Android 5.0.1 operating
system. Left image: RadApp icon amongst standard Android apps in the ’Apps menu’. Right image:
RadApp icon on the ’Home Screen’, depicted again with other icons in a common setup.

24 CHAPTER 3. ANALYSIS AND DESIGN PROPOSAL

Chapter 4

Realisation

In this chapter, the implementation process and its results, along with the solutions of en-
countered problems, are presented. The implementation itself is divided into two logical
units. Firstly, the work done in Unity environment, and secondly, the work done on Body-
light framework. The finalisation of the latter also included some minor implementation in
Unity, when the interconnecting interface was developed.

4.1 Development environment

Before getting into the implementation process, it is reasonable to present how the de-
velopment environment was set up, what supporting tools have been used, and how the
implementation process was managed.

The main tool is, unsurprisingly, the Unity software, which also comes with embedded
Mono Develop code editor. Originally, the Unity version 4.6 was used, but during the
development Unity 5.0 was released, and the project was upgraded to this version, in hopes
of solving some deployment issues.

For the Bodylight development, Visual Studio 2013 is required, along with several plug-
ins and additional libraries. Fortunately, Visual Studio manages their deployment automat-
ically. The Bodylight framework source is then accessible on a private git server, which
requires access from the members of laboratory of bio-cybernetics, 1st medical faculty of
Charles University in Prague.

Already mentioned is another extremely useful tool, which is the git project manage-
ment system named Git1. This system allows a simple version control and code changes
management. This has proven useful when producing a demonstration application, while
still continuing the development of the framework.

An issue tracking document has been set up on the Google Drive2 online file storage,
in a form of shared spreadsheet. In this document, the development tasks were noted with
current status. This, along with git, has allowed the thesis supervisor to regularly check the
progress and maintain an overview of the work.

1’a free and open source distributed version control system’ - git-scm.com
2Online file storage and office system by Google inc, available at www.google.com/drive/

25

26 CHAPTER 4. REALISATION

4.2 Implementation in Unity

4.2.1 GUI Layout

Figure 4.1: Hierarchical structure of the main GUI
elements. EventSystem is a Unity component re-
quired for correct control of user input, and does
not have a visual representation.

The first task in Unity was to create the pro-
posed GUI structure and its basic function-
ality. Setting up the components in a cor-
rect layout was easy thanks to the Unity UI
component system. The components pro-
posed in section 3.3.1 were composed in cor-
rect order, and appropriate controllers were
created. The hierarchical structure of the
visual elements is shown in figure 4.1. The
finished GUI structure is shown in picture
4.2.

The proposed home-screen has originally
been created, and automatically added to
the final applications, but has proved un-
necessary, and even annoying (especially on
mobile devices). There are no user settings,
only start and exit button. On most de-
vices, it completely lacks purpose - closing
the application is done by ’home’ button
(the middle button on both android and iOS
devices) or desktop window buttons (usu-
ally the top right corner of the window.
The extra screen only inserts more time be-
tween starting the application and showing
the content, without any added functional-
ity. Therefore, in the current version the
home screen is disabled.

4.2.2 Drag and Drop system

A key feature that Unity provides is a drag-and-drop system, that allows the user to connect
components without explicitly writing any code. Custom scripts can be attached too, as
long as they extend the MonoBehaviour3 base class.

By extending the aforementioned class, Unity automatically detects class variables with
public access, or with ’SerializeField’ attribute. When the script is attached to another
component, these variables are displayed in the inspector window, along with editable fields
where user can specify their initialisation value. Example of this behaviour is shown in
picture 4.3. The relevant code of the attached script follows in the figure 4.4.

3’the base class every script derives from’ - docs.unity3d.com

4.2. IMPLEMENTATION IN UNITY 27

Figure 4.2: Finished GUI structure.

Figure 4.3: An example of drag and drop assignment. The red arrows shows which components had
been dragged and where they were dropped. The ’LeftBar’ and ’RightBar’ rows in the ’Hierarchy’
window, represent objects that are present in the scene, and that have a ’SideBarControler’ class
attached. The inspector automatically recognises the class required by the variable that is being
assigned, and does not assign the dropped object directly, but its component of appropriate class.

28 CHAPTER 4. REALISATION

pub l i c s e a l ed c l a s s ParameterBarControler : MonoBehaviour {

pub l i c S ideBarContro ler l e f tBa r ;
pub l i c S ideBarContro ler r ightBar ;

pub l i c ModelVariableProvider modelVar iableProvider ;

// . . .
// the c l a s s body
// . . .

}

Figure 4.4: The code of ParameterBarControler class, whose inspector is shown in picture 4.3. Note
the access modifiers and the type of the public variables.

This method of assignment does not only work for objects present in the scene, but also
for prefabs, which proved useful when creating a simple system of modular action bar. This
is further described in section 4.2.5.

4.2.3 Adding content

Figure 4.5: The Content Controller custom inspec-
tor.

Creating a new content in the application is
very simple. The user creates a new object
in the Content section of hierarchy, shown in
figure 4.1. This object is then assigned the
ContentController script, which creates the
necessary interface. The user can then pro-
ceed to create his own content in the object.
Another option is to create new instance of
one of the prepared content prefabs, which
are discussed further in section 4.2.6. For
the full procedure of creating and linking
content, please refer to the attachment B,
’RadApp user manual’.

4.2.4 Custom editors

Unity also allows a custom inspector win-
dow for every MonoBehaviour extended
class, which is extremely useful when pre-
senting advanced types, or when aggregating multiple classes in one window. This feature
allows creation of custom editor components, instead of the automatically generated fields
for public variables, as shown in picture 4.3.

4.2. IMPLEMENTATION IN UNITY 29

Content controller custom inspector will be the main interaction component for most
developers. It aggregates all relevant settings into one interactive window. As shown in
figure 4.5, the basic component provides several settings, that can automatically show and
initialise components of the GUI when the specific content is displayed. The most important
part here is the ’Next content’ field, where user can specify which content will be displayed
after pressing the ’next’ button in the application GUI. After assigning this property, another
field - ’target state’ - will display, where user can optionally also set the target contents state.
For an extended explanation of each propriety, see attachment B, ’RadApp user manual’
and for the description of the ContentController class, see attachment C.

4.2.5 Action bar content

As proposed in the Modularity paragraph of section 3.3.2, prefabs were used to create several
types of action bar content. These prefabs can then be assigned to the ’Command bar’ field
of the content controller via the inspector window (see figure 4.5).

There are 3 provided actions as of yet, with the interface being done in such a way that
allows its easy extension to new types, or similar types with more buttons. Below is a list
of currently provided types, and figure 4.6 presents their look when deployed in the GUI.

• A/B/C quiz question

• Yes/No quiz question

• Text-input answer

Figure 4.6: Prepared action bar content. From the top: an A/B/C question, a Yes/No question and
a Text-input question. The labels of buttons of the first type can be changed by the developer in the
Unity inspector.

Assigning these prefabs to the appropriate field in the Content Controller inspector
extends the inspector to show a new set of options, where user can type the desired message,
specify target content of each button, and optionally the target content state. In case of the
text-input question, user can also specify multiple accepted answers. In case of the A/B/C
question, user can also change the labels of the buttons. This system is also created in such
a way, that creating new types of action content is a matter of minutes. See C for further
information about the implementation.

30 CHAPTER 4. REALISATION

4.2.6 Content prefabs

Another use of prefabs is to provide users with an easy way of setting up new content of
the same type. In case of the default environment, only one such prefab exists, and that is
for the html content. When creating an application with advanced content, for example a
3D scene, the user can create a prefab of this content, and then very simply reuse it while
keeping the very same structure. Since it is not currently possible to link one content to
itself, even if the state parameter changes, this method of storing the structure of a custom
content has proved very useful when creating the example application (see attachment A).

Even if no further prefabs of content are present currently, some of the utilities are pro-
vided in the form of a prefab. Such as the static graph, which has a complicated component
structure, and its deployment would not be as easy as assigning the appropriate controller
to a scene object. There is also an example of links usage in an HTML content (see section
4.2.7).

4.2.7 HTML content

One of the most time-consuming parts of development was deploying a tool that would
provide support for showing HTML files and HTML formatted text. For reasons described
in 3.1.3, HTML was the proposed solution for displaying longer texts. Unfortunately, Unity
did not release any update on native HTML formatting support in the duration of this work,
and it is unclear if such feature will ever be included. For this reason, an external tool had
to be incorporated.

4.2.7.1 Awesomium

Awesomium is a conditionally free plugin, with specific support for Unity. After looking for
available Unity plugins, and an unpleasant fact that official plugins require the professional
version of Unity, the set of options became very limited. Awesomium came out as one of
the options that, in one point, worked nicely in the Unity environment.

The downfall of this plugin was caused by several problems during deployment. Although
the build process usually finished successfully, the application failed to display any HTML
content, and crashed shortly after running. Even the desktop builds were failing, and it
was later discovered that there is no official support for mobile devices. Discovering this
fact took away any motivation to further try to overcome multiple difficulties Awesomium
has presented, and the plugin usage was discontinued. This has also removed the only
available option of displaying video content, since the native video support is only available
in Unity professional, Awesomium could have provided videos through HTML 5 (This matter
is further discussed in section 4.2.11).

4.2.7.2 HTML parser

For the majority of time after discontinuing Awesomium, the framework was without any
HTML support, and as the development of other features begin to finalise, it almost looked
that the final release for this thesis wont be able to utilise HTML formatting. Fortunately,

4.2. IMPLEMENTATION IN UNITY 31

when all the other major problems were dealt with, the issue of HTML has been reopened.
Instead of looking for an HTML plugin, which usually led to an extensive engine for display-
ing live web pages, the search conditions were changed to look for HTML parsers. Several
discussions were revealed, in one of which an open source HTML parser called ’HTML engine
mini’4 has been linked.

This independently implemented HTML parser is fully written in C#, and therefore
can be directly included in Unity. Since its development has ceased in June 2012, several
modifications had to be made to be compatible with the current UI system of Unity. It is a
very basic parser, with only a limited subset of supported HTML tags, but is sufficient for
the purpose of this work. As it is open source, it can be further extended to support more
required tags, but currently the support of basic text formatting and displaying images is
all that is needed.

Currently supported tags with basic syntax examples (parameters in brackets are op-
tional):

Link - link text

Image -

Paragraph - <p [align=”][valign=”]> </p>

Line break -

Font format -

Code format - <code></code> same as

Bold -

Italic - <i></i>

Underline - <u></u>

Strike - <s></s>

Text effect - <effect></effect>

Division - <div></div> - this element does not always render correctly.

4.2.7.3 Linking

The parser also provides methods for creating functional links. Moreover, it leaves handling
of the links on the developer, which means that the parser returns the address of the link,
and a custom code can then handle it. For this purpose, a custom event has been created,
that is invoked when the user has clicked on a place on the screen where a link tag is
displayed. This event can be observed from any user script, and then handled the same way
as any other button click event. The target parameter of the HTML link is passed through

4Open-source ’Device independent HTML parser and render for any .net/mono graphics toolkit’ by Ruslan
A. Abdrashitov - code.google.com/p/html-engine-mini/

32 CHAPTER 4. REALISATION

the event, and can serve to decide which content to show, or how to manipulate currently
the displayed content. This functionality is again described in detail in the attachment C,
and its practical usage in attachment B. Furthermore, a prefab with an example use of the
HTML linking is also provided.

4.2.8 Input and output bars

The left and right parameter bars on the screen, as visible in picture 4.2, are utilised only
when a model is attached to the content (the model connection process is described in
section 4.3.2). The bars have separate functionality, as the left bar serves for inputs, and
the right bar for outputs, as proposed in the design section 3.3.1.

There are several types of variables that can be displayed:

1. Interval

2. Select

3. Boolean

All of these can be seen in the picture 4.9, in the left command bar (as they are input
types). The interval variable provides floating-point number value. The developer can
specify minimum and maximum value, disable the slider on the run, or change its output
to whole numbers. In the attached picture, these are the two top slots, labelled c(H) and
c(OH). The select value examples are the 4 following slots, and serve to select one option
from a mandatory number of options. The selected option is highlighted, and returns an
integer number, representing the index of the selected option. The last type is boolean,
which is a simple toggle button, that can either be true or false.

All of the input types can be also manipulated from the model-side. This means, that
even though they are designed to serve mainly for input, they can be bound to reflect the
current values in the model. E.g. in the example application, the user drags the slider to the
desired value, and when he drops it, the model disables its use and drags both the sliders to
reflect newly calculated equilibrium. After settling on a new value, the sliders are enabled
again.

Figure 4.7: The visual component of the graph out-
put variable.

The output variable types are:

1. Output

2. Text output

3. Text output with graph

The first item, an ’Output’ type variable
only serves to hold a float value, but has
no visual component. This is useful if the
developer needs to store some values for his
custom animation, that do not need to be displayed in the left bar, as they are not an

4.2. IMPLEMENTATION IN UNITY 33

interesting in the current context (for example values that specify some object’s position in
the animation). The text output shows specified text. The ’text with graph’ output shows a
graph of a numerical value changing in time. The user has to specify the scale of the value,
so it fits into the graph vertically. Horizontal scale is then set by binding each pixel to one
rendering frame (this is an unfinished behaviour, as it should be bound to actual real time).
Example of this slot graphics is shown in figure 4.7.

The class hierarchy of the variables is shown below in the figure 4.8. The ModelVariable
is an abstract class that provides only the basic interface for manipulation in low level logic.
Each derived class provides further functionality, and has its own slot type (except for the
ModelOutputVariable class). The visual components are again created as prefabs, that are
instantiated when a new instance of the variable class is created. The base ModelVariable
class does not derive from the usual MonoDevelop base class, since it is not a component
that can be added to any visual object. The instances of variables have to be created in
code by the developer, when connecting the Modelica model, as described in 4.3.2.

ModelVariable
<<abstract>>

ModelOutputVariable ModelSelectVariable

ModelTextOutputVariable ModelIntervalVariable

ModelGraphOutputVariable ModelBooleanVariable

Figure 4.8: Class hierarchy of the variable types.

4.2.9 Platfrom-specific behaviour

As proposed in the design section 3.3.2, some specific behaviour for mobile devices has
been implemented. As proposed, navigating between contents is possible by swiping the
screen from right to left to go ’back’, or in the opposite direction to show ’next’ content.
The standard android ’back’ button has the same signature as desktop ’escape’ keyboard
button. This functionality did not seem out of the ordinary, and so both mentioned buttons
trigger the ’show previous content’ action. Apart from utilising touch screens for navigation
between contents, and using the standard android buttons, some other visual tweaks were
made to make using mobile devices more pleasant.

One of such adjustments is scrolling through content exceeding the screen, which, on
touch screens, is intuitively done by sliding ones finger on the screen in the appropriate
direction. On desktops, where touch screens are not common yet, sliding is either done by
mouse wheel, or by dragging a slider located traditionally on the right side of the content.

34 CHAPTER 4. REALISATION

This slider is automatically present in the HTML content, and is also automatically hidden
on mobile devices. This also requires repositioning the ’hide command bar’ button to the
edge of the screen.

The application also automatically detects mobile devices (currently iPhone and An-
droid) and adjusts the HTML font size accordingly to the device dpi. This is a feature that
allows the HTML content to be displayed correctly even on smaller smart phone screens,
although the images within the text still remain relatively small, because the technical so-
lution only affects text. Even most of the controls were adapted in such a way, that with
some small effort they are usable on smart phones, but for example the interactive variable
sliders (see picture 4.9), are already oversized on desktop screens, but still very difficult to
use on phones. Basic non-model applications can target mobile phones without any larger
issues.

4.2.10 Options for vector graphics

Unity does not natively support vector graphics. Free solutions are strongly preferred, and
by so, they are limited to the free version of unity, and also forced to disregard the use of
paid plugins or assets for unity, which also usually require the pro- (paid) version of Unity
(see 4.2.11). There are several general options of handling the problem:

1. Saving the graphics in a vector format, and find a way to display this format in Unity.

2. Exporting the graphics as a raster, and using this picture as a simple texture in Unity.

3. Saving the graphics as a vector, using other software to convert it into a 3D object,
which can then be imported to Unity.

In further paragraphs, these options are discussed with the advantages and disadvantages
of each solution.

4.2.10.1 Displaying vectors in Unity

This is a straightforward solution to the problem, that completely removes any necessity to
manipulate with the graphics outside of the program used to design the graphics. Since the
Unity renderer always uses the actual size of target texture, the image keeps all benefits of
vector-based graphics. As stated in the problem definition, the main issue with this approach
is, that Unity does not directly support a vector-based graphics. There exist plugins that
solve this issue, which are either paid, or with less functionality.

A paid solution is purchasing a plugin enabling this functionality. For example SVGAs-
sets5 plugin reads directly from an SVG file, and renders it on-the-run to provided texture
surface.

Advantages: The plugin is finished and optimised, professional product, which guaran-
tees its proper functionality and performance.

5Plugin available from Unity asset store at assetstore.unity3d.com

4.2. IMPLEMENTATION IN UNITY 35

Disadvantages: Is not free. The plugin itself costs $125.00, and requires Unity Pro.
Furthermore, it has limited platform support: Web Player, Windows Phone 8 and Windows
Store are not supported.

To conclude, this is a clean and robust solution, preserving all aspects of vector-graphics,
but also creating either financial demands, or deployment problems.

A free solution is an open-source alternative, called UnitySVG. As the author himself
states on the project page, "A very limited subset of SVG is supported. (...) Essentially,
only things involved in rendering static images are supported, with no regard to clarity of
the XML, ’reuse’, or whatnot"6. There are also some performance issues, and the plugin
itself is not currently being updated (last update to the code is from 4. October 2012).

Advantages: Free and open-source. This gives an option to manipulate the plugin core
directly and possibly change its functionality to fit any needs.

Disadvantages:

• Unfinished side-project. The author created this plugin to fit his needs and is not
developing it anymore. IT can be unstable, unpredictable, and the last tested version
of Unity is 3.5.6.

• There is no mention of platform support at the project page, which would require
further research.

• The deployment of this solution could cause compatibility or performance issues.

This is more of a work-around solution, since use of raster pictures defeats the purpose
of creating a vector in the first place, even with the use of the Unity sprite capabilities. It
is, however, the simplest and fastest possible solution.

