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Abstract

This work examines the possibilities of alternative genomic probeset consolida-

tion using the Affymetrix annotation data and utilizing them in conjunction with

various publicly available databases of genomic sequences. The protein- and gene-

based representations were compared by means of synonymous probesets’ correlation,

the accuracy of an automatic classifier built upon the two representations and the

number of significantly differentially expressed units. It has been found that the

protein-based probeset consolidation is a good alternative to the traditional gene-

based one, increasing the within-unit correlation of measured data on the one hand,

but causing a decrease in the overall number of usable probesets on the other hand.
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Abstrakt

Tato práce se zabývá možnostmi alternativńıho sdružováńı množin sond v rámci

technologie microarray. Využity jsou přitom anotace Affymetrixu ve spojeńı s veřejně

př́ıstupnými databázemi genomických sekvenćı. Na základě korelovanosti spř́ızněných

množin sond, přesnosti klasifikátoru postaveného na př́ıslušných reprezentaćıch a

množstv́ı signifikantně diskriminuj́ıćıch jednotek byla porovnána sdružeńı množin

sond pomoćı gen̊u a pomoćı protein̊u. Výsledkem bylo zjǐstěńı, že vedle tradičńıho

zp̊usobu sdružováńı množin sond na základě jejich př́ıslušnosti ke gen̊um je lze sdružovat

i na základě protein̊u, což má na jedné straně za následek zvýšeńı korelovanosti

sdružených množin, ovšem zároveň sńıžeńı celkového množstv́ı využitelných naměřených

dat na straně druhé.
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Chapter 1

A brief introduction to the

microarray technology

In the past two decades, new technologies have come up enabling the measurement

of gene expression for large numbers of genes. Following the extraction of RNA from

an organism, it has become possible to determine the activation levels of virtually all

its genes. This allows for various kinds of analysis of biological processes on a scale

never seen before, but at the same time constitutes a serious challenge for the analysts,

as the volume of the genomic data in combination with its nature and specifics make

the use of traditional analysis methods rather complicated. One of the technologies

making gene expression profiling possible is the microarray technology. Although it

is beyond the scope of this work to describe the whole procedure of microarray data

processing, and it is certainly not my intention to picture all the known pitfalls here,

in this section I would like to give a short summary of what a microarray actually is,

and how the data from a microarray experiment should be dealt with.

1.1 DNA microarrays

A DNA microarray is a technology used to perform gene expression profiling (i.e.

to measure gene expression levels on a genome scale) using tens of thousands of short
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nucleic acid sequences arranged in an array of a predefined structure. These short

(25-mer) sequences are called probes, and are designed to be complementary to the

mRNA sequences of interest. Probes are consolidated into larger groups known as

probesets, each probeset corresponding to a gene. During the experiment, hybridiza-

tions of probes with target sequences are detected and quantified using fluorofore-

labeled targets. The fluorophore is excited with laser, and the whole microarray is

then scanned in a micorarray scanner. The resulting image represents the measured

microarray data in the most basic form. Often, two fluorophores with different emis-

sion wawelengths are used in the so called two-channel detection – the identification

of up- and down-regulated genes then proceeds on the basis of their relative intensities

[19].

One of the most important microarray chip manufacturers is Affymetrix; and

since all the data I used in this work came from the Affymetrix Mouse Genome 430

2.0 chip, Chapter 2 offers a few more details about Affymetrix GeneChip design and

annotation.

1.2 Microarray data preprocessing

After numerical expression values are extracted from the image, there are still

two basic steps to be done before the main analysis takes place. Data cleaning is

the first of them - the aim of this step is to detect and remove evident non-biological

artifacts in the measured data. The affected genes (or probesets) are either entirely

removed from the dataset, or, when the experimenter wants to avoid unnecessary

loss of information, the outlier values are in some way substituted, for instance by

averaging the expression values of the given gene from other samples.

A typical microarray experiment includes tens to hundreds of samples, whose gene

expression levels are measured. The whole sample set might be divided into several

classes corresponding to various biological phenomena such as tissue types, diseases,

or distinct phenotypes. Another possibility is to measure a single biological phenom-

ena at various time points. In any case, cross-sample comparisons are made, which
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assumes that the measured values are comparable. The comparability is ensured by

miscellaneous normalization methods, attempting to remove the non-biological varia-

tion in the data. The family of normalization methods includes among others scaling,

cyclic-loess normalization and quantile normalization. The latter two were proposed

and compared in [3], the former one is described for example in [4].