4.2.10.2 Rasterising vector graphics

Exporting the graphics to a raster format is the easiest way of handling the problem, but
can also be considered as more of a work-around, since it defeats the purpose of creating a
vector graphics. Unity natively supports a variety of raster images. Photoshop .psd and .tiff
are imported with flattened layer. Multiple formats (JPEG, PNG, GIF, BMP, and many
more) are supported.7 The format support overlaps with the capabilities of most used vector
graphic programs, which provides a simple solution, at a cost of loosing the advantages of
keeping a vector format. Moreover, Unity has a very useful sprite editor, which allows
creation of scalable graphic, without loss of sharpness on its edges. Its function is limited,
but provides some basic features we look for in the vector format. There is also a plugin8

that simplifies the workflow, but it is not free, which greatly exceeds any possible advantages.
Advantages:

6Cited from the project page - github.com/MrJoy/UnitySVG
7Adapted from unity3d.com
8Illustrator->PNGs, available from Unity asset store at www.assetstore.unity3d.com/en/content/25491

36 CHAPTER 4. REALISATION

• Simple and ready. There is no need to learn or deploy anything, we only use what we
know, and what works.

• Can be edited as a sprite and make use of the Unity UI components, which means
easy drag-and-drop scene composition.

• It is completely free.

Disadvantages: Does not keep a vector nature of the graphics. This solution completely
defeats the purpose of creating graphics in a vector format, and subsequently creates prob-
lems with the graphic scaling or rotation.

This solution allows manipulation of the graphics in Unity without significant loss of
quality, and is very easy to implement, but also removes the simple drag-and-drop approach
in the Unity 2D scene, that is only possible with raster images.

4.2.10.3 Creating a 3D mesh

This is a compromise between solution 1 and 2, since it keeps some features of the vector
format, but it is also very easy to deploy. By using a free software9, this solution stays cost-
free, but is slightly more time-consuming, since the graphics has to go through a manual
conversion in yet another program.

Advantages:

• Still relatively easy to do. It creates one extra step in the export-import workflow
between graphical software and unity.

• It does not keep all the vector specifications, but because it is a 3d mesh, unity can
scale and rotate it without further loss of quality. There is some discretization of
vector lines necessary, but the level of detail can be adjusted accordingly.

Disadvantages

• Creates a 3D object. Its use is not as straightforward as with a simple raster image,
and it requires a bit more computing power, although this should not be an issue on
a current-generation devices.

• Only useful for outlines and UI graphics without complex inner structure.

4.2.10.4 Conclusions

As the first option (4.2.10.1) would create extra demands on time or finances, and both are
preferred to be kept at minimum, it was not be further researched.

The second option (4.2.10.2) was used for simple graphics. In sufficient resolution and
in combination with the Unity sprite editor, designs of high quality can be achieved. The
possibility to use these sprites within the Unity UI system is also a strong argument for this
solution.

9Such as Blender - www.blender.org

4.2. IMPLEMENTATION IN UNITY 37

Finally, the third option (4.2.10.3) can be used to create shapes that can be manipulated
both structurally and visually. Since unity has an animation interface, predefined movements
can be created for such shapes. Unfortunately 3D objects can not be interconnected with
the Unity UI components, and so it can be a little more problematic to properly incorporate
them with flat UI elements. This approach was researched and is entirely viable, but for
the example applications it was not suitable, and so it remains unused.

4.2.11 Advantages of professional version

During the development of the Radapp framework, several problems were encountered, that
would be easily solved by using the professional edition of Unity. One of the main goals
is to keep the development as independent and cost-less as possible, and thus, it has to be
refrained from choosing the financially more demanding solution, and a workaround solution
using only free tools is preferred. That being stated, some of the encountered problems were
not solved in a reasonable amount of time, or the workaround would be too complicated for
a task too trivial (see the list of unfinished tasks in the section 5.1.9). For these reasons,
the option of purchasing a professional licence for a limited amount of time, or using a trial
version of Unity to solve some of these issues, is still an open option, but was not utilised
it this thesis. Following is a list of advantages that the professional version of Unity would
provide.10

4.2.11.1 Video content

This is an example of a problem, for which a solution was not found. In the professional
version of Unity, there is a very simple way of playing videos as a surface of any object in 2D
or even in 3D. The video is simply passed to a MovieTexture component, which supports
several video formats. On Android and iOS the videos have to played in fullscreen, using
function Handheld.PlayFullScreenMovie11, which is also a pro-only feature. This means
that video content would have to be created separately for desktop and handheld devices,
but Unity does have direct code support for such cases12.

There was one promising way of dealing with this issue, and that was through displaying
the video via a HTML513 tag in a displayed HTML page. This possibility is discussed in
the next section. The Unity Professional edition would provide native video support.

4.2.11.2 Advanced HTML content

There is a very complex plugin for unity, that adds the ability to use web page directly as
a texture in unity, called Awesomium14. Using the chromium engine makes it possible to
display any live web page from the internet. The plugin has specific releases for Unity, and
has even implementation examples and tutorials available. The plugin is free for developers
with less than $100k annual revenue.

10Full list of features not included in the free version can be found on unity3d.com/get-unity
11See docs.unity3d.com for the code reference and manual.
12Platform dependent compilation, a feature of C# programming language.
13A next generation specification of HTML that is currently in development.
14www.awesomium.com

38 CHAPTER 4. REALISATION

There are several issues with using this plugin in the free version of unity. Mainly, the
finished application does not seem to find the proper Awesomium libraries, and fails to
deploy. It is questionable, whether this is caused by the free version of Unity, but when
running the example scene, the editor throws several errors regarding a missing professional
licence, which hints in this direction.

Nevertheless, the biggest problem of this plugin is, that it does not support mobile
devices, but only desktop Windows and Mac, which fails the target to stay as multiplatform
as possible.

There are several other solutions to display an HTML page as a texture, but they
are either unfinished discontinued projects, or are also limited to certain platforms. It is
uncertain, whether the Professional edition of Unity would help support online content. And
even if it was the case, it might still be limited to few selected platforms.

4.2.11.3 Custom splash screen

In the free version, on any platform, a default Unity logo is displayed for few seconds, before
the program itself is loaded. In the professional version the picture can be changed to
whatever desired - for example the RadApp framework logo (see 3.7).

4.2.11.4 Plugins and core code access

The core code of Unity is inaccessible in the free version, and since all official plugins are
based on manipulating the core directly, all of them are unusable by default in the free
version.

4.3 Bodylight adjustments

4.3.1 Compatibility issues

Bodylight is being developed in the .NET framework, but because its original target platform
is Silverlight and WinRT, it was utilising the .NET 4.5 version, and the core was targeted to
the Portable subset. This was the main issue when connecting Bodylight to Unity, because
the embeded MonoDevelop only supports .NET 3.5 (Generally15), and the supplied libraries
have to be targeted to full .NET 3.5, instead of the portable subset. Reasons for this are
not completely clear, but extensive testing has proved that the biggest issues are caused by
the parts of Bodylight written in the F# language.

Most of the incompatibilities were resolved by creating a new build configurations, which
included different versions of libraries (especially fsharp.core), and introduced new constants
that were then used for conditional compilation directives in the code.

Few lines of code in the core of Bodylight had to be rewritten completely, because of the
differences between version 4.5 and 3.5 of .NET (missing methods or classes). Apart from
the core libraries, there are application specific classes that are used to connect the model to

15See http://docs.unity3d.com/410/Documentation/ScriptReference/MonoCompatibility.HTML for de-
tailed list of compatible libraries.

4.3. BODYLIGHT ADJUSTMENTS 39

the view (the ViewModel part in figure 3.2). Some parts of this package had to be completely
recreated for use in Unity, especially the ViewServiceImpl class. This class is implementing
the ViewService class (for the class description, please refer to attachment C), that takes
care of synchronizing the animation framerate with the simulation derivation speed. This
has been solved by creating a static UnityTickProvider class, that can be referenced from
within Unity, and sends a signal to create a new derivation step. To properly synchronize
simulation to the framerate, the static ProvideTick method has to be called from Unity.
This is further described in the following subsection.

4.3.2 Connecting model

This is only a rough explanation of principles regarding the realisation of Bodylight-Unity
interface. For a complete guide of how to embed a model to the developed application, see
attachment B - "RadApp user manual".

Connecting a model requires deeper programming knowledge, since it is the only part
of development using RadApp framework, where user has to directly write code. Since
Modelica is also a programming language, it is expected that people who create models,
and might want to include them in an application, do posses the necessary skills required
to carry out the tasks described in the following paragraphs.

For the connection of a model, the ModelVariableProvider interface is provided, which
the user has to implement to communicate with the Bodylight ViewModel package. This
interface then serves for automatic distribution of user-created variables in the rest of the
system, including the GUI.

The connection happens in two layers. Firstly, as mentioned in the previous subsection,
through the UnityTickProvider static class. The user should call of ProvideTick method in
the initialisation Start method, and the periodically called Update method. These meth-
ods are part of the MonoBehaviour base class, that ModelVariableProvider extends. Its
implementation then has to be attached to the content (a unity GameObject with assigned
ContentController, with HasModel property set to true), in which the model shall be pre-
sented. The attachment can be done by compiling the Bodylight parts into a library, that
can then be included in the Unity project assets. The code manager automatically adds
references to these libraries, and they can then be referenced from code.

After doing so, the user has to manually connect the variables from the Bodylight View-
Model, to the provided ModelVariable implementations. This initialization should take
place in the Initialise method, which is automatically called when the appropriate content
is displayed.

All of the interactive visual components for the model variables provide an event, that
is invoked every time user interacts with the GUI of the specific variable. This event also
provides the new variable. In the implementation of the ModelVariableProvider, the user
should implement listeners to these events, so that he can trigger new simulation when nec-
essary. Regarding the changes that happen in the model, these should be read in the Update
method, where the appropriate model variables values can be updated. The important thing
to keep in mind is, that there are two sets of variables. One provides the user inputs, and
thus can not be directly connected to the model variables in the Update method, since these
constant updates would overwrite the user’s input. The second set provides model outputs.

40 CHAPTER 4. REALISATION

The values from the output variables can be also used to manipulate the input values, but
after some sort of trigger, so the model values do not prevent the user input.

These principles are better understood from the examples provided in the code, especially
the AcidBase application that has been released to specifically demonstrate the possibility
of connecting a relatively simple model.

4.3.3 Custom visualisations

There are several methods of creating a custom visualisation for the connected model, or
even simple animations without any model in the background.

Creating a 3D animation is easy by utilising the strong Unity graphical engine, that even
includes advanced features for game creation, such as particle effects, water, skyboxes or
simulated gravity. The same goes for 2D animations, as Unity can also be used for 2D game
development. All these principles are a matter of understanding the Unity environment,
and therefore will not be clarified in detail here.

Unity does not natively support vector graphics, which is a slight disadvantage when
creating scalable components. In the created demonstrative application, the simple raster
graphics in combination with the Unity UI components has been used. Other possible
methods were discussed in the section 4.2.10

If the animation should be connected to the model, accessing the variables is simply
a matter of referencing the ModelVariableProvider from a custom script attached to the
content, that can also reach the animation components. This can also be studied in the
attached example application.

4.4 Deployment

Before deploying the application on a selected platform, there are several settings the de-
veloper should check first to prevent unnecessary problems.

Pictures that are imported to the resources folder should have appropriate Max Size
selected. If building for large screens, select a size that is big enough, so that the picture
does not have to be upscaled (given that the original picture does have appropriate large
dimensions). On the contrary, if building for smaller screen platforms, select resolution small
enough, so that the image does not take up too much memory, which would go to waste
because the picture will have to be downscaled to fit the screen anyway.

There used to be some trouble with images in the HTML parser, which are solved in the
version released for this thesis purposes. In this version, most of the available settings of
imported images should work, but the recommended settings, which are tested are: ’Sprite
(2D and UI)’ as the texture type, pivot in the centre, and format ’truecolor’. These settings
were tested on both desktops an mobile devices and proved to be stable.

4.4. DEPLOYMENT 41

4.4.1 Known problems

4.4.1.1 Html parser

The most notable issues are related to the Html parser. Because of how the rendering of
final document works, all of the text and images are aggregated into one large texture. If the
text is too long, the dimensions of the texture can cause problems on mobile devices. While
testing the example application on a Samsung Galaxy S4 smart phone, with Android 5.0.1
operating system, the last 3 pictures in the first content (’Introduction’) had to be disabled,
in order to render it correctly in the portrait mode. Further research gave a maximum of
95 lines of text in the current settings can be displayed. Note that this refers to the actual
number of lines as displayed on the screen, and not to the text formatting in the original
document.

Furthermore, the HTML parser is by far not finished, and its author has discontinued
its development. During testing, several issues were encountered, from which only the
most critical part has been resolved (E.g. image resizing or redrawing the document after
orientation change of mobile screen).

The list of current issues found in the HTML parser (most probably not complete, since
the parser requires more thorough testing):

1. <title> tag not ignored

2. <!– comments –> not ignored if there are tags within them

3. height and width parameters of img tag cause problems

4. <h1> tag is being ignored, as probably all other heading tags

5. tag is being ignored

6. justify align in <p> tag does not seem to work sometimes

7. end of <!– comment –> not recognised correctly, need an extra ’=’ character to break

8. <script> tag not ignored, when there is a
 tag few lines above it

9. align sets align for all consecutive tags, not just the one it is a property of

10. <style> tag not ignored, if there are key characters in its content

11. <head> content should be ignored all together

From a quick look at the above list, it is obvious in what state the parser is, and how
much work has to be done on it to make it reliable. It is recommended to only use the
supported tags for the time being.

4.4.1.2 Deploying with a model

If a model is connected, or more specifically, if an FSharp.core library is present in the
codebase libraries, the build process for WinRT platforms (Windows Store and Windows
Phone) will fail. This is a documented and reported bug of Unity environment16, and it

16Issue ID 674666 on Unity issue tracker (issuetracker.unity3d.com)

42 CHAPTER 4. REALISATION

should be fixed soon after the finalisation of this thesis.
The attached model also causes problems when building the WebPlayer, because in

the example application, there is a reference for library WindowsBase, which, for unknown
reasons, can not be attached to the finished player.

A similar problem occurs when building for WebGL, but given the fact that in the time
of the framework testing, this feature was still presented as experimental, there is a reason
to expect that this problem is not caused by the project itself, but by some bug in the
WebGL build processor.

4.4.1.3 Other

A completely different problem, that is not blocking the development itself, but can be
annoying, is a ’ghost object’ that is present in the scene. This object is initialised 4 times
every time the game mode is activated, and shows warning level message in console that
says ’The referenced script on this Behaviour is missing!’. This has also been reported as a
bug, but since it is not in any way critical, tracking of the issue is not currently in place.

4.4.2 Build settings

Before building, it is recommended to go through the Player settings for the target platform.
Here, the user can specify the name of the created application, as well as icons and many
other settings.

Notable settings for Android and iOS devices are the bundle version and identifier, which
should be used to correctly specify the application ID and version of the application. If the
default value is left, the target device will not be able to distinct multiple different applica-
tions created in the RadApp framework, and the installation will override the application
that is already on the device.

Other settings should be by default in such a state that allows successful deployment on
the supported platforms.

4.4.3 Tested platforms

The deployment of the attached example application has been successfully tested on the
following platforms:

• Windows 8.1 Standalone, x86

• Android 5.0.1 ’Lollipop’, on device Samsung Galaxy S4

The build process has also been successful for following platforms, but without a testing
device for final deployment.

• iOS

• Mac OS X Standalone

4.5. EXAMPLE APPLICATION 43

• Linux Standalone

When the application does not have any model attached, hence the FSharp.core library
can be removed, all of the other major platforms seem to work correctly. This includes
the WinRT platforms and WebPlayer. Other platforms have not been tested, but as there
are no extra libraries included, and the HTML parser is fully written in C#, and works
flawlessly in the Unity Player, there should not be any particular reason for the application
to not work on them.

4.5 Example application

For testing and demonstration purposes, an example application has been developed in the
RadApp framework and released for Windows Standalone and Android. This application
has a Modelica model, and is a re-implementation of the same functionality created in
Silverlight, as part of the Bodylight standard workflow. This application, namely page 1 of
this application, has been completely remade in the RadApp environment.

This application shows an interactive visualisation of an acid-basic concentration model,
has questions and tasks and explicatory text attached. The release name of this application
is AcidBaseApp.

The release notes for this application can be found in attachment A. Here, the differ-
ences between the RadApp implementation, and the original application in Silverlight, is
described.

4.5.1 Silverlight comparison

For visual comparison, see pictures 4.9 and 4.10, where you can see the RadApp implemen-
tation, and the original Silverlight page 1 interface, respectively. As clearly visible from the
pictures, the structure of the visual content has been maintained. The only functionality
that is not reproduced in the RadApp environment are one-way sliders, that allow only
addition to each beaker. This is handled by the trigger labelled ’dilution’, which, when
disabled, should only allow moving the slider to the right. This would require overloading
the standard Unity slider, and checking the user input for correct direction. There was some
effort made to implement this functionality, but it remains unfinished.

The greatest difference is in the presentation of the texts. In the RadApp implementa-
tion, there are two screens preceding the model visualisations (see pictures in figure 4.11).
On the first screen, the explicatory text is presented, on the second screen, the questions
and tasks follow. Then, when the main content is displayed, the first question is again
shown in the command bar. After answering it, the student is redirected to visually same
content, but with the next question to solve. This way, the student actually has to interact
with the application to prove that he has found the answer for the presented question, as
opposed to the silverlight UI, where all the content is maintained in a single screen, without
an interactive quiz.

On the following picture (4.12), the functionality specific to mobile devices is presented.
The following screenshot has been taken in the landscape mode. It shows the first application

44 CHAPTER 4. REALISATION

Figure 4.9: The example application AcidBase app, content with a connected model. The presented
question is not well composed, as it asks two questions, but in this example application all text inputs
are set to accept answer ’1’, as the application is done purely for functionality demonstration

Figure 4.10: The original AcidBase page 1. The basis for developing the AcidBase application in the
RadApp framework.

4.5. EXAMPLE APPLICATION 45

Figure 4.11: First two screens (from left to right, respectively) in the mobile version of AcidBaseApp,
shown in the portrait mode.

46 CHAPTER 4. REALISATION

screen again (the same content as on the left picture in figure 4.11), but automatically fitted
into the screen after the device was physically rotated.

Figure 4.12: The first screen in the mobile version of AcidBaseApp, shown in the landscape mode.

Graphs are the most notable advantage of the Silverlight version, since they provide much
better functionality, are scalable (the cross separating them can be moved), and even their
implementation in the code provides better functionality for the programmer. In RadApp,
own, simple implementation of similar graphs had to be done, since all the Unity plugins
offering advanced graph functionality are usually both paid and require Unity professional
version.

As Silverlight is not currently a very prospective platform, a big advantage of RadApp
is its multi-platformity and promising development environment. Since Bodylight can also
easily target WinRT, which RadApp is currently unable to do, due to a problem in Unity
(see section 4.4.1), this again talks in favour of the original Bodylight UI.

Regarding the implementation side of this topic, it is undoubtedly more clean to use the
original Bodylight process of UI design, since the framework is optimised for this workflow
as a whole. But RadApp does provide several advantages and benefits. RadApp also
has different targets than Bodylight framework, but their interconnection certainly brings
benefits. To RadApp, by providing useful features, and to Bodylight, by providing insight
into a new form of connecting a user interface.

Chapter 5

Discussion

The product of this work is a complete framework for creating e-learning applications. There
is no behaviour that would target the medical fields specifically, but by providing methods
for Modelica model connection, we present wast options of highly specialised applications,
including applications for medical fields.

5.1 Attained goals

As a review of the work, original goals were compared with the finished product. Firstly,
lets reiterate the original requirements of capabilities that the framework should provide in
the application it was used to develop:

• Displaying text, image, videos and Interactive animations, that can also be combined.

• Application provides separate screens and allows data transfer between them.

• The screens can be interlinked into a graph-like, non-linear structure.

• User can easily switch between the screens and interact with the content via a unified
interface.

There were also requirements for the framework itself. These include platform inde-
pendence, scalability, permissive licence, low financial cost, interconnectivity with existing
frameworks - namely Bodylight. And of course, the ultimate main objective was to create
a framework that will reduce time required for the application development

Each item on the previous list is to be evaluated with the results presented in the chapter
4 - Realisation.

5.1.1 Content types

As shown on pictures in figures 4.11 and 4.12, the application can correctly display longer
texts, with embeded pictures (unfortunately, the pictures - containing formulas - are not
well visible on the mobile version of the application, since it is not optimised for use on

47

48 CHAPTER 5. DISCUSSION

smartphones). This not only demonstrates the ability of the application to display texts
and pictures, but also the ability to show them together on a single screen, which covers the
content combination requirement.

Furthermore, on picture 4.9, an animated beaker setup is displayed. The beakers
smoothly change their levels to the values shown in the left panel, represented also by
sliders, and during the change, the points leading from the H or OH beaker to the water
containing beaker move with according speed.

The only type of content that is currently not possible to present, are videos. This
problem has already been described in section 4.2.11.1, and since its workaround would be
extremely time-consuming, while it can be simply overcame by upgrading to the professional
version of Unity, it has not been solved in the current version of the framework. Nevertheless,
the solution for this problem exists, and is described in this thesis in the previously referenced
section.

5.1.2 Screens and content structure

Visible again from pictures of the example application (4.11, 4.12, 4.9), there are multiple
screens, each displaying different content. User can navigate between the screens via the
’next’ and ’back’ buttons. It is also possible to reach away from this linear structure by using
buttons in the action bar (see picture 4.6), which can lead to multiple different contents,
including contents used already in the linear structure. Allowing branching and loops in the
structure ultimately leads to a structure that can be described as a graph.

It is also possible to pass arguments from one screen to another, using the ’target state’
parameter, which can be set for all buttons, whose function is to redirect the application to
another screen. The architecture allowing this behaviour is described in section 3.2.2, and
its usage in section4.2.4, or for the action bar content in section 4.2.5.

5.1.3 Unified interface

The graphical user interface was designed in such a way, that each screen contains the
same elements. Basic screen, without any interaction, only contains the navigation bar,
and can optionally also show action bar with question forms of predefined structure, or
furthermore parameter bars, if the content has an attached model. This layout and its
behaviour is described in section 3.3.1. The important fact is, that the design remains the
same throughout not only the application screens, but also all the applications developed
using the RadApp framework.

5.1.4 Platform independence and scalability

Presented in section 4.4.3 is a list of the platforms for which the application build process
was successful. While the application deployment was only tested on Windows 8.1 and
Android, the application build for Mac OSX or Linux produces a final, deployable package,
and since there was no error output during the build process, it is possible to assume the
correct functionality on these platforms as well.

5.1. ATTAINED GOALS 49

The previous paragraph also only accounts platforms available for applications that
use full potential of the RadApp framework, and thus include a Modelica model. Stated
again in the same section (4.4.3) is, that without a connected Modelica model, there is no
need to include any external libraries, and all code is therefore managed directly by Unity.
Therefore, the application can technically be deployed on any platform that Unity provides.
Still, only deployment for web-player and WinRT (Widnows Store and Windows Phone)
has been tested.

On all tested devices the GUI has appropriately scaled all its components. The text on
mobile devices is automatically scaled to be easily readable, as described in section 4.2.9.
The interface also adapts on devices with screen orientation, which can be seen on pictures
4.11 and 4.12.

5.1.5 Open licence and low cost

The development has stayed financially cost-free until the finalisation of this thesis. This has
been one of the major requirements, and it has been fulfilled even with a cost of sacrificing
other features that were originally required (such as video, as described in the previous
sections (5.1.1). This has also led to selection of tools that are published for free. Such
tools usually also come as open-source, as since the author does not have any monetary
profit from the tool, there is no reason for him to not allow modifications of his work by the
community.

The only part of the system that is explicitly licensed, is the html parser (described in
section 4.4.1.1), which has been released under the MIT licence. This permissive licence
does not prevent any usage or modifications, but requires the user of the product to give
credit to the author (Ruslan A. Abdrashitov), and to release the final product under the
same licence. The related code is marked in such a way, that makes it obvious who created
it, thus keeping the licence conditions. Furthermore, the credit is also given in the text of
this thesis on appropriate places (such as in this paragraph, or in section 4.4.1.1 where the
parser is described). Since the framework has not yet been publicly released, as it currently
serves mainly for this thesis purposes, licensing has not yet been an issue. As a remark for
the future, the MIT licence is permissive, and thus releasing the framework under it would
not hinder the original requirements.

5.1.6 Bodylight connectivity

Designed structure of the connection of Bodylight to RadApp in Unity is described in sec-
tion 3.2.1. Description of the successful implementation of this design, and consequently
fulfilment of the requirement can be found in section 4.3. The proof of success is also demon-
strated in the example application, specifically on picture 4.9, where visual components are
controlling - and also are controller by - a model running in the background of the appli-
cation. Keep in mind, that the same application is running on Windows and on Android,
and therefore proving that the model is packaged within the application, and not running
separately.

Although connecting the model creates certain limitations, particularly in the deploy-
ment options (see 4.4.1.2), the requirement of attaching a Modelica model is fulfilled, while
still keeping the framework largely multi-platform.

50 CHAPTER 5. DISCUSSION

5.1.7 Overall competition

There are several unfinished issues, that cover smaller tasks, or cover unimplemented feature
that would move the framework further. Out of 137 current issues (that contain not only
bugs, but also tasks or feature propositions), 3 are incomplete, and 11 are in an unresolved
state (those include some of the problems mentioned in previous paragraphs). Out of these
unfinished 14, only 3 are actual faults in the project, or the example application. The rest
are propositions for future work (as described further in 5.1.9), or improvement ideas, that
were not implemented, or even discussed upon (so it is not always clear, if the feature would
be useful and eventually included).

The development itself, without including the previous research or familiarisation with
the used tools, begun in min-December, 2014, and practically has not ended yet. In the
state used for the advocacy of this thesis, the project has been conserved in the beginning
of May, 2015. This means that the development took 4,5 months of practically daily work.
Excluding the weekends, and averaging the workday to 6 hours, gives a result of a little
over 700 work hours. Admittedly this number also includes time spent on composition of
the thesis text, which consumed a more that insignificant part of the time. Considering the
scope of the development, the limited time and the relatively small amount of remaining
work, this can be deemed a good result.

5.1.8 Development time reduction

Although an empiric study of the attained time reduction was not performed, specific parts
of application development process are already implemented and prepared in our framework.
These include the application structure and logic (summarised in 5.1.2), the user interface
(5.1.3) and optimisation for multiple platforms (5.1.4). Furthermore, tools for creating the
content in a simple and visual fashion are provided (examples of such tools viz 4.2.2, 4.2.4, or
4.2.5), as well as a tested workflow and prepared interface for a Modelica model connection
(described in 4.3.2).

By providing a majority of the finished product, the time spend on creating the rest will
logically be reduced. This has been partially tested when creating the example AcidBase
application, which only took days to complete (as opposed to weeks, or even more likely
months, usually spent with a conventional development approach). At the time of AcidBase
development, the framework was still largely unfinished an untested, an so a development
of similar application using the current state of the framework would be even more reduced,
possibly to only one or two days.

The only additional time required is spent while familiarising with the provided tools,
which is simplified by the User Manual (provided in attachment B). By taking the scope
of provided implementation into account, it can be confidently stated, that time spent
becoming familiar with the provided framework would not exceed the time otherwise spent
on the additional implementation. It is even possible to create simple applications without
any programming knowledge. In this case, the saved amount of time (or money, in cases
when a professional would have to be hired for the creation of the application) is evident.

5.1. ATTAINED GOALS 51

5.1.9 Future work

As discussed previously in this chapter, or even in section 4.4.1 in previous chapter, several
problems or minor features remained unfinished, because they had to be pushed back in the
priority list, or the problems cloaking their development became too overwhelming.

Video content would an extremely useful feature to have. In the Unity professional, this
is a very simple task as well, and for this particular reason, there was no motivation to
spend time or trying to implement this functionality in other way. One attempt was the use
of Awesomium plugin (see section 4.2.7 or 4.2.11), but since this branch of development has
been discontinued, there were no future efforts to implement video content.

WinRT deployment is a matter of patience. When Unity fixes the FSharp support for
this platform, there might still be further issues involved, before the deployment is possible,
but until then there is no way of advancing the work in this matter any further.

One way sliders that were described in section 4.5.1. There is a partially implemented
interface in the model interval value and the connected visual components, but as it started
to consume unreasonable amounts of time to debug this feature, it was scratched, and only
the interface methods remain.

Graphs can be either completely rewritten, or require greater amount of work to match
the functionality of other conventional graph systems. Much easier solution is to replace
the current graphs with some commercial solution, but with the target of maintaining the
development cost-free, this was not possible within this thesis. And expanding the graph
functionality beyond the necessary would require great amount of time, which had to be
spent on more important tasks in hand.

Html parser provides wast possibilities of improvement. Firstly, it has to go through
an in-depth testing, and all the found problems with currently supported tags have to be
resolved (see section 4.4.1). Then, it should be expanded to detect all html tags, and to
handle them correctly. The list of currently known issues with the parser is listed in section
4.4.1. After resolving all the current problems, css support can be added, to truly support
visual styling. This alone would elevate our framework by a whole level, but the task would
be so great, that is would again be simpler to use one of the commercial solutions for
displaying live web pages.

Minor tasks. Throughout the development, many less important tasks were postponed,
and still remain in the issue list. These do not prevent the correct functionality, but they
might be a nice-to-have features, or on the contrary, some minor problems that can be
annoying either to the developer, or the user of the final application. Follows a list of
example issues that remain unfinished:

• Application demands ridiculous permissions for installation (network access)

52 CHAPTER 5. DISCUSSION

• Extend the generic dictionary to automatically use variable name

• Dispose of distant contents to save memory

• Disable auto-rotation of screen if it is disabled on device

Without further description, the list only demonstrates the nature of issues that remain
to be solved.

5.2 Conclusion

Comparison of the realised framework with the requirements that were set up at the be-
ginning shows, that all the major objectives were attained. With a partial exception of
included content types, which is a missing interface for displaying in-application videos. For
this unresolved issue, a solution is still presented, which was only not incorporated into
the project in order to accomplish a more important goal: keeping the development finan-
cially and legally unbound. More importantly, by creating the example application, it was
shown, that the development time necessary for creating a multi-platform application using
the techniques provided by the created framework, is significantly shorter than creating an
application from scratch, by saving time on many levels of development. Thus, the proud
conclusion is that the work has been successful.

Bibliography

[1] Pekka Abrahamsson. Agile Software Development Methods: Review and Analysis. VTT
publications, 2002.

[2] Tim Berners-Lee, Robert Cailliau, Ari Luotonen, Henrik Frystyk Nielsen, and Arthur
Secret. The world wide web. Communications of the ACM, pages 37(8):907–912, August
1994.

[3] Robert C. Miller and Brad A. Myers. Lightweight structured text processing. Proceed-
ings of the USENIX Annual Technical Conference, June 1999.

[4] Jonas Echterhoff. On the future of web publishing in unity, April 2014.
blogs.unity3d.com [Online; posted 29-April-2014].

[5] Justin Ferriman. Top 5 elearning development programs, March 2014.
www.learndash.com [Online; posted 23-March-2014].

[6] Bill Gardner. Current logo trends, 2014. logolounge.com [Online; posted 9-April-2014].

[7] O. C. Haas and K. J. Burnham. Systems modeling and control applied to medicine.
OC Haas, KJ Burnham, Intelligent and Adaptive Systems in Medicine, pages 17–52,
March 2008.

[8] Arne Hildebrand, Thomas C Schmidt, and Michael Engelhardt. Mobile elearning con-
tent on demand. International Journal of Computing & Information Sciences, 5(2),
2007.

[9] Simon Hill. Android 5 vs. ios 8 vs. windows phone 8.1: Which smartphone os is best?,
2014. digitaltrends.com [Online; posted 27-July-2014].

[10] Sarah Horton. Access by Design: A Guide to Universal Usability for Web Designers.
New Riders, July 2005.

[11] Filip Ježek, Martin Tribula, Jiří Kofránek, Josef Kolman, Pavol Privitzer, and Jan
Šilar. Set of educational interactive simulators - the results of bodylight framework.
Sborník příspěvků MEDSOFT 2013, pages 38–48, 2013.

[12] Ray Jimenez. Rapid e-learning design and development: Part 1, October 2005. learn-
ingsolutionsmag.com [Online; posted 3-October-2005].

53

http://blogs.unity3d.com/2014/04/29/on-the-future-of-web-publishing-in-unity/
http://www.learndash.com/top-5-elearning-development-programs/
https://www.logolounge.com/article/2014logotrends
http://www.digitaltrends.com/mobile/best-smartphone-os/
http://www.learningsolutionsmag.com/articles/248/rapid-e-learning-design-and-development-part-1/
http://www.learningsolutionsmag.com/articles/248/rapid-e-learning-design-and-development-part-1/

54 BIBLIOGRAPHY

[13] Maurice Kindermann. Ux comparison chart, 2013. kintek.com.au [Online; posted 14-
June-2013].

[14] Jiří Kofránek, Michal Andrlík, Tomáš Kripner, and Petr Stodůlka. From art to industry:
Development of biomedical simulators. Special Issue on the Research with Elements of
Multidisciplinary, Interdisciplinary, and Transdisciplinary: The Best Paper Selection
for 2005, pages 62–67, 2005.

[15] Jiří Kofránek, Marek Mateják, and Pavol Privitzer. Hummod - large scale physiological
models in modelica. Proceedings of 8th. International Modelica conference 2011, 2011.

[16] Jiří Kofránek, Pavol Privitzer, and Marek Mateják. Web simulator creation technology.
MEFANET report 03, pages 32–97, 2010.

[17] Aarthy Krishnamurthy and Rory V O’Connor. An analysis of the software development
processes of open source e-learning systems. In Systems, Software and Services Process
Improvement, pages 60–71. Springer, 2013.

[18] Mark Masters. Unity, source 2, unreal engine 4, or cryengine - which game engine
should i choose?, March 2015. blog.digitaltutors.com [Online; posted 5-March-2015].

[19] Xiufeng Pang, Raj Dye, Thierry Stephane Nouidui, Michael Wetter, and Joseph J. De-
ringer. Linking interactive modelica simulations to html5 using the functional mockup
interface for the learnhpb platform. Proc. of the 13th IBPSA Conference, pages 2823–
2829, August 2013.

[20] John Ricitiello. Unity 5 launch, March 2015. blogs.unity3d.com [Online; posted 3-
March-2015].

[21] Clarence Simpson. Using unity for non-game app development, November 2014.
www.jarcas.com [Online; posted 18-November-2014].

[22] A.W. (Tony) Bates. Technology, E-learning and Distance Education. Routledge, second
edition, August 2005.

[23] Eric Von Hippel. Learning from open-source software. MIT Sloan management review,
42(4):82–86, 2001.

[24] Håkon Wium Lie and Janne Saarela. Multi-purpose publishing using html, xml, and
css, May 1998. http://www.w3.org/ [Online; posted 7-May-1998].

[25] Brandon Wu. Top 10 reasons to choose unity 3d for app and game development,
November 2013. www.pepwuper.com [Online; posted 19-November-2013].

http://kintek.com.au/blog/portkit-ux-metaphor-equivalents-for-ios-and-android/
http://blog.digitaltutors.com/unity-udk-cryengine-game-engine-choose/
http://blogs.unity3d.com/2015/03/03/unity-5-launch/
http://www.jarcas.com/studios/?p=208
http://www.w3.org/People/Janne/porject/paper.html
http://www.pepwuper.com/top-10-reasons-to-choose-unity-3d-for-app-and-game-development/

Appendix A

AcidBase release notes

55

AcidBase 0.3.1 Release Notes
Bc. Štěpán Tesař

April 30, 2015

Contents
1 Introduction 1

1.1 Requirements . 1
1.2 Tested platforms . 1

2 Instalation 2
2.1 Windows . 2
2.2 Android . 2

3 Usage 2

4 Known problems 3
4.1 Internet access . 3
4.2 Graph behaviour . 3
4.3 Dilution . 3
4.4 Beaker levels . 3
4.5 Html content . 3
4.6 Connected usb device . 4

1

2

1

1 Introduction

The AcidBase application has been created as an example usage of the RadApp framework
with a connected Modelica model. It introduces the principles of acido-basic equilibrium
in an explicatory text, and then displays an interactive animation and graphs, that serve
to demonstrate the principles. There are several questions presented. As the application is
purely for demonstration of RadApp capabilities, and not intended for actual distribution
for tutoring, the accepted answers are currently all set to ’1’(without quotes).

1.1 Requirements

The application is released as a Windows standalone executable, and as an Android app.
There are currently no known prerequisites.