Sometimes, a third step is placed in row with the two prevous ones - feature

selection and/or extraction. These two concepts aim to reduce the dimension (the

total number of attributes – genes) by filtering out some of them (feature selection) or

by constructing new attributes using combinations of the old ones (feature extraction).

However, both feature selection and extraction are very closely related to the probeset

consolidation problem, as described in Chapter 3 and partly also Chapter 2. In fact,

probeset consolidation poses a way to select and extract features using biological

criteria. Standard statistical methods of feature selection and extraction, such as

feature selection based on information gain, or Principal Component Analysis, are

suitable for genomic data as well [9].

Further microarray data processing involves i.a. classification tasks, significance

analysis, and of course interpreting the results. The following sections show a less

traditional way of looking at the expression values, and also provide examples of

classification and significance analysis using different genomic data representations.
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Chapter 2

Sequence databases - useful

background knowledge for

microarray data

When processing microarray data, there is much more that can be discovered

and examined than just the differences between probeset expression values. In this

section, I will try to present an overview of additional information provided by

Affymetrix, other information available through various public databases (focusing

on the databases containing gene and protein sequences), and finally to outline how

these two can be used together.

2.1 NetAffx probeset annotation

NetAffx [11] is an on-line system developed by Affymetrix with the purpose of

providing additional details and annotations for probesets in Affymetrix GeneChip

microarrays. There are two basic categories of information available:

Static information – Each probeset consists of eleven oligonucleotide probes. Ex-

act nucleic acid sequences of all of them as well as the representative sequence (also
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called consensus sequence) of the entire probeset, i.e. the sequence best associated

with the interrogated region, are stated for each probeset. To unambiguously identify

and localize the region to be interrogated, UniGene (see below) cluster ID is also

present in the probeset annotation.

Sequence annotations – Those include annotations obtained from various public

databases, such as Entrez Gene, GenBank or Swiss-Prot, related to the probeset rep-

resentative sequence. By that, the probesets alliance with various biologically defined

groups, such as genes, transcripts (proteins), enzyme families, metabolic pathways

and others, is indicated, as well as secondary information in the form of GO terms,

homolog/ortholog relationships to probesets on other Affymetrix chips, etc.

2.2 Sequence databases

There are hundreds of publicly available databases of genomic sequences. Some

of them are limited to certain organisms, the others are universal. Although the total

number of such databases is relatively high, there are three major primary sequence

repositories: DDBJ (DNA databank of Japan), the EMBL (European Molecular Bi-

ology Laboratory) database and NCBI GenBank (National Center for Biotechnology

Information - USA) [13]. These three databases mainly collect manually submitted

nucleic acid sequences (as most of the scientific journals require such a submission be-

fore accepting an article describing the given sequence), that are mutually exchanged

on a daily basis so that their contents remain practically identical. A record in any

of these databases typically includes the given genomic sequence, its location and

gene identification, information about coding sequences (if there are any) and their

translation into amino acid sequences, cross-links to other databases, and of course

submitter information.

The GenBank records are eventually reviewed and compiled into another database,

NCBI RefSeq [16], comprising a non-redundant collection of RNA, DNA and protein

sequences for various organisms. [16] says that ”RefSeq differs from GenBank in the

same way that a review article differs from a related collection of primary research
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articles on the same subject.”. Data from NCBI RefSeq together with data from

collaborating model organism databases are, in part as a result of curation and in

part automatically, integrated into an NCBI database of gene-specific records called

Entrez Gene [12]. Entrez Gene includes only gene-specific information for completely

sequenced genomes. These information allow for linking genes to their products,

homologs, etc.