The application is developed in the Unity game engine, which specifies the following
minimal requirements (we provide the whole list, even though the application has not been
released for some of the platform)

• Desktop

– OS: Windows XP+, Mac OS X 10.7+, Ubuntu 10.10+, SteamOS
– Graphics card: DX9 (shader model 2.0) capabilities; generally everything made

since 2004 should work.
– CPU: SSE2 instruction set support.
– Web player supports IE, Chrome, Firefox, Safari and others.

• iOS: version 6.0 or later.

• Android: version 2.3.1 or later, ARMv7 (Cortex) CPU or Atom CPU, OpenGL ES
2.0 or later.

• Blackberry: version 10 or later.1

1.2 Tested platforms

Deployment of the application has been tested on following platforms:

• Windows 8.1 Pro x64

• Android 4.4 ’KitKat’ on Samsung Galaxy S4

• Android 5.0.1 ’Lollipop’ on Samsung Galaxy S4
1List adapted from unity3d.com

2 3 USAGE

2 Instalation

2.1 Windows

The application has no self-extracting installer. The package can be placed anywhere and
run directly. Only make sure that the AcidBaseApp_Data folder is at the same level as the
main executable file.

Removing the application is as simple as deleting all the provided files.

2.2 Android

The application is not distributed through the Android App Store. It is therefore neces-
sary to transfer the apk file to the phone storage (E.g. via USB cable). The option in
’Settings’->’More’ (or ’Other’)->’Security’->’Allow installation from unknown sources’ has
to be enabled. Afterwards, find the apk file using custom file manager, and click it to start
the installation process. The application icon will automatically appear in the ’Apps’ menu
when the installation is successful.

Uninstalling the application is same as any other application on the Android device,
which depends on the version of the OS. Standard procedure is to go to ’Settings’->’More’ (or
’Other’)->’Application Manager’ where several tabs are present. The AcidBase application
should be present in either the ’Downloaded’ or ’All’ section. After finding it, click the row
to open the app info, where an option to uninstall the app is present.

3 Usage

After starting the application, a short Unity splash screen will be displayed. In a short time,
the first application content, ’Introduction’, will be displayed. By swiping the touch-screen
with one finger from right to left, or pressing the ’Next’ button in the bottom right corner,
you will be shown the next content ’Questions’. The following content is the acido-basic
model visualisation. The screen on devices with screen rotation enabled will automatically
rotate to the ’landscape’ mode.

At the right part of the screen, the controls of the model are displayed. In the middle,
the model visualisation and graphs, and to the right, the model outputs are displayed. By
changing the values using the controls, you can observe changes in the visualisation and
graphs.

Answering the presented question at the bottom of the screen (currently the accepted
answer for all questions is ’1’), you can get through all the questions all the way to the
final screen. By pressing the ’Back’ button in the bottom left corner (or swiping the screen
from left to right, or pressing the ’go back’ Android button), you will display the previous
content.

Closing the application can be done by clicking the ’Close’ button. On Windows, this
is the ’X’ labelled button at the top right corner of the application window. On Android,
this the standard middle button, which can be either a hardware, or conditionally displayed
software button at the bottom of the screen.

3

4 Known problems

As the application has been developed using RadApp version 0.3.1, which as the version
number suggests, is not a finished, market-ready, product. For this reason, there are several
known issues. These should not prevent the general usage of the application (the application
is not known to ’crash’).

4.1 Internet access

On both platforms, the application seems to request internet access. On Android, this is
seen before the installation as an item in the ’Application access’ list. On windows, a firewall
permission will be requested. The firewall permission can be denied, since the application
does not actually require any internet connectivity, and will not use any bandwidth even on
Android devices.

4.2 Graph behaviour

The graphs in the model visualisation should redraw appropriate lines, when the ’Tem-
perature’ parameter is changed, but this behaviour acts correctly only after switching the
temperature 2 times.

On some resolutions, the axes labels might be incorrectly aligned to the actual graph
scale. This is due to imperfect implementation of the graph UI. The correctly displayed
labels should align the lowest values with the bottom left border of the graph, and the
greatest values with the top/right end of the axes, and distribute the labels in between
them evenly.

4.3 Dilution

The dilution switch currently has no effect on the model, as it should only serve to prevent
the c(H) and c(OH) sliders to set a value smaller than the one currently set, but this
functionality has not been implemented yet.

4.4 Beaker levels

Only applies to Android.
In the model visualisation, the beaker should display a ’liquid’ with a level that corre-

sponds to the concentration ratio of the particular ion. The graphics displaying the ’liquid’
seems to be buggy on the tested Android device, which is believed to be due to the used
rendering method and screen type.

4.5 Html content

Only applies to Android.
On certain devices, one or both of the first application screens (introduction and ques-

tions) can be displayed as black rectangle. This is due to the technique of html rendering

4 4 KNOWN PROBLEMS

and the limited texture size, that can be displayed on mobile devices. The current version
is running without this issue on the previously listed devices (at a price of missing last 3
images in text on the first screen), but since the specifications of Android device vary wildly,
this issue can occur on other devices, presumably mostly on older types of phones.

4.6 Connected usb device

Only applies to Windows (probably).
When a usb cable with a multimedia device is connected while the AcidBase application

is running, a box in bottom left corner is displayed, with an error message "<RI.Hid> Failed
to get device caps ...". This message can repeat itself in the box along with other messages
depending on the device type.

This is because Unity automatically detects multimedia devices and tries to retrieve
some information. This only occurs because the current build is set as ’Development build’
(which is displayed in the bottom right corner), and the error box serves for testing purposes.
It can be hidden by the ’close’ button next to the box. This issue has not been observed on
Android devices.

Appendix B

RadApp user manual

63

RadApp 0.3 User Manual

Bc. Štěpán Tesař

May 1, 2015

ii

Contents

1 Introduction 1

2 Requirements 3
2.1 Unity . 3

2.1.1 Unity Personal Revenue Restrictions 3
2.1.2 System requirements . 4
2.1.3 Installation . 4

2.2 Visual Studio . 4
2.3 Model . 4
2.4 Additional . 5

2.4.1 Specific platform development requirements 5

3 Usage 7
3.1 Setting up the framework in Unity . 7
3.2 Unity interface . 7

3.2.1 Project . 7
3.2.2 Hierarchy . 9
3.2.3 Inspector . 9
3.2.4 Console . 9
3.2.5 Scene and Game . 10

3.3 Setting up new application . 10
3.3.1 Adding content . 10

3.3.1.1 ContentController . 10
3.3.2 Html content . 13

3.3.2.1 Html Content Controler . 13
3.3.2.2 Text linking . 15

3.4 Coomand bar . 15
3.5 Modelica model . 16

3.5.1 Creating model . 16
3.5.1.1 Translating model . 16

3.5.2 Bodylight interface . 17
3.5.3 Adding model to Unity . 17
3.5.4 Creating custom visualisation . 18

3.6 Building and deploying . 18
3.6.1 Pre-build tasks . 18

iii

iv CONTENTS

3.6.2 Build options . 19
3.6.3 Building for Windows . 19

3.6.3.1 Standalone . 19
3.6.3.2 Windows Phone and Store 20

3.6.4 Building for Android . 20

4 Appendix 21

Chapter 1

Introduction

This guide should provide information about how to set up and use the RadApp framework,
including the necessary software and optional tools.

The described practices apply to RadApp version 0.3.x (x being mandatory number),
but the general architecture of the framework should not change too dramatically in the near
future. Therefore, this manual should be applicable to further version of the framework,
before the appropriate revision of this of this guide is released.

1

2 CHAPTER 1. INTRODUCTION

Chapter 2

Requirements

To start developing in the RadApp framework, it is necessary to install the required software
first. In this chapter you will find a list of required and optional software, and a brief
explanation of how to obtain each tool.

2.1 Unity

The main part of framework is a package for Unity game engine. This package includes
necessary code that take care of the composition of the final application, and visual editors
used to set up the application.

RadApp has been developed using Personal Edition of Unity 5.0.1, which can be freely
used under conditions stated in the legal agreement of Unity, section 3, as follows:

2.1.1 Unity Personal Revenue Restrictions

Unity Personal (including the iOS and Android platform deployment options) may not be
used by:

1. a Commercial Entity that has either: (a) reached annual gross revenues in excess of
US$100,000, or (b) raised funds (including but not limited to crowdfunding) in excess
of US$100,000, in each case during the most recently completed fiscal year;

2. a Non-Commercial Entity with a total annual budget in excess of US$100,000 (for
the entire Non-Commercial Entity (not just a department)) for the most recently
completed fiscal year; or

3. an individual (not acting on behalf of a Legal Entity) or a Sole Proprietor that has
reached annual gross revenues in excess of US$100,000 from its use of the Software
during the most recently completed fiscal year, which does not include any income
earned by that individual which is unrelated to its use of the Software.1

There are further terms of use available online on unity3d.com, that the user should get
familiar with before using the Unity software.

1From the Unity End User Licence Agreement document, available online at unity3d.com/legal/eula

3

4 CHAPTER 2. REQUIREMENTS

2.1.2 System requirements

Unity has specified minimal system requirements for its use for development. These conse-
quently apply to the RadApp framework as well:

Operating system

• Microsoft Windows XP (SP2) or 7 (SP1)2 or newer.3

• Mac OS X 10.8 or newer4

GPU 5 Any GPU with DX96 (shader model 2.0) capabilities. This is practically any GPU
developed after year 2004.

Others Further, we recommend at least 2GB or RAM and an Intel Core i5 processor or
equivalent. Unity works well on both 32- and 64-bit systems.

2.1.3 Installation

Unity is a professional tool, that comes with a self-extracting installer that will guide you
through the process, which can be obtained from the Unity web pages at unity3d.com.

2.2 Visual Studio

This tool is necessary if you wish to include a Modelica model in you application, or if you
wish to create applications for Windows Store or Windows Phone.

It is recommended to use Visual Studio 2013 Professional, but all required capabilities
are available in the free versions of Visual Studio Community or Express. These tools can
be obtained from the Visual Studio web page at www.visualstudio.com.

2.3 Model

If you wish to include a Modelica Model in your application, you will need to implement
certain parts within the Bodylight framework, which requires Visual Studio 2013 and .NET
framework 3.5.

For the model implementation you can use any favourite tool, but it is required to have
OpenModelica 1.9.1 installed for translation of the model to a C# file.

Bodylight is obtainable as a separate package with prepared interface for interconnection
with the Unity RadApp project.

2SP stands for Service Pack
3Windows Vista is not supported, and server versions of Windows are not tested.
4Server versions of OS X are not tested.
5Graphics Processing Unit, also known as ’Graphics Card’
6Microsoft DirectX technology version 9

2.4. ADDITIONAL 5

2.4 Additional

There are more tools that can be further used during the development. For example, should
you wish to create 3D meshes to display a custom graphics, there are free tools that can be
used.

Inkscape is free vector graphics editor, which can export the graphics to svg. Blender
can then be used to convert the file to a 3D mesh, that can then be directly imported to
Unity.

2.4.1 Specific platform development requirements

Developing applications for some platform also require additional tools. Unity will auto-
matically search for some of these tools before the build process for the particular platform
can start.

Android For Android applications, it is necessary to have Android Software Develop-
ment Kit(SDK) installed. This kit can be downloaded from the android developer web
page at developer.android.com. It is not necessary to install any additional editors, the
SDK standalone package is sufficient. Unity will also automatically download any required
components of the SDK before the first build.

Furthermore, it is necessary to have Java Development Kit installed. This might be
required even before the installation of the Android SDK. This kit is available from the
oracle web page at www.oracle.com, section ’Downloads’, ’Java SE’. Be sure to download
the correct package for your operating system and processor architecture.

Windows For Windows standalone, it is not necessary to have any further tools installed.
Windows Store/Phone apps can be built in Unity, but need to be further compiled in

Visual Studio (see 2.2). The compilation for these platforms is only possible on Windows
8/8.1 operating system. The compilation will require additional tools, such as .NET 4.5
(which should be included in the Windows 8/8.1 implicitly) or specific packages, that Visual
Studio should download automatically.

iOS iOS applications also have to be recompiled using Xcode 6.x. This is only possible on
a Mac Computer, running OS X version 10.9.4 or newer. This build process has not been
tested.

Blackberry Building for Blackberry requires 32 bit Java Runtime (JRE, not JDK). This
build process has not been tested.

6 CHAPTER 2. REQUIREMENTS

Chapter 3

Usage

In this chapter, is is described how to set up the framework and its usage, including de-
scription of the UI and its functions. A part dedicated to the Modelica model connection
process is also included here.

3.1 Setting up the framework in Unity

After installing Unity, start it and when the Projects selection window opens, navigate to
the RadApp package folder in the ’Open Other’ dialog. This will open the RadApp project.
Next time you run Unity, RadApp will be displayed in the Projects list.

After Unity has started and RadApp framework has loaded, you will see the basic Unity
interface and RadApp application UI preview.

3.2 Unity interface

Although it might take some time to get used to the Unity interface, the RadApp project is
done in such a way that should allow even people without deeper programming knowledge
to be able to produce a simple application. There are 5 main components in the Unity
editor you should get familiar with.

3.2.1 Project

This window displays file structure of the Unity project. RadApp has its files separated into
a logical folder tree.

Codebase contains most of the scripts in Unity. To create a basic application, you will
only need the ContentController file in this folder. There are also useful utilities, that can be
used for development of more complex content (graphs, timers etc.) in the Utils subfolder,
but these have prepared examples that have a more convenient interface implemented.

7

8 CHAPTER 3. USAGE

Figure 3.1: The interface of Unity after opening the RadApp project. Note that some of the window
components can be relocated, or hidden. Look for the names of the tabs, and by dragging them you
can relocate them to match the picture.

3.2. UNITY INTERFACE 9

Editor folder contains custom inspector UI for some of the scripts. Content of this folder
is not meant to be manipulated.

Resources is the folder where you will find useful components for creating the application
(ContentPrefabs subfolder), and also where you should put all your custom made content
(CustomContent subfolder).

The usage of particular components in this folder will be discussed further.

Scenes this is where Unity scene files are located. There is only one scene in RadApp
framework, so this folder will serve no purpose when developing an application.

3.2.2 Hierarchy

might seem similar to the Project window at first, since it also displays a component tree.
However, here, it does not represent a file structure, but rather the structure of compo-
nents in the Application that you are creating. Each line in the hierarchy represents one
’GameObject’, which is a basic unit in a Unity application. You can notice, that when you
select a line in the hierarchy, a component in the ’Scene’ window is also selected, and vice
versa. Selecting a component will also display its attached scripts in the Inspector window,
which will be discussed further.

The components in RadApp framework are grouped into several parts, corresponding
with their purpose and visual representation in the application UI.

There are two basic components: ’EventSystem’ and ’View’. You can ignore the ’EventSys-
tem’. It only serves as the input control, and you wont need to manipulate it. ’View contains
the UI components.

The most important for you, as the application designer, will be the subfolder ’Content’.
Here, you will be placing the content you wish to display, as described in detail further in
this chapter (3.3.1). The other two subfolders hold the application menu bars. You wont
need to edit anything here, since all the settings of these bars are done when adding the
content.

3.2.3 Inspector

is where the settings of every selected component are displayed. The meaning of these
settings are again explained further.

3.2.4 Console

shows messages from the application during testing, and is priceless when debugging the
application. If there is a problem during the application run, it is described here. Some
errors can appear even during the composition of the UI, but these usually have no construc-
tive meaning and can be ignored (such as ArgumentException: GUILayout: Mismatched
LayoutGroup.Repaint).

10 CHAPTER 3. USAGE

3.2.5 Scene and Game

This is where you can see a preview of what you application will look like. in Scene, you
can manipulate with the content (e.g. move and rotate the UI elements) and in the Game
window, you can test your application to see how it performs when it will be deployed. To
start the game mode, you have to press the ’Play’ button at the top of the unity window,
and press it again to exit it.

3.3 Setting up new application

By simply opening the RadApp project, you are set to start developing new application. If
you wish to maintain a clear RadApp copy, you can duplicate the containing folder, and
open the new copy. Once you are in the Unity editor, you can start adding you own content.

3.3.1 Adding content

Adding content to the application is simple. You navigate to the View/Content object in
the Hierarchy window, and you create a new content here.

If you wish to add a html content, you can drag and drop a prefab named ’ContentHtml’
from the Assets/Resources/ContentPrefabs folder in the project window, to the ’Content’
component in the hierarchy window.

If you wish to create a new custom content, simply right click the ’Content’ component,
and select Create Empty. This will create a new child element under the Content component.
To mark this object as a content, you have to attach the ’ContentController’ script from
Assets/Codebase folder in the Project. This is done by dragging the script file to the
Inspector window, while your content is selected in the Hierarchy window.

To determine which content should be displayed first, you should drag and drop the
desired content to the field ’starting content’ of the ’Content’ component in the Hierarchy
window.

3.3.1.1 ContentController

After attaching the ContentController to your content, you will notice that a new set of
parameters is displayed in the Inspector, when you select your content. See picture 3.2 for
demonstration.

The Rect Transform component serves as a positioner and layout organiser. The default
settings, as displayed in picture 3.2, will create a rectangle a 100 points large. Usually, it is
desired to fit the content to the size of the screen. You can do this by clicking the red-cross
near the top-left corner of the component ui, and selecting the item in the bottom right
corner of the displayed table. The, you should set all the margins to 0, so that the content
is fitted to the sides of the screen. See picture 3.3 for reference of how the result should look
like.

Now for the ContentController settings. As you can see in picture 3.2, the first parameter
is a large text-area. In this area, you can type a message that will be displayed in the main

3.3. SETTING UP NEW APPLICATION 11

Figure 3.2: The inspector window of a newly created content, after the ContentCntroller has been
attached

Figure 3.3: The Rect Transform component set to fit the content to the size of the screen.

12 CHAPTER 3. USAGE

bar of the application. The message will be displayed in the place of the dummy text
’MainBarMessage’, which you can see in the Scene view, in the area between the large blue
buttons labeled ’Back’ and ’Next’. This is the main bar. You can use Unity rich-text tags
here. These are basic tags for text formating. The supported tags are:

• bold text

• <i>italic text</i>,

• <color=blue> color set to blue</color>.

• <size=24>size set to 24</size>

By changing the text ’blue’ or ’24’, you can receive appropriately different results. Use
the <size> tag with caution though, as it can overflow from the area of the main bar,
especially if the application is deployed on a mobile device with a small screen.

The next parameter is labelled ’next content’. This field specifies which content should
be displayed, after clicking the ’next’ button in the main bar, while the currently selected
content in the Hierarchy is displayed. If you leave this field empty, the application will
automatically disable the ’next’ button. The ’back’ button is automatically showing a
previously displayed content, and thus doesn’t have a setting field.

Attaching the next content happens in the same way, as attaching the ’first content’ of
the View component. Simply drag and drop the content from the hierarchy menu to the
’Next Content’ field. After doing so, an optional ’Next content state’ parameter will appear.
This parameter serves as a convenient method of passing arguments from one content to
another, and is useful when creating complex custom content.

Screen orientation is used when the application is deployed on a mobile device. This
parameter specifies if, when the content is displayed, should automatically rotate the screen
to a certain position. By leaving the default ’unknown’ setting, the screen will rotate
automatically after detecting the position of the device.

Stop watch and Timer can be displayed in the content. They will be displayed in the
menu bar instead of the 00:00:000 and 99:99:999 texts, respectively. Timer has additional
settings, after you enable it. You can specify the starting time of the timer in minutes and
seconds, and also an automatic redirect after the timer expires. This is again done in the
same fashion as assigning the ’Next Content’ by dragging and dropping the appropriate
content to the parameter field. You can also again specify the target state.

The has model parameter parameter defines that you will be adding a Modelica model to
this content, and triggers certain routines when the content is displayed. You can also specify
the content name after enabling this parameter. This functionality is further discussed in
section 3.5.

Command bar accepts objects from the Assets/Resources/ContentPrefab folder, that
start with ’Actions...’. This specifies what should be displayed in the extended command
bar above the main bar. The assignment is done in the same way as the ’Next content’
parameter, only now you are not dragging and dropping and object from the Hierarchy
window, but from the Project window, because you are not assigning an object from the
application UI, but a reference to a pre-made structure. This is further discussed in the
section 3.4.

3.3. SETTING UP NEW APPLICATION 13

3.3.2 Html content

Figure 3.4: The inspector window of a content cre-
ated from the ContentHtml prefab in the Asset-
s/Resources/ContentPrefab project folder.

Instead of creating a new content from
scratch, a convenient template for display-
ing html documents is available in the As-
sets/Resources/ContentPrefab folder in the
Project window. The object named ’Con-
tentHtml’ is a pre-made structure that al-
lows simple adding of new content that can
display text and pictures.

By dragging this object to the ’Content’
object in the Hierarchy window, a copy of
it is created, that you can edit in the same
fashion as if you created a new content your-
self. In the Inspector window, several more
elements are present, which you can ignore,
and fold by pressing the small arrow in the
left of the header of the component. See
picture 3.4.

The Content Controller component is
present again, which serves the same pur-
pose as in any other content.

3.3.2.1 Html Content Controler

Furthermore, a Html Content Controler is
present below the Content Controller. Here,
you can edit the settings of the displayed
html content. The horizontal and vertical
padding parameters specify a margin from
the edges of the screen, so that the text has
a frame around itself, which makes it easier
to read.

The main part of the Html Content Con-
troler is the Input. Firstly, you have to se-
lect whether you want to write the text di-
rectly, or you want to reference a file.

The RadApp framework only supports
a subset of html tags to allow for basic text
formatting. Currently supported tags with
basic syntax examples (parameters in brack-
ets are optional):

Link - link text

14 CHAPTER 3. USAGE

Image - <img src=’imagesource’
[width=”] [height=”] />

Paragraph - <p [align=”][valign=”]> </p>

Line break -

Font format -

Code format - <code></code> same as

Bold -

Italic - <i></i>

Underline - <u></u>

Strike - <s></s>

Text effect - <effect></effect>

Division - <div></div> - this ele-
ment does not always ren-
der correctly.

It is highly recommended not to use any tags that are not listed, as they can break the
structure of the document completely. This list applies to both text input, or the referenced
file.

Included files must be copied into the Resources folder in the RadApp project Assets.
You should type the whole relative path with the resources folder as a root. Do not include
the file extension. (e.g. /CustomContent/MyContent/file).

The supported file types are:

• txt

• html

• htm

• xml

• bytes

• json

• csv

• yaml

• fnt

We recommend using either txt, html or htm file type to write your html text into.

3.4. COOMAND BAR 15

3.3.2.2 Text linking

The framework also provides interface for in-text links. To handle the link redirection, it is
necessary to create a custom controller. This requires at least basic programming skills and
knowledge of the C# language. You can study an example implementation of this feature in
the Assets/Resources/ContentPrefab/Examples/ContentHtml_ExampleLinks prefab. Af-
ter dragging this object into the Content in the Hierarchy window, you will create 2 new
contents, which are located in a common component ’HtmlContentLinksExample’.

3.4 Coomand bar

The command bar is an extension of the main bar, which is normally hidden. If you
assign any object from the Resources/ContentPrefabs, starting with ’Actions...’, to the field
Command bar in the Content Controler, you will see a new set of settings appear. These
settings specify how the content of the command bar will look like.

Currently available types of the command bar content are:

• ActionsQuizABS - an A/B/C quiz question

• ActionsQuizYN - Yes/No quiz question

• ActionsTextAnswer - Text-input answer

You can see how each type will look like in the finished application in picture 3.5.

Figure 3.5: Prepared action bar content. From the top: an A/B/C question, a Yes/No question and
a Text-input question, with the default parameters set.

The new settings that appear after assigning a selected action type, start with an ’Action
bar message’. If you compare the default text in the picture 3.6 with the final look of the
action bar in the picture 3.5, you can see where the message is displayed. You can also
specify targets (and target states) of the actions, for each button. For the A/B/C type, you
can also change labels of the buttons. For the ’Text answer’ type, you can also specify what
answers will be accepted as correct - after specifying the number of possible answers.

16 CHAPTER 3. USAGE

Figure 3.6: The content controller settings bottom
part, after assigning a command bar action con-
tent.

You can assign any content to each ac-
tion button. If you wish to remain in the
same content (stay at the same place), sim-
ply leave the button target parameter for
the particular button empty. Since you can
assign ANY content, you can create arbi-
trary content structure in your application.
The ’quiz’ actions do not necessarily need
to contain a ’test’ questions, but can also
serve simply to decide which content should
be displayed next. Therefore, you can leave
the ’next content’ parameter empty.

3.5 Modelica model

Creating and connecting a model to the ap-
plication requires a deep understanding of
programming and mathematical modelling
principles. It is not the purpose of this guide
to teach these principles, and the RadApp
framework merely provides necessary inter-
faces and describes the tasks to reduce, or possibly remove, any necessary research.

This part is not intended for beginner level application creators, and thus only the
RadApp specific tasks will be explained.

3.5.1 Creating model

Creating the model is possible in any Modelica editor, but for the purposes of the Bodylight
and the RadApp framework, it is highly necessary to have Open Modelica 1.9.1. Even
the specific version is given for purpose. Saving the model in Open Modelica 1.9.2 already
creates incompatibilities later in the RadApp connection process.

3.5.1.1 Translating model

In the RadApp root, you will find a ’ModelTranslator’ folder. Here, you will find an example
modelica file, a batch file, and a mos file. The model is purely demonstrational, and has no
actual content. There is also an F# class file, which we will use later.

The mos file provides a necessary preprocessing, and the batch file calls OpenModelica
C# translator. In the mos file, you should edit the paths to your model file, as well as in
the batch file, where you also have to specify your Open Modelica binary location (or use
PATH variables). This approach is intended for and tested on Windows OS.

3.5. MODELICA MODEL 17

3.5.2 Bodylight interface

After translating the model, you can create a new Solution in Visual Studio, in which you
should include Bodylight.Simulation, located in Bodylight/Simulation, and Bodylight.ViewModels
and UnityViewService projects located in Bodylight/Presentation folder (Bodylight being
the root folder of Bodylight framework). Create a new solution build configuration named
’Unity Debug’, and set both included projects to the same value, which should be provided
in their configuration list.

Now you have to create two new projects.
Firstly, a C# class library project that will contain you translated C# model. Set up the

target framework to .NET 3.5. In Bodylight framework it is common to call these projects
by the pattern ’ExampleUnityModels’. Then add your translated model into this project,
and add both Bodylight simulation and ViewModels projects as references.

Secondly, an F# library project, again targeting .NET 3.5, where you will have to
create a custom interface that you will use in Unity. The naming convention for this
project is ’ExampleUnityViewModels’, and a singular form applies to the F# file in which
you will create the interface. The interface has to inherit a NotifyBase() type, be in a
Bodylight.Presentation.ExampleUnity namespace, and standard includes are System, Body-
light.Common, Bodylight.Solvers and Bodylight.ViewModels.

Implementation and detailed usage of the Bodylight framework is not part of this guide.
Therefore, only a simple example is provided in RadApp/ModelTranslator/ExampleUni-
tyViewModel.fs file.

After implementing the ViewModel interface, you can build the solution.

3.5.3 Adding model to Unity

Now that you have finished preparing the Bodylight part, you should add necessary dll
files to the Unity project. Place them anywhere in the Assets/Resources/CustomContent/.
It is convenient to crate a new folder for your particular content, and a subfolder named
’Libraries’.

You will have to copy Bodylight.Simulation.dll, Bodylight.ViewModels.dll, ExampleU-
nityModels.dll, ExampleUnityViewModels.dll and also UnityViewService.dll. You do not
have to add the FSharp.Code.dll file, as it is already present in the Codebase/Libraries.

If you are including multiple models, only add Bodylight.Simulation, Bodylight.ViewModels
and UnityViewService once. Unity will automatically add references to any included dll li-
braries to the Mono project.

Now you have to implement the ModelVariableProvider abstract class. In its ’Intialise’
method, call the static method UnityTickProvider.ProvideTick (this), and create a
new instance of your ExampleUnityViewModel.

Furher in the Initialise method you should create a new Dictionary<string, ModelVari-
able> and assign in into the ’base.variables’ variable. Then you can create appropriate
ModelVariable instances, that will mimic the necessary variables in your model, and add
them to the dictionary. Study the documentation of each ModelVariable implementation
to discover which type matches your model variables the best. If your model has any input

18 CHAPTER 3. USAGE

values, you can create methods called when the ModelVariable value changes. This can
be done using a ModelVariable.Get...SlotControler.Get...ValueChangedEvent (replace the
dotted parts accordingly to the ModelVariable type you are using) method. The returned
event is invoked each time user manipulates the visual components of the ModelVariables
(if they have any).

Create an ’Update’ method with no parameters and void return value. This method
is called by Unity before rendering each frame. Here, you should firstly call the static
UnityTickProvider.ProvideTick method. Then, you can update each output ModelVariable
with the values from the ViewModel. Be sure not no overwrite the input values here.

Assign your ModelVariableProvider implementation to your content. Make sure to assign
it to the same GameObject that holds the ContentController component, and check the ’Has
model’ property there.

Now, RadApp will automatically create visual controls for the ModelVariables that are
present dictionary, and shows them in the side bars.

3.5.4 Creating custom visualisation

Adding the model is the first step, but you should also create a visualisation to present
how the model works. To access the model variables, create a new csharp class (call it Ex-
ampleContentControler) that will inherit MonoBehaviour base class, which will allow you
to add as a component to your content GameObject. In this class, you can reference your
ExampleViewModel by creating a public variable, and then assigning the ExampleModel-
VariableProvider to it in the Unity Inspector.

Now you can create a custom visual content and specify how it should react to changes
in the model in your ExampleContentControler class. This obviously requires at least basic
understanding of Unity. For better work, you can disable the parameter bars and the
command bar, but you have to re-enable them before entering the game mode, or building
the application. Also be aware that the side bars will block parts of the screen when the
application runs.

3.6 Building and deploying

To build the application for a specific platform, select ’File’ -> ’Build Settings’ in the Unity
top menu.

You will see a new window, in which you can select the target platform and edit some
basic settings. To start the build, press the ’Build’ button and select an output directory,
after which you will see a progress-bar of the build process. When the build process finishes,
the target folder will open.

3.6.1 Pre-build tasks

Before building the application, it is recommended to go through several tasks to ensure
that the build will be successful, and the application will work.

3.6. BUILDING AND DEPLOYING 19

Firstly, try running the application in the Unity Game mode first and going through
all the contents of your application. This simple test will reveal any bugs or errors in the
design. If there is any major problem, that prevents the application from working, you will
see a highlighted output in the Console window.

To reduce the final package size, you can remove all unused files, like pictures, from the
CustomContent folder. If you have no model attached, you can also remove the FSharp.Core
file from Codebase/Libraries. Do not remove any files from the rest of the Codebase or
Editor folder, or from Resources/ContentPrefabs folder unless you are skilled programmer
and familiar with Unity. You could break the framework structure irreversibly!

3.6.2 Build options

For each platform there are specific build options, which will show in the Inspector after
pressing the ’Player settings’ button in the ’Build settings’ window.

Common options are company and product name, which you can change freely, as well
as the application default icon, cursor, or cursor hotspot.

You can select settings specific for each platform by clicking appropriate picture in the
Inspector panel.You can change the icons, default resolution, bundle identifier or version,
but if you do not understand the meaning of the setting, you should leave it at the default
value.

You can find detailed description of any Unity feature in the Unity documentation,
available online at docs.unity3d.com.

3.6.3 Building for Windows

There are two possibilities of build for windows. You can either build a standalone exe-
cutable, or a Windows 8/8.1 Store/Phone app. If you are not familiar with the Windows
Store/Phone applications, and only wish to create a simple program that you can run di-
rectly, choose the standalone option.

3.6.3.1 Standalone

Select ’PC and Mac standalone’ from the Platform list in the Build Settings window. Select
’Widnows’ as the target platform. For more compatibility, select x86 architecture. You can
leave all the checkboxes un-checked and start the build process.

After the building is complete, you will find an application_name.exe file with a
RadApp (or your custom) icon, and an application_name_Data folder in the build tar-
get folder. Do not separate the exe file from the _ Data folder, or the application will not
work.

You can run your application by clicking the exe file.

20 CHAPTER 3. USAGE

3.6.3.2 Windows Phone and Store

Building for Phone/Store requires an extra step in the Visual Studio. After finishing the
build process in unity, open the generated project in the build target folder in Visual Studio.
Right click the project in the Solution Explorer and from the drop-down menu select ’Store’
-> ’Create App Packages’ and follow instruction in the newly opened window.

3.6.4 Building for Android

Building for android creates a single apk file, which can be then directly used for distribution
or tested in an Android device, by transfering it into the device (e.g. via usb cable) and
installing it directly from the file.

Chapter 4

Appendix

This guide admittedly does not explain details of basic Unity principles, or any other men-
tioned software. Unity provides excellent beginner level tutorials, and has an extensive
online manual. The same goes for the other tools. It is expected that advanced applications
are created by advanced users, and thus some features are described only briefly, and some,
on the other hand, maybe even in too much detail.

Hopefully, the guide covered the basic use well enough to explain main use of the RadApp
framework.

21

90 APPENDIX B. RADAPP USER MANUAL

Appendix C

RadApp technical reference

91

RadApp
0.3.1

Technical Reference

Generated by Doxygen 1.8.9.1

28. April 2015

ii

Contents

1 Namespace Index 1
1.0.1 Namespace List . 1

1.1 Hierarchical Index . 1
1.1.1 Class Hierarchy . 1

2 Class Index 3
2.0.2 Class List . 3

3 Namespace Documentation 7
3.0.3 Package RadApp . 7
3.0.4 Package RadApp.Controllers . 7
3.0.5 Package RadApp.Controllers.Private 7
3.0.6 Package RadApp.Controllers.Private.Editors 8
3.0.7 Package RadApp.Controllers.Private.Plugins 8
3.0.8 Package RadApp.Controllers.Public 8
3.0.9 Package RadApp.ModelInterface . 8
3.0.10 Package RadApp.ModelInterface.ModelVariables 9
3.0.11 Package RadApp.ModelInterface.SlotControlers 9
3.0.12 Package RadApp.Utils . 9
3.0.13 Package RadApp.Utils.Events . 10
3.0.14 Package RadApp.Utils.Exceptions 10
3.0.15 Package RadApp.Utils.Graphs . 10
3.0.16 Package RadApp.Utils.Html . 11

4 Class Documentation 13
4.0.17 RadApp.Controllers.Private.ActionsPrefabControler Class Reference . 13

4.0.17.1 Detailed Description . 13
4.0.17.2 Member Function Documentation 13

iv CONTENTS

4.0.18 RadApp.Controllers.Private.ActionsTextInputPrefabControler Class
Reference . 14
4.0.18.1 Detailed Description . 15
4.0.18.2 Member Function Documentation 15

4.0.19 RadApp.Controllers.Private.CommandBarControler Class Reference . 15
4.0.19.1 Detailed Description . 16
4.0.19.2 Member Function Documentation 16

4.0.20 RadApp.Controllers.Public.ContentController Class Reference 18
4.0.20.1 Detailed Description . 19
4.0.20.2 Member Function Documentation 19

4.0.21 RadApp.Utils.Html.HtmlDevice Class Reference 22
4.0.21.1 Detailed Description . 23
4.0.21.2 Member Function Documentation 23

4.0.22 RadApp.Utils.Html.HtmlFont Class Reference 23
4.0.22.1 Detailed Description . 24
4.0.22.2 Constructor & Destructor Documentation 24
4.0.22.3 Member Function Documentation 24
4.0.22.4 Member Data Documentation 25
4.0.22.5 Property Documentation 25

4.0.23 RadApp.Utils.Html.HtmlImage Class Reference 25
4.0.23.1 Detailed Description . 25
4.0.23.2 Constructor & Destructor Documentation 25
4.0.23.3 Member Function Documentation 26
4.0.23.4 Member Data Documentation 26
4.0.23.5 Property Documentation 26

4.0.24 RadApp.Utils.Events.LinkClickedEvent Class Reference 26
4.0.24.1 Detailed Description . 26

4.0.25 RadApp.Controllers.Private.MainMenuControler Class Reference . . . 26
4.0.25.1 Detailed Description . 26
4.0.25.2 Member Function Documentation 26

4.0.26 RadApp.ModelInterface.ModelVariables.ModelBooleanVariable Class
Reference . 27
4.0.26.1 Detailed Description . 27

4.0.27 RadApp.ModelInterface.ModelVariables.ModelGraphOutputVariable
Class Reference . 27
4.0.27.1 Detailed Description . 27

CONTENTS v

4.0.28 RadApp.ModelInterface.ModelVariables.ModelIntervalVariable Class
Reference . 27
4.0.28.1 Detailed Description . 27

4.0.29 RadApp.ModelInterface.ModelVariables.ModelOutputVariable Class
Reference . 27
4.0.29.1 Detailed Description . 27

4.0.30 RadApp.ModelInterface.ModelVariables.ModelTextOutputVariable
Class Reference . 28
4.0.30.1 Detailed Description . 28

4.0.31 RadApp.ModelInterface.ModelVariableProvider Class Reference 28
4.0.31.1 Detailed Description . 28
4.0.31.2 Member Function Documentation 28
4.0.31.3 Member Data Documentation 29

4.0.32 RadApp.Controllers.Private.ParameterBarControler Class Reference . 29
4.0.32.1 Detailed Description . 30
4.0.32.2 Member Function Documentation 30

4.0.33 RadApp.Controllers.Private.SceneDisplayControler Class Reference . . 30
4.0.33.1 Detailed Description . 31
4.0.33.2 Member Function Documentation 31

4.0.34 RadApp.Utils.Events.ScreenOrientationChangedEvent Class Reference 31
4.0.34.1 Detailed Description . 31

4.0.35 RadApp.Utils.Events.SelectChangedEvent Class Reference 31
4.0.35.1 Detailed Description . 31

4.0.36 RadApp.ModelInterface.SlotControlers.SlotInteractiveControler Class
Reference . 31
4.0.36.1 Detailed Description . 32

4.0.37 RadApp.Utils.Graphs.StaticGraph Class Reference 32
4.0.37.1 Detailed Description . 32
4.0.37.2 Member Function Documentation 32

4.0.38 RadApp.Controllers.Private.StaticGraphControler Class Reference . . 33
4.0.38.1 Detailed Description . 33
4.0.38.2 Member Function Documentation 33

4.0.39 RadApp.Utils.StopWatch Class Reference 35
4.0.39.1 Detailed Description . 35
4.0.39.2 Member Function Documentation 35

4.0.40 RadApp.Utils.Events.SwipeDetectedEvent Class Reference 36

vi CONTENTS

4.0.40.1 Detailed Description . 36
4.0.41 RadApp.Utils.Graphs.TimeGraph Class Reference 36

4.0.41.1 Detailed Description . 36
4.0.42 RadApp.Utils.Timer Class Reference 36

4.0.42.1 Detailed Description . 37
4.0.42.2 Member Function Documentation 37

4.0.43 RadApp.Utils.Exceptions.VariableNotFoundException Class Reference 37
4.0.43.1 Detailed Description . 37

4.0.44 RadApp.Utils.Exceptions.VariableProviderNotAttachedException
Class Reference . 37
4.0.44.1 Detailed Description . 37

4.0.45 RadApp.Utils.Exceptions.WrongVariableTypeException Class Reference 38
4.0.45.1 Detailed Description . 38

Chapter 1

Namespace Index

1.0.1 Namespace List

Here is a list of all documented namespaces with brief descriptions:
RadApp . 7
RadApp.Controllers . 7
RadApp.Controllers.Private . 7
RadApp.Controllers.Private.Editors . 8
RadApp.Controllers.Private.Plugins . 8
RadApp.Controllers.Public . 8
RadApp.ModelInterface . 8
RadApp.ModelInterface.ModelVariables . 9
RadApp.ModelInterface.SlotControlers . 9
RadApp.Utils . 9
RadApp.Utils.Events . 10
RadApp.Utils.Exceptions . 10
RadApp.Utils.Graphs . 10
RadApp.Utils.Html . 11

1.1 Hierarchical Index

1.1.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:
RadApp.Controllers.Private.ActionsPrefabControler 13

RadApp.Controllers.Private.ActionsTextInputPrefabControler 14
RadApp.Controllers.Private.CommandBarControler 15
RadApp.Controllers.Public.ContentController . 18
RadApp.Utils.Html.HtmlDevice . 22
RadApp.Utils.Html.HtmlFont . 23
RadApp.Utils.Html.HtmlImage . 25
RadApp.Utils.Events.LinkClickedEvent . 26
RadApp.Controllers.Private.MainMenuControler 26

2 CHAPTER 1. NAMESPACE INDEX

RadApp.ModelInterface.ModelVariables.ModelOutputVariable 27
RadApp.ModelInterface.ModelVariables.ModelBooleanVariable 27
RadApp.ModelInterface.ModelVariables.ModelGraphOutputVariable 27
RadApp.ModelInterface.ModelVariables.ModelIntervalVariable 27
RadApp.ModelInterface.ModelVariables.ModelTextOutputVariable 28

RadApp.ModelInterface.ModelVariableProvider 28
RadApp.Controllers.Private.ParameterBarControler 29
RadApp.Controllers.Private.SceneDisplayControler 30
RadApp.Utils.Events.ScreenOrientationChangedEvent 31
RadApp.Utils.Events.SelectChangedEvent . 31
RadApp.ModelInterface.SlotControlers.SlotInteractiveControler 31
RadApp.Utils.Graphs.StaticGraph . 32
RadApp.Controllers.Private.StaticGraphControler 33
RadApp.Utils.StopWatch . 35
RadApp.Utils.Events.SwipeDetectedEvent . 36
RadApp.Utils.Graphs.TimeGraph . 36
RadApp.Utils.Timer . 36
RadApp.Utils.Exceptions.VariableNotFoundException 37
RadApp.Utils.Exceptions.VariableProviderNotAttachedException 37
RadApp.Utils.Exceptions.WrongVariableTypeException 38

Chapter 2

Class Index

2.0.2 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:
RadApp.Controllers.Private.ActionsPrefabControler

Contorler attached to any prefab that serves as possible content of the
actionBar. In servers as a provider of the prefab parameters to the custon
inspector of ContentControler. When the prefab is attached to some con-
tent, the custom inspector automatically displays fields for customisation
of the future instance of this prefab. There are also methods for the in-
stantiated version, which serve to set the properties of the object when it
is being displayed as the actionBar content. 13

RadApp.Controllers.Private.ActionsTextInputPrefabControler
Extension of the ActionsPrefabController that is used for command bar
content that accepts textual answers. 14

RadApp.Controllers.Private.CommandBarControler
Class managing the command bar itself. Through this class the command
bar can reach the SceneDisplayControler (p. 30) to send signals when
any command button is pressed. If there is any content in the command
bar, and it has buttons, these buttons are comunicationg with the Scene←↩

DisplayControelr directly, not through this class. 15
RadApp.Controllers.Public.ContentController

Class controling the currently displayed content. It has pointer to the next
content. This script has its own inspector editor attached in Editor/←↩

ContentControlerEditor, which provides the main content settings inter-
face in the Unity editor. ContenControlerEditor 18

RadApp.Utils.Html.HtmlDevice
Provides gate between HTMLEngine and Unity3D. Implements abstract
class. 22

RadApp.Utils.Html.HtmlFont
Provides font for use with HTMLEngine. Implements abstract class. . . 23

RadApp.Utils.Html.HtmlImage
Provides image for use with HTMLEngine. Implements abstract class. . 25

RadApp.Utils.Events.LinkClickedEvent
Event used in the HTML render, that is fired when a link is clicked. . . . 26

4 CHAPTER 2. CLASS INDEX

RadApp.Controllers.Private.MainMenuControler
Main menu controler, probably only used in the StartScene 26

RadApp.ModelInterface.ModelVariables.ModelBooleanVariable
Output implementation for interactive interval variable with slider. . . . 27

RadApp.ModelInterface.ModelVariables.ModelGraphOutputVariable
Output implementation . 27

RadApp.ModelInterface.ModelVariables.ModelIntervalVariable
Output implementation for interactive interval variable with slider. . . . 27

RadApp.ModelInterface.ModelVariables.ModelOutputVariable
The simplest Modelvariable implementation. This type holds a float value
without any graphical component. Use this variable, if you dont want
its value to be displayed in the parameter bars, but you need to use it
in your graphical content. If you need another type (bool, object), you
can use one of the Interactive implementations, and disable the graphical
component in the specific instance. 27

RadApp.ModelInterface.ModelVariables.ModelTextOutputVariable
Output implementation . 28

RadApp.ModelInterface.ModelVariableProvider
Model variable provider abstract class. Implement this to provide all the
model variables instances necesarry in your model. Here is also where
any remaining logic should be stored, because all the other classes are
common for all contents. Provided methods can be overridden, if yoy wish
to use other structure than dictionary for organising your model variable
instances. 28

RadApp.Controllers.Private.ParameterBarControler
Class that manages the parameter bars, fills them with given variable visual
components, . 29

RadApp.Controllers.Private.SceneDisplayControler
This class controls which content will be shown in the scene. It has
access to the current content controler, holds stack of previously displayed
contents and also does all the routines related to displaying new content.
That includes toggle of the newx/prev buttons, action bar setting, main
bar message and timers, and the side bar settings. 30

RadApp.Utils.Events.ScreenOrientationChangedEvent
Event used in ScreenOrientationDetector, that is fired when a screen ori-
entation change is detected. 31

RadApp.Utils.Events.SelectChangedEvent
Event used in the SlotSelectControler that is fired when the selection has
changed. 31

RadApp.ModelInterface.SlotControlers.SlotInteractiveControler
A placeholder class in case it is necesarry to manipulate all interactive
controlers as one type, or extract commont functionality. 31

RadApp.Utils.Graphs.StaticGraph
Time graph is class that creates visual time-dependent graph of given
variables. Use DrawValue to draw the next value. Time resolution is
not currently controlled by time, but by the frequency with which the
DrawValue function os called (usually in an Update function of another
script). If you want specific refresh rate, use timing function to controll
the frequency externally (e.g. using MonoBehaviour.InvokeRepeating). . 32

5

RadApp.Controllers.Private.StaticGraphControler
This class is a wrapper for the StaticGraph utility, that creates a more
convenient interface and provides setters of value labels and axes names. 33

RadApp.Utils.StopWatch
Record time until Stop function is called. Recording can then be returned
or reseted with Start or Reset functions respectfuly. You have to call the
StartRecording function after initialisation manually to start recording time 35

RadApp.Utils.Events.SwipeDetectedEvent
Event used in SwipeDetector, that is fired when a swipe across the screen
is detected . 36

RadApp.Utils.Graphs.TimeGraph
Time graph is class that creates visual time-dependent graph of given
variables. Use DrawValue to draw the next value. Time resolution is
not currently controlled by time, but by the frequency with which the
DrawValue function os called (usually in an Update function of another
script). If you want specific refresh rate, use timing function to controll
the frequency externally (e.g. using MonoBehaviour.InvokeRepeating). . 36

RadApp.Utils.Timer
Timer (p. 36) class that counts down from preseted time in minues or
seconds. Use the SetTime function to initialise the Timer (p. 36). You
have to manually call StartCounting funtion to start the timer. 36

RadApp.Utils.Exceptions.VariableNotFoundException
Variable not found exception is used ModelVariableProvider to be invoked
when there has been a request for a variable, whose name does not exist
in the local dictionary. 37

RadApp.Utils.Exceptions.VariableProviderNotAttachedException
Variable provider not attached exception, used during the content manip-
ulation . 37

RadApp.Utils.Exceptions.WrongVariableTypeException
Wrong variable type exception is used in ModelVariable and SlotControlers
to be invoked when a wrong value type or event has been accessed. . . . 38

6 CHAPTER 2. CLASS INDEX

Chapter 3

Namespace Documentation

3.0.3 Package RadApp

Namespaces

• package Controllers
• package ModelInterface
• package Utils

3.0.4 Package RadApp.Controllers

Namespaces

• package Private
• package Public

3.0.5 Package RadApp.Controllers.Private

Namespaces

• package Editors
• package Plugins

Classes

• class ActionsPrefabControler
Contorler attached to any prefab that serves as possible content of the actionBar. In
servers as a provider of the prefab parameters to the custon inspector of ContentControler.
When the prefab is attached to some content, the custom inspector automatically displays
fields for customisation of the future instance of this prefab. There are also methods for
the instantiated version, which serve to set the properties of the object when it is being
displayed as the actionBar content.

• class ActionsTextInputPrefabControler
Extension of the ActionsPrefabController that is used for command bar content that accepts
textual answers.

8 CHAPTER 3. NAMESPACE DOCUMENTATION

• class CommandBarControler
Class managing the command bar itself. Through this class the command bar can reach
the SceneDisplayControler (p. 30) to send signals when any command button is pressed.
If there is any content in the command bar, and it has buttons, these buttons are comuni-
cationg with the SceneDisplayControelr directly, not through this class.

• class MainMenuControler
Main menu controler, probably only used in the StartScene

• class ParameterBarControler
Class that manages the parameter bars, fills them with given variable visual components,

• class SceneDisplayControler
This class controls which content will be shown in the scene. It has access to the current
content controler, holds stack of previously displayed contents and also does all the routines
related to displaying new content. That includes toggle of the newx/prev buttons, action
bar setting, main bar message and timers, and the side bar settings.

• class StaticGraphControler
This class is a wrapper for the StaticGraph utility, that creates a more convenient interface
and provides setters of value labels and axes names.

3.0.6 Package RadApp.Controllers.Private.Editors

3.0.7 Package RadApp.Controllers.Private.Plugins

3.0.8 Package RadApp.Controllers.Public

Classes

• class ContentController
Class controling the currently displayed content. It has pointer to the next content. This
script has its own inspector editor attached in Editor/ContentControlerEditor, which pro-
vides the main content settings interface in the Unity editor. ContenControlerEditor

3.0.9 Package RadApp.ModelInterface

Namespaces

• package ModelVariables
• package SlotControlers

Classes

• class ModelVariableProvider
Model variable provider abstract class. Implement this to provide all the model variables
instances necesarry in your model. Here is also where any remaining logic should be stored,
because all the other classes are common for all contents. Provided methods can be
overridden, if yoy wish to use other structure than dictionary for organising your model
variable instances.

9

3.0.10 Package RadApp.ModelInterface.ModelVariables

Classes

• class ModelBooleanVariable
Output implementation for interactive interval variable with slider.

• class ModelGraphOutputVariable
Output implementation

• class ModelIntervalVariable
Output implementation for interactive interval variable with slider.

• class ModelOutputVariable
The simplest Modelvariable implementation. This type holds a float value without any
graphical component. Use this variable, if you dont want its value to be displayed in the
parameter bars, but you need to use it in your graphical content. If you need another
type (bool, object), you can use one of the Interactive implementations, and disable the
graphical component in the specific instance.

• class ModelTextOutputVariable
Output implementation

3.0.11 Package RadApp.ModelInterface.SlotControlers

Classes

• class SlotInteractiveControler
A placeholder class in case it is necesarry to manipulate all interactive controlers as one
type, or extract commont functionality.

3.0.12 Package RadApp.Utils

Namespaces

• package Events
• package Exceptions
• package Graphs
• package Html

Classes

• class StopWatch
Record time until Stop function is called. Recording can then be returned or reseted with
Start or Reset functions respectfuly. You have to call the StartRecording function after
initialisation manually to start recording time.

• class Timer
Timer (p. 36) class that counts down from preseted time in minues or seconds. Use the
SetTime function to initialise the Timer (p. 36). You have to manually call StartCounting
funtion to start the timer.

10 CHAPTER 3. NAMESPACE DOCUMENTATION

3.0.13 Package RadApp.Utils.Events

Classes

• class LinkClickedEvent
Event used in the HTML render, that is fired when a link is clicked.

• class ScreenOrientationChangedEvent
Event used in ScreenOrientationDetector, that is fired when a screen orientation change is
detected.

• class SelectChangedEvent
Event used in the SlotSelectControler that is fired when the selection has changed.

• class SwipeDetectedEvent
Event used in SwipeDetector, that is fired when a swipe across the screen is detected

3.0.14 Package RadApp.Utils.Exceptions

Classes

• class VariableNotFoundException
Variable not found exception is used ModelVariableProvider to be invoked when there has
been a request for a variable, whose name does not exist in the local dictionary.

• class VariableProviderNotAttachedException
Variable provider not attached exception, used during the content manipulation

• class WrongVariableTypeException
Wrong variable type exception is used in ModelVariable and SlotControlers to be invoked
when a wrong value type or event has been accessed.

3.0.15 Package RadApp.Utils.Graphs

Classes

• class StaticGraph
Time graph is class that creates visual time-dependent graph of given variables. Use Draw←↩

Value to draw the next value. Time resolution is not currently controlled by time, but by
the frequency with which the DrawValue function os called (usually in an Update function
of another script). If you want specific refresh rate, use timing function to controll the
frequency externally (e.g. using MonoBehaviour.InvokeRepeating).

• class TimeGraph
Time graph is class that creates visual time-dependent graph of given variables. Use Draw←↩

Value to draw the next value. Time resolution is not currently controlled by time, but by
the frequency with which the DrawValue function os called (usually in an Update function
of another script). If you want specific refresh rate, use timing function to controll the
frequency externally (e.g. using MonoBehaviour.InvokeRepeating).

11

3.0.16 Package RadApp.Utils.Html

Classes

• class HtmlDevice
Provides gate between HTMLEngine and Unity3D. Implements abstract class.

• class HtmlFont
Provides font for use with HTMLEngine. Implements abstract class.

• class HtmlImage
Provides image for use with HTMLEngine. Implements abstract class.

12 CHAPTER 3. NAMESPACE DOCUMENTATION

Chapter 4

Class Documentation

4.0.17 RadApp.Controllers.Private.ActionsPrefabControler Class Reference

Contorler attached to any prefab that serves as possible content of the actionBar. In servers
as a provider of the prefab parameters to the custon inspector of ContentControler. When
the prefab is attached to some content, the custom inspector automatically displays fields
for customisation of the future instance of this prefab. There are also methods for the
instantiated version, which serve to set the properties of the object when it is being displayed
as the actionBar content.
Inherits MonoBehaviour.
Inherited by RadApp.Controllers.Private.ActionsTextInputPrefabControler.

Public Member Functions

• int CountButtons ()
Counts the buttons.

• string GetText ()
Gets the main text.

• bool HasCustomLabels ()
Checks whether custom labels for containing buttons are allowed.

• void SetText (string text)
Sets the main text. USE THIS METHOD ONLY ON INSTANTIATED OBJECTS - oth-
wrwise it will change the prefab default settings.

• void SetButtonText (int index, string text)
Sets the button text (i.e. label).

• virtual void SetButtonTarget (int index, GameObject target, int state)
Sets the button target.

4.0.17.1 Detailed Description

4.0.17.2 Member Function Documentation

4.0.17.2.1 int RadApp.Controllers.Private.ActionsPrefabControler.CountButtons ()

14 CHAPTER 4. CLASS DOCUMENTATION

Returns

The number of buttons in this actionBar content.

4.0.17.2.2 string RadApp.Controllers.Private.ActionsPrefabControler.GetText ()

Returns

The main text.

4.0.17.2.3 bool RadApp.Controllers.Private.ActionsPrefabControler.HasCustomLabels (
)

Returns

true, if custom labels are allowed, false otherwise.

4.0.17.2.4 virtual void RadApp.Controllers.Private.ActionsPrefabControler.←↩

SetButtonTarget (int index, GameObject target, int state)
[virtual]

Parameters
index Index.
target Target.

Reimplemented in RadApp.Controllers.Private.ActionsTextInputPrefabControler
(p. 15).

4.0.17.2.5 void RadApp.Controllers.Private.ActionsPrefabControler.SetButtonText (int
index, string text)

Parameters
index Index of button you wish to change the label of.
text New text of the button.

4.0.17.2.6 void RadApp.Controllers.Private.ActionsPrefabControler.SetText (string text
)

Use these methods in the INSTANTIATED objects only, otherwise it will change the prefab
default settings
Parameters

text Text to be displayed as the main message.

4.0.18 RadApp.Controllers.Private.ActionsTextInputPrefabControler Class Reference

Extension of the ActionsPrefabController that is used for command bar content that accepts
textual answers.
Inherits RadApp.Controllers.Private.ActionsPrefabControler.

15

Public Member Functions

• override void SetButtonTarget (int index, GameObject target, int state)
Sets the button target.

4.0.18.1 Detailed Description

4.0.18.2 Member Function Documentation

4.0.18.2.1 override void RadApp.Controllers.Private.ActionsTextInputPrefab←↩

Controler.SetButtonTarget (int index, GameObject target, int state)
[virtual]

Parameters
index Index.
target Target.

Reimplemented from RadApp.Controllers.Private.ActionsPrefabControler (p. 14).

4.0.19 RadApp.Controllers.Private.CommandBarControler Class Reference

Class managing the command bar itself. Through this class the command bar can reach the
SceneDisplayControler (p. 30) to send signals when any command button is pressed. If
there is any content in the command bar, and it has buttons, these buttons are comunicationg
with the SceneDisplayControelr directly, not through this class.
Inherits MonoBehaviour.

Public Member Functions

• void SetAndStartTimer (int minutes, int seconds)
Sets, shows and starts the timer at given time.

• void SetAndStartStopWatch ()
Sets, shows and starts the stopwatch at time 0.

• void DisableTimer ()
Hides the timer.

• void DisableStopWatch ()
Hides the stopwatch

• void SetMainMessage (string text)
Sets the main message on the mainBar.

• void SetActions (GameObject actionsPrefab, string message, GameObject[] button←↩

Targets, int[] targetStates, string[] buttonLabels, string[] answers)
this method is used to set the content of the actionBar. If there already is any content
present, it will be discarted first.

• void ResetActions ()
Removes the currently displayed actionBar content.

16 CHAPTER 4. CLASS DOCUMENTATION

• void SetTimers (bool timer, int mins, int secs, bool stopWatch, GameObject target,
int targetState)

Sets the timer and stopwatch to given values.
• void ExitButtonPressed ()

Returns to the main menu (StartScene).
• void HideButtonPressed ()

Hides the actionBar, if it is visible, or shows it, if it is hidden. Also toggles the default
button to act accordingly.

• void NextButtonPressed ()
Shows next content (if there is any).

• void PrevButtonPressed ()
Shows previous content (if there is any).

• void DisableNextButton ()
Disables the 'next' button.

• void DisablePrevButton ()
Disables the 'prev' button.

• void EnableNextButton ()
Enables the 'next' button.

• void EnablePrevButton ()
Enables the 'prev' button.

4.0.19.1 Detailed Description

are pressed.

4.0.19.2 Member Function Documentation

4.0.19.2.1 void RadApp.Controllers.Private.CommandBarControler.DisableNextButton (
)

4.0.19.2.2 void RadApp.Controllers.Private.CommandBarControler.DisablePrevButton (
)

4.0.19.2.3 void RadApp.Controllers.Private.CommandBarControler.DisableStopWatch (
)

4.0.19.2.4 void RadApp.Controllers.Private.CommandBarControler.DisableTimer ()

4.0.19.2.5 void RadApp.Controllers.Private.CommandBarControler.EnableNextButton (
)

4.0.19.2.6 void RadApp.Controllers.Private.CommandBarControler.EnablePrevButton (
)

4.0.19.2.7 void RadApp.Controllers.Private.CommandBarControler.ExitButtonPressed (
)

17

4.0.19.2.8 void RadApp.Controllers.Private.CommandBarControler.HideButtonPressed (
)

4.0.19.2.9 void RadApp.Controllers.Private.CommandBarControler.NextButtonPressed (
)

4.0.19.2.10 void RadApp.Controllers.Private.CommandBarControler.PrevButtonPressed (
)

4.0.19.2.11 void RadApp.Controllers.Private.CommandBarControler.ResetActions ()

4.0.19.2.12 void RadApp.Controllers.Private.CommandBarControler.SetActions (
GameObject actionsPrefab, string message, GameObject[] buttonTargets,
int[] targetStates, string[] buttonLabels, string[] answers)

Parameters
actionsPrefab The gameObject used as the command bar content

message The text to be dispalyed as the command bar content as the main message
button←↩

Targets
Array of target contents of the buttons in the command bar content.

targetStates Target states of the command bar buttons
buttonLabels Labels of the command bar buttons

answers Accepted answers. Only has effect with the text answer content

4.0.19.2.13 void RadApp.Controllers.Private.CommandBarControler.SetAndStartStop←↩

Watch ()

4.0.19.2.14 void RadApp.Controllers.Private.CommandBarControler.SetAndStartTimer (
int minutes, int seconds)

Parameters
minutes Minutes.
seconds Seconds.

4.0.19.2.15 void RadApp.Controllers.Private.CommandBarControler.SetMainMessage (
string text)

Parameters
text The text to be displayed.

4.0.19.2.16 void RadApp.Controllers.Private.CommandBarControler.SetTimers (bool
timer, int mins, int secs, bool stopWatch, GameObject target, int
targetState)

18 CHAPTER 4. CLASS DOCUMENTATION

Parameters
timer If set to true timer will be displayed
mins Minutes to start the timer at
secs Seconds to start the timer at

stopWatch If set to true stop watch will be displayed
target Target content to redirect to when the timer expires

targetState State of the content displayed when timer expires

4.0.20 RadApp.Controllers.Public.ContentController Class Reference

Class controling the currently displayed content. It has pointer to the next content. This
script has its own inspector editor attached in Editor/ContentControlerEditor, which provides
the main content settings interface in the Unity editor. ContenControlerEditor
Inherits MonoBehaviour.

Public Member Functions

• GameObject GetActionsPrefab ()
Actions prefab if the prefab which should be instantiated and displayed in the actionBar
when displaying the content that this script is attached to.

• string GetActionsMessage ()
The message that should be displayed as the main text of the actionBar content instantiated
from GetActionsPrefab() (p. 20);

• string[] GetActionsButtonLabels ()
If the attached actionBar content has any buttons, this method gives you an array of strings
to be displayed respectively as the button labels.

• GameObject[] GetActionsButtonTargets ()
If the attached actionBar content has any buttons, this method gives you an array of
GameObjects that should be set respectively as the button onClick targets.

• int[] GetActionsButtonTargetStates ()
If the attached actionBar content has any buttons, this method gives you an array of ints
that should be set respectively as the button onClick targets state.

• string[] GetActionsAnswers ()
Gets the accepted answers, if the used action prefab has them specicfied.

• void SetState (int state)
Sets the state. The state property of this controlelr can be used to manupulate the content
directly by checking the property in the Update method.

• int GetState ()
Gets the currently set state.

• bool HasModel ()
Checks, whether this content has any model attached.

• string GetModelName ()
Gets the name of the model.

• void ShowContent ()

19

Shows the content that this script is attached to.
• void HideContent ()

Hides the content that this script is attached to.
• bool HasNextContent ()

Determines whether the content that this script is attached to has next content proprety
set. It doesnt check whether the next content property has required parameters (such as
this script attached to it).

• ContentController GetNextContentControler ()
Gets the ContentControler component of the next content.

• int GetNextContentState ()
Gets the desired state of the next content.

• string GetContentName ()
Gets the name of the content.

• ModelVariableProvider GetModelVariableProvider ()
Gives the model variable provider, which holds all the model variables.

• ScreenOrientation GetScreenOrientation ()
Gets the screen orientation that user specified as the prefference for this content.

• bool HasTimer ()
Determines whether this content should display timer.

• bool HasStopWatch ()
Determines whether this content should dispaly stop watch.

• int GetTimerMinutes ()
Gets the remaining minutes on the timer.

• int GetTimerSeconds ()
Gets the remaining seconds on the timer.

• GameObject GetTimerTarget ()
User can specify a content to redirect to when the timer expires. This methdod returns
that content.

• int GetTimerTargetState ()
If there is specified target for timer expiration, user can also optionally specify the target
state, that will be passed as a parameter to the target content.

4.0.20.1 Detailed Description

4.0.20.2 Member Function Documentation

4.0.20.2.1 string [] RadApp.Controllers.Public.ContentController.GetActionsAnswers ()

Returns

The actions accepted answers.

20 CHAPTER 4. CLASS DOCUMENTATION

4.0.20.2.2 string [] RadApp.Controllers.Public.ContentController.GetActionsButtonLabels
()

Returns

The actions button labels.

4.0.20.2.3 GameObject [] RadApp.Controllers.Public.ContentController.GetActions←↩

ButtonTargets ()

Returns

The actions button targets.

4.0.20.2.4 int [] RadApp.Controllers.Public.ContentController.GetActionsButtonTarget←↩

States ()

Returns

The actions button target states.

4.0.20.2.5 string RadApp.Controllers.Public.ContentController.GetActionsMessage ()

Returns

The actions message.

4.0.20.2.6 GameObject RadApp.Controllers.Public.ContentController.GetActionsPrefab (
)

Returns

The actions prefab.

4.0.20.2.7 string RadApp.Controllers.Public.ContentController.GetContentName ()

Returns

The content name.

4.0.20.2.8 string RadApp.Controllers.Public.ContentController.GetModelName ()

Returns

The model name.

4.0.20.2.9 ModelVariableProvider RadApp.Controllers.Public.ContentController.Get←↩

ModelVariableProvider ()

Returns

The model variables provider.

21

4.0.20.2.10 ContentController RadApp.Controllers.Public.ContentController.GetNext←↩

ContentControler ()

Returns

The next content control.

4.0.20.2.11 int RadApp.Controllers.Public.ContentController.GetNextContentState ()

Returns

The next content state.

4.0.20.2.12 ScreenOrientation RadApp.Controllers.Public.ContentController.GetScreen←↩

Orientation ()

Returns

The screen orientation.

4.0.20.2.13 int RadApp.Controllers.Public.ContentController.GetState ()

Returns

The current state.

4.0.20.2.14 int RadApp.Controllers.Public.ContentController.GetTimerMinutes ()

Returns

The remaining timer minutes.

4.0.20.2.15 int RadApp.Controllers.Public.ContentController.GetTimerSeconds ()

Returns

The remaining timer seconds.

4.0.20.2.16 GameObject RadApp.Controllers.Public.ContentController.GetTimerTarget (
)

Returns

The content to be redirected to when the timer expires, or null, if there was no content
specified for this action.

4.0.20.2.17 int RadApp.Controllers.Public.ContentController.GetTimerTargetState ()

Returns

The timer target content state.

22 CHAPTER 4. CLASS DOCUMENTATION

4.0.20.2.18 bool RadApp.Controllers.Public.ContentController.HasModel ()

Returns

true, if content has model, false otherwise.

4.0.20.2.19 bool RadApp.Controllers.Public.ContentController.HasNextContent ()

Returns

true if this instance has next content; otherwise, false.

4.0.20.2.20 bool RadApp.Controllers.Public.ContentController.HasStopWatch ()

Returns

true if this content has stop watch; otherwise, false.

4.0.20.2.21 bool RadApp.Controllers.Public.ContentController.HasTimer ()

Returns

true if this content has timer; otherwise, false.

4.0.20.2.22 void RadApp.Controllers.Public.ContentController.HideContent ()

4.0.20.2.23 void RadApp.Controllers.Public.ContentController.SetState (int state)

Parameters
state Number of the new state.

4.0.20.2.24 void RadApp.Controllers.Public.ContentController.ShowContent ()

4.0.21 RadApp.Utils.Html.HtmlDevice Class Reference

Provides gate between HTMLEngine and Unity3D. Implements abstract class.
Inherits HtDevice.

Public Member Functions

• override HtFont LoadFont (string face, int size, bool bold, bool italic)
Load font

• override HtImage LoadImage (string src)
Load image

• override void FillRect (HtRect rect, HtColor color)
FillRect implementation

23

4.0.21.1 Detailed Description

4.0.21.2 Member Function Documentation

4.0.21.2.1 override void RadApp.Utils.Html.HtmlDevice.FillRect (HtRect rect, HtColor
color)

Parameters
rect
color

4.0.21.2.2 override HtFont RadApp.Utils.Html.HtmlDevice.LoadFont (string face, int
size, bool bold, bool italic)

Parameters
face Font name
size Font size
bold Bold flag
italic Italic flag

Returns

Loaded font

4.0.21.2.3 override HtImage RadApp.Utils.Html.HtmlDevice.LoadImage (string src)

Parameters
src src attribute from img tag

Returns

Loaded image

4.0.22 RadApp.Utils.Html.HtmlFont Class Reference

Provides font for use with HTMLEngine. Implements abstract class.
Inherits HtFont.

Public Member Functions

• HtmlFont (string face, int size, bool bold, bool italic)
Ctor

• override HtSize Measure (string text)
Measuring text width and height

• override void Draw (HtRect rect, HtColor color, string text)
Draw method.

24 CHAPTER 4. CLASS DOCUMENTATION

Public Attributes

• readonly GUIStyle style = new GUIStyle()
style to draw

• readonly GUIContent content = new GUIContent()
content to draw

Properties

• override int LineSpacing [get]

Space between text lines in pixels
• override int WhiteSize [get]

Space between words

4.0.22.1 Detailed Description

4.0.22.2 Constructor & Destructor Documentation

4.0.22.2.1 RadApp.Utils.Html.HtmlFont.HtmlFont (string face, int size, bool bold,
bool italic)

Parameters
face Font name
size Font size
bold Bold flag
italic Italic flag

4.0.22.3 Member Function Documentation

4.0.22.3.1 override void RadApp.Utils.Html.HtmlFont.Draw (HtRect rect, HtColor
color, string text)

Parameters
rect Where to draw
color Text color
text Text

4.0.22.3.2 override HtSize RadApp.Utils.Html.HtmlFont.Measure (string text)

Parameters
text text to measure

Returns

width and height of measured text

25

4.0.22.4 Member Data Documentation

4.0.22.4.1 readonly GUIContent RadApp.Utils.Html.HtmlFont.content = new
GUIContent()

4.0.22.4.2 readonly GUIStyle RadApp.Utils.Html.HtmlFont.style = new GUIStyle()

4.0.22.5 Property Documentation

4.0.22.5.1 override int RadApp.Utils.Html.HtmlFont.LineSpacing [get]

4.0.22.5.2 override int RadApp.Utils.Html.HtmlFont.WhiteSize [get]

4.0.23 RadApp.Utils.Html.HtmlImage Class Reference

Provides image for use with HTMLEngine. Implements abstract class.
Inherits HtImage.

Public Member Functions

• HtmlImage (string source)
Ctor

• override void Draw (HtRect rect, HtColor color)
Draw method

Public Attributes

• Texture2D Texture
Loaded texture

Properties

• override int Width [get]

Returns width of image
• override int Height [get]

Returns height of image

4.0.23.1 Detailed Description

4.0.23.2 Constructor & Destructor Documentation

4.0.23.2.1 RadApp.Utils.Html.HtmlImage.HtmlImage (string source)

26 CHAPTER 4. CLASS DOCUMENTATION

Parameters
source src attribute from img tag

4.0.23.3 Member Function Documentation

4.0.23.3.1 override void RadApp.Utils.Html.HtmlImage.Draw (HtRect rect, HtColor
color)

Parameters
rect Where to draw
color Color to use (ignored for now)

4.0.23.4 Member Data Documentation

4.0.23.4.1 Texture2D RadApp.Utils.Html.HtmlImage.Texture

4.0.23.5 Property Documentation

4.0.23.5.1 override int RadApp.Utils.Html.HtmlImage.Height [get]

4.0.23.5.2 override int RadApp.Utils.Html.HtmlImage.Width [get]

4.0.24 RadApp.Utils.Events.LinkClickedEvent Class Reference

Event used in the HTML render, that is fired when a link is clicked.
Inherits UnityEvent< string >.

4.0.24.1 Detailed Description

4.0.25 RadApp.Controllers.Private.MainMenuControler Class Reference

Main menu controler, probably only used in the StartScene
Inherits MonoBehaviour.

Public Member Functions

• void StartButtonPressed ()
Starts actions after pressing the start button.

• void ExitButtonPressed ()
Starts actions after pressing the exit button.

4.0.25.1 Detailed Description

4.0.25.2 Member Function Documentation

27

4.0.25.2.1 void RadApp.Controllers.Private.MainMenuControler.ExitButtonPressed ()

4.0.25.2.2 void RadApp.Controllers.Private.MainMenuControler.StartButtonPressed ()

4.0.26 RadApp.ModelInterface.ModelVariables.ModelBooleanVariable Class Refer-
ence

Output implementation for interactive interval variable with slider.
Inherits RadApp.ModelInterface.ModelVariables.ModelOutputVariable.

4.0.26.1 Detailed Description

4.0.27 RadApp.ModelInterface.ModelVariables.ModelGraphOutputVariable Class
Reference

Output implementation
Inherits RadApp.ModelInterface.ModelVariables.ModelOutputVariable.

4.0.27.1 Detailed Description

4.0.28 RadApp.ModelInterface.ModelVariables.ModelIntervalVariable Class Refer-
ence

Output implementation for interactive interval variable with slider.
Inherits RadApp.ModelInterface.ModelVariables.ModelOutputVariable.

4.0.28.1 Detailed Description

4.0.29 RadApp.ModelInterface.ModelVariables.ModelOutputVariable Class Refer-
ence

The simplest Modelvariable implementation. This type holds a float value without any
graphical component. Use this variable, if you dont want its value to be displayed in the
parameter bars, but you need to use it in your graphical content. If you need another type
(bool, object), you can use one of the Interactive implementations, and disable the graphical
component in the specific instance.
Inherits RadApp.ModelInterface.ModelVariables.ModelVariable.
Inherited by RadApp.ModelInterface.ModelVariables.ModelBooleanVariable, Rad←↩

App.ModelInterface.ModelVariables.ModelGraphOutputVariable, RadApp.Model←↩

Interface.ModelVariables.ModelIntervalVariable, and RadApp.ModelInterface.←↩

ModelVariables.ModelTextOutputVariable.

4.0.29.1 Detailed Description

28 CHAPTER 4. CLASS DOCUMENTATION

4.0.30 RadApp.ModelInterface.ModelVariables.ModelTextOutputVariable Class Ref-
erence

Output implementation
Inherits RadApp.ModelInterface.ModelVariables.ModelOutputVariable.

4.0.30.1 Detailed Description

4.0.31 RadApp.ModelInterface.ModelVariableProvider Class Reference

Model variable provider abstract class. Implement this to provide all the model variables
instances necesarry in your model. Here is also where any remaining logic should be stored,
because all the other classes are common for all contents. Provided methods can be over-
ridden, if yoy wish to use other structure than dictionary for organising your model variable
instances.
Inherits MonoBehaviour.

Public Member Functions

• abstract void Initialise ()
Use this function to initialise the variables dictionary.

• virtual ModelVariable[] GetAllVariables ()
Returns all modelVariable instances.

• virtual ModelVariable GetVariable (string name)
Gets the model variable by its name

• virtual object GetVariableValue (string name)
A convenience method that returns the variable value instead of its reference.

Protected Attributes

• Dictionary< string, ModelVariable > variables
The variables dictionary. This strucutre is used because it faster than list, and more conve-
nient than an array, when working with larger numbers of variables. You can use your any
other implementation, as long as you override the necesary methods so that they provide
the same interface for your implementation.

4.0.31.1 Detailed Description

4.0.31.2 Member Function Documentation

4.0.31.2.1 virtual ModelVariable [] RadApp.ModelInterface.ModelVariableProvider.Get←↩

AllVariables () [virtual]

Returns

All model variables.

29

4.0.31.2.2 virtual ModelVariable RadApp.ModelInterface.ModelVariableProvider.Get←↩

Variable (string name) [virtual]

Returns

The model variable with given name

Parameters
name Name of requested variable

4.0.31.2.3 virtual object RadApp.ModelInterface.ModelVariableProvider.GetVariableValue
(string name) [virtual]

Only use when you are certain of the variable type.

Returns

The variable value as an object, which is necessary to provide any type of value.

Parameters
name Name of the requested variable

4.0.31.2.4 abstract void RadApp.ModelInterface.ModelVariableProvider.Initialise ()
[pure virtual]

4.0.31.3 Member Data Documentation

4.0.31.3.1 Dictionary<string, ModelVariable> RadApp.ModelInterface.ModelVariable←↩

Provider.variables [protected]

4.0.32 RadApp.Controllers.Private.ParameterBarControler Class Reference

Class that manages the parameter bars, fills them with given variable visual components,
Inherits MonoBehaviour.

Public Member Functions

• void HideBars ()
Hides both left and right parameter bar.

• void ShowBars ()
Shows both the left and right parameter bar.

• void SetName (string name)
Sets the name in headers of the bars.

• void AddVariable (ModelVariable var)
Adds a new model variable.

• void AddVariables (ModelVariableProvider varsContainer)

30 CHAPTER 4. CLASS DOCUMENTATION

Convenience method for adding whole arrays of model variables from the given variable
provider.

• void RemoveVariables ()
Removes all the model variables from the parameter bars.

• void ResetVariables ()
Resets all input components to their default values.

4.0.32.1 Detailed Description

4.0.32.2 Member Function Documentation

4.0.32.2.1 void RadApp.Controllers.Private.ParameterBarControler.AddVariable (
ModelVariable var)

Parameters
var The variable to be added.

4.0.32.2.2 void RadApp.Controllers.Private.ParameterBarControler.AddVariables (
ModelVariableProvider varsContainer)

Parameters
vars The variable provider that the variables will be read from

4.0.32.2.3 void RadApp.Controllers.Private.ParameterBarControler.HideBars ()

4.0.32.2.4 void RadApp.Controllers.Private.ParameterBarControler.RemoveVariables ()

4.0.32.2.5 void RadApp.Controllers.Private.ParameterBarControler.ResetVariables ()

4.0.32.2.6 void RadApp.Controllers.Private.ParameterBarControler.SetName (string
name)

Parameters
name New name to be shown

4.0.32.2.7 void RadApp.Controllers.Private.ParameterBarControler.ShowBars ()

4.0.33 RadApp.Controllers.Private.SceneDisplayControler Class Reference

This class controls which content will be shown in the scene. It has access to the current
content controler, holds stack of previously displayed contents and also does all the routines
related to displaying new content. That includes toggle of the newx/prev buttons, action
bar setting, main bar message and timers, and the side bar settings.
Inherits MonoBehaviour.

31

Public Member Functions

• void ShowNextContent ()
Shows the content set as the next content property of current content (if there is any).

• void ShowPrevContent ()
Shows the previous content in the navigation stack (if there is any).

• void ShowContent (GameObject content, int state)
Displays given GameObject as scene content, and pushes the previous game content to the
navigation stack. The given GameObject must have ContentControler component attached
to it to be displayed.

4.0.33.1 Detailed Description

4.0.33.2 Member Function Documentation

4.0.33.2.1 void RadApp.Controllers.Private.SceneDisplayControler.ShowContent (
GameObject content, int state)

Parameters
content Content to be displayed

state State parameter that will be passed to the displayed content.

4.0.33.2.2 void RadApp.Controllers.Private.SceneDisplayControler.ShowNextContent ()

4.0.33.2.3 void RadApp.Controllers.Private.SceneDisplayControler.ShowPrevContent ()

4.0.34 RadApp.Utils.Events.ScreenOrientationChangedEvent Class Reference

Event used in ScreenOrientationDetector, that is fired when a screen orientation change is
detected.
Inherits UnityEvent< ScreenOrientation >.

4.0.34.1 Detailed Description

4.0.35 RadApp.Utils.Events.SelectChangedEvent Class Reference

Event used in the SlotSelectControler that is fired when the selection has changed.
Inherits UnityEvent< int >.

4.0.35.1 Detailed Description

4.0.36 RadApp.ModelInterface.SlotControlers.SlotInteractiveControler Class Refer-
ence

A placeholder class in case it is necesarry to manipulate all interactive controlers as one type,
or extract commont functionality.

32 CHAPTER 4. CLASS DOCUMENTATION

Inherits RadApp.ModelInterface.SlotControlers.SlotTextControler.
Inherited by RadApp.ModelInterface.SlotControlers.SlotBooleanControler, RadApp.Model←↩

Interface.SlotControlers.SlotIntervalControler, and RadApp.ModelInterface.SlotControlers.←↩

SlotSelectControler.

4.0.36.1 Detailed Description

4.0.37 RadApp.Utils.Graphs.StaticGraph Class Reference

Time graph is class that creates visual time-dependent graph of given variables. Use Draw←↩

Value to draw the next value. Time resolution is not currently controlled by time, but by
the frequency with which the DrawValue function os called (usually in an Update function
of another script). If you want specific refresh rate, use timing function to controll the
frequency externally (e.g. using MonoBehaviour.InvokeRepeating).
Inherits Object.

Public Member Functions

• void DrawGraph (StaticGraphDataSource dataSource, bool ownScale)
Draws the graph from given data points. The lines are drawn between the points in array,
respectively, so you should make sure that the data are correctly sorted.

• void DrawPoint (StaticGraphDataSource dataSource, bool ownScale)
Draws a point given by the StaticGraphPoint[0] in the passed data source. Use the data
source lineWidth property to specify the radius of the drawn point, and lineColor to specify
its color.

4.0.37.1 Detailed Description

4.0.37.2 Member Function Documentation

4.0.37.2.1 void RadApp.Utils.Graphs.StaticGraph.DrawGraph (StaticGraphDataSource
dataSource, bool ownScale)

Parameters
data Data to be drawn.

4.0.37.2.2 void RadApp.Utils.Graphs.StaticGraph.DrawPoint (StaticGraphDataSource
dataSource, bool ownScale)

Parameters
dataSource Data source.

33

ownScale If set to true, the dataSource will set its own scaling (based on the
min/max-X/Y values). The graph scale will be used otherwise.

4.0.38 RadApp.Controllers.Private.StaticGraphControler Class Reference

This class is a wrapper for the StaticGraph utility, that creates a more convenient interface
and provides setters of value labels and axes names.
Inherits MonoBehaviour.

Public Member Functions

• void SetAxesNames (string Xname, string Yname)
Sets the axes names. Not to be confused with axes value labels, which are set in the Unity
inspector on the object this controler is attached to.

• void AddLinePlot (StaticGraphDataSource dataSource)
Adds a line plot created by lines between points in the given data source. The first added
dataSource will be used to set the graph scale. Is is therewore advised to add the biggest
data set first, or to match all the data scales before providing them here.

• void AddPoint (StaticGraphDataSource dataSource)
Adds the first point in the given data source. The first added dataSource will be used to
set the graph scale. Is is therewore advised to add the biggest data set first, or to match
all the data scales before providing them here.

• void RemovePoint (StaticGraphDataSource dataSource)
Removes the given dataSource from the points list and redraws the graph, so the point is
actually removed from the visual component.

• void RemoveAllPoints ()
Removes all points fromt the graph and redraws it.

• void RemoveLine (StaticGraphDataSource dataSource)
Removes the give dataSource from the line list and redraws the graph, so the line is actually
removed from the visual component.

• void RemoveAllLines ()
Removes all lines and redraws the graph.

• void RedrawAll (StaticGraphDataSource scaleSource)
Redraws the graph using the current line and point list. LInes are drawn first, so the points
are drawn over them.

4.0.38.1 Detailed Description

4.0.38.2 Member Function Documentation

4.0.38.2.1 void RadApp.Controllers.Private.StaticGraphControler.AddLinePlot (
StaticGraphDataSource dataSource)

34 CHAPTER 4. CLASS DOCUMENTATION

Parameters
dataSource Data source.

4.0.38.2.2 void RadApp.Controllers.Private.StaticGraphControler.AddPoint (
StaticGraphDataSource dataSource)

See also

StaticGraph.DrawPoint

Parameters
dataSource Data source.

4.0.38.2.3 void RadApp.Controllers.Private.StaticGraphControler.RedrawAll (
StaticGraphDataSource scaleSource)

Parameters
scaleSource The data source whose min a max values are used to set the graph scale.

4.0.38.2.4 void RadApp.Controllers.Private.StaticGraphControler.RemoveAllLines ()

4.0.38.2.5 void RadApp.Controllers.Private.StaticGraphControler.RemoveAllPoints ()

4.0.38.2.6 void RadApp.Controllers.Private.StaticGraphControler.RemoveLine (
StaticGraphDataSource dataSource)

Parameters
dataSource Data source.

4.0.38.2.7 void RadApp.Controllers.Private.StaticGraphControler.RemovePoint (
StaticGraphDataSource dataSource)

Parameters
dataSource Data source.

4.0.38.2.8 void RadApp.Controllers.Private.StaticGraphControler.SetAxesNames (string
Xname, string Yname)

Parameters
XLabel X label.
YLabel Y label.

35

4.0.39 RadApp.Utils.StopWatch Class Reference

Record time until Stop function is called. Recording can then be returned or reseted with
Start or Reset functions respectfuly. You have to call the StartRecording function after
initialisation manually to start recording time.
Inherits MonoBehaviour.

Public Member Functions

• void StartRecording ()
Start the time recording. Doesnt reset any recorded time.

• void StopRecording ()
Stop the time recording. Keeps the recorded time.

• void ResetRecording ()
Reset the recorded time. Does not interrupt recording, if the stopwatch is recording.

• bool IsRecording ()
Checks whether the stop watch is currently recording.

• float GetRecordedTime ()
Gets the recorded time in miliseconds.

• string GetRecordedTimeString ()
Gets the recorded time as a formated string in format MIN:SEC:MS

4.0.39.1 Detailed Description

There is no interface for doing stuff when certain time is reached. You can use the Timer
(p. 36) class for that, since it exposes an event that is invoked when it reaches zero. Stop-
watch is here for monitoring purposes, e.g. creating an application log that would show how
long was each content displayed.

4.0.39.2 Member Function Documentation

4.0.39.2.1 float RadApp.Utils.StopWatch.GetRecordedTime ()

Returns

The recorded time.

4.0.39.2.2 string RadApp.Utils.StopWatch.GetRecordedTimeString ()

Returns

The recorded time in formated string.

36 CHAPTER 4. CLASS DOCUMENTATION

4.0.39.2.3 bool RadApp.Utils.StopWatch.IsRecording ()

Returns

true if this stop watch is recording; otherwise, false.

4.0.39.2.4 void RadApp.Utils.StopWatch.ResetRecording ()

4.0.39.2.5 void RadApp.Utils.StopWatch.StartRecording ()

4.0.39.2.6 void RadApp.Utils.StopWatch.StopRecording ()

4.0.40 RadApp.Utils.Events.SwipeDetectedEvent Class Reference

Event used in SwipeDetector, that is fired when a swipe across the screen is detected
Inherits UnityEvent< SwipeDirection.direction >.

4.0.40.1 Detailed Description

4.0.41 RadApp.Utils.Graphs.TimeGraph Class Reference

Time graph is class that creates visual time-dependent graph of given variables. Use Draw←↩

Value to draw the next value. Time resolution is not currently controlled by time, but by
the frequency with which the DrawValue function os called (usually in an Update function
of another script). If you want specific refresh rate, use timing function to controll the
frequency externally (e.g. using MonoBehaviour.InvokeRepeating).
Inherits Object.

4.0.41.1 Detailed Description

4.0.42 RadApp.Utils.Timer Class Reference

Timer (p. 36) class that counts down from preseted time in minues or seconds. Use the
SetTime function to initialise the Timer (p. 36). You have to manually call StartCounting
funtion to start the timer.
Inherits MonoBehaviour.

Public Member Functions

• void StartCounting ()
Starts the counting. Does not reset the timer.

• void StopCounting ()
Stops the counting. Does not reset the timer.

• void SetTime (int minutes, int seconds)
Sets the timer to given minutes and seconds. Does not interrupt counting.

• float GetRemainingTime ()

37

Gets the remaining time in miliseconds.
• string GetRemainingTimeString ()

Gets the remaining time as a formated string in format MIN:SEC:MS

4.0.42.1 Detailed Description

4.0.42.2 Member Function Documentation

4.0.42.2.1 float RadApp.Utils.Timer.GetRemainingTime ()

Returns

The remaining time in seconds.

4.0.42.2.2 string RadApp.Utils.Timer.GetRemainingTimeString ()

Returns

The remaining time in formated string.

4.0.42.2.3 void RadApp.Utils.Timer.SetTime (int minutes, int seconds)

Parameters
minutes Minutes.
seconds Seconds.

4.0.42.2.4 void RadApp.Utils.Timer.StartCounting ()

4.0.42.2.5 void RadApp.Utils.Timer.StopCounting ()

4.0.43 RadApp.Utils.Exceptions.VariableNotFoundException Class Reference

Variable not found exception is used ModelVariableProvider to be invoked when there has
been a request for a variable, whose name does not exist in the local dictionary.
Inherits Exception.

4.0.43.1 Detailed Description

4.0.44 RadApp.Utils.Exceptions.VariableProviderNotAttachedException Class Refer-
ence

Variable provider not attached exception, used during the content manipulation
Inherits Exception.

4.0.44.1 Detailed Description

38 CHAPTER 4. CLASS DOCUMENTATION

4.0.45 RadApp.Utils.Exceptions.WrongVariableTypeException Class Reference

Wrong variable type exception is used in ModelVariable and SlotControlers to be invoked
when a wrong value type or event has been accessed.
Inherits Exception.

4.0.45.1 Detailed Description

Appendix D

CD contents

There is a CD attached with the printed copies of this thesis, and a ZIP archive is attached
with the electronic version of this thesis. Both the cd and the archive contain the following
folders:

D.1 AcidBaseApp

This folder contains the example application builds. There are two archives. One with the
Android .apk file, that can be deployed on an Android device, and another with a windows
standalone executable and the required data.

D.2 Documentation

Here, the LATEX files, figures and pictures, that were used to create this document, are
located.

D.3 Radapp

This folder contains the entire Unity project with the RadApp framework. Navigating to
this folder in Unity will open the environment described in this thesis (the ZIP archive has
to be extracted first).

137

138 APPENDIX D. CD CONTENTS

— FIN —

139

	Abbrevations
	Glossary
	Introduction
	Main goals
	Objective
	Application requirements
	Content types
	Content organization
	User interaction

	Production requirements

	Analysis and design proposal
	Tools selection
	Physiological model
	Graphical engine
	Options
	Unity

	Formated text containing pictures

	Architecture design
	Connecting Bodylight framework
	Application structure

	GUI design
	Layout
	Design features
	Scalability
	Mobile device optimisation
	Home screen
	Modularity

	Identity

	Realisation
	Development environment
	Implementation in Unity
	GUI Layout
	Drag and Drop system
	Adding content
	Custom editors
	Action bar content
	Content prefabs
	HTML content
	Awesomium
	HTML parser
	Linking

	Input and output bars
	Platfrom-specific behaviour
	Options for vector graphics
	Displaying vectors in Unity
	Rasterising vector graphics
	Creating a 3D mesh
	Conclusions

	Advantages of professional version
	Video content
	Advanced HTML content
	Custom splash screen
	Plugins and core code access

	Bodylight adjustments
	Compatibility issues
	Connecting model
	Custom visualisations

	Deployment
	Known problems
	Html parser
	Deploying with a model
	Other

	Build settings
	Tested platforms

	Example application
	Silverlight comparison

	Discussion
	Attained goals
	Content types
	Screens and content structure
	Unified interface
	Platform independence and scalability
	Open licence and low cost
	Bodylight connectivity
	Overall competition
	Development time reduction
	Future work

	Conclusion

	Bibliography
	AcidBase release notes
	RadApp user manual
	RadApp technical reference
	CD contents
	AcidBaseApp
	Documentation
	Radapp