To mention a non-NCBI genomic database, EBI Ensembl is a comprehensive

genome information system, differing from Entrez Gene especially by ”providing re-

lationships between genes and genomes in a comparative genomics framework in the

form of sequence alignments, ortholog and paralog assignments and gene trees.” [6]

In the chaos of different gene IDs from different databases and single genomic

sequences that can overlap or be redundant, whose gene assignment could be unclear

etc., a need for a system has arisen that would be able to order all genomic data

systematically. That is what UniGene, ”a largely automated analytical system for

producing an organized view of the transcriptome” [15], is for. With its system

of clusters, it classifies all sequences, locates them on the chromozome, links the

isoforms and performs other similar tasks. NetAffx annotation uses UniGene clusters

and subclusters for unambiguous identification of the interrogated regions.

Regarding the protein sequence databases – aside from dozens of less important

or specialized ones, the major up-to-date protein database is the UniProt [1], specif-

ically the UniProt Knowledge Base. Historically, UniProt developed by a fusion of

three other protein databases: European Bioinformatics Institute (EBI), Swiss In-

stitute of Bioinformatics (SIB) and Protein Information Resource (PIR). Nowadays,

new proteins are added exclusively on the basis of GenBank entries, which is possi-

ble because most of the submitted genomic sequences involve the information about

which parts of the sequence have been recognized as the so called coding sequences,

i.e. sequences delimited with a start- and a stop-codon, that are later translated into

proteins. These nucleic acid coding sequences can be easily converted into amino

acid sequences characteristic for the individual proteins. The UniProt database also

includes additional information such as different isoforms of the given protein, GO an-

notation and cross-links to other databases. The UniProt Knowledge Base is divided
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into two branches, one being manually reviewed, annotated and checked for redun-

dance (UniProtKB/Swiss-Prot), the other being annotated automatically (UniPro-

tKB/TrEMBL).

Because UniProtKB is partly redundant, and because there are other sources of

protein sequences as well (Protein Data Bank, European Patent Office, GenBank...),

there are efforts to include all known protein sequences into a system of unique, mini-

mally redundant protein identifiers. Two major initiatives are the UniParc (assigning

every protein sequence a stable UPI) and IPI (International Protein Index - by EBI).

2.3 Kyoto Encyclopedia of Genes and Genomes

(KEGG), WikiPathways

Among other sources of biological information, I would like to point out the

databases aimed at covering higher-level behavior of cells and organisms on grounds

of genomic information. One of the means for doing that is to explore the net-

works of biochemical reactions induced and catalyzed by enzymes. Because enzymes

are basically gene products, the impact of miscellaneous genes on an organism can

be principally observed directly by inspecting the effects of their enzyme products.

However, as the relationships within these biochemical networks are generally too

complex to examine the effects of single genes and enzymes, they are modeled as a

whole in the form of the so called pathway maps. There are two important databases

containing detailed structures and annotations of biological pathway maps – the Ky-

oto Encyclopedia of Genes and Genomes (KEGG) [8] and WikiPathways [14]. As for

the former, KEGG represents pathway maps as networks of nodes, each node being

assigned one or more EC numbers (enzyme identifiers). By linking genes to enzymes

and reflecting the measured expression values, one can inspect the levels of activation

in various parts of a given pathway map. The most complete is the KEGG reference

metabolic map, being also used by the gene-based cross-platform microarray analysis

tool XGENE [5], and consequently by me (as described in Chapter 4).
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2.4 Putting the information together

When processing microarray data, one usually wants to obtain results that can

be somehow biologically interpreted. In the classical case of two-class classification, it

means that we would like to find out what biologically meaningful attributes actually

discriminate between the two classes. If we had probeset identifiers only, we could

eventually state that a given set of probesets discriminates between the two classes

– but what biological information would be there? That is why Affymetrix assigns

probesets to genes, so that we don’t have a set of discriminative probesets, but a

set of discriminative genes. That is much more informative already, but we don’t

have to stop there, because genes can be assigned to other biologically meaningful

units, such as transcripts, enzymes, pathway nodes, etc. These assignments can be

done either using the ready-made Affymetrix probeset annotation, or using some of

the mentioned public databases. The latter way is proper in a situation where the

experimenter wants to retain full control over the assignment process.

Suppose we would like to assign probesets in the first step not to genes, but

to proteins (see Chapter 3 to find out why would we do that). If we didn’t want

to use the assignment to SwissProt or RefSeq Protein IDs already present in the

Affymetrix annotation file, we could align the probeset consensus sequences (or even

the actual probe sequences) against a database of proteins to find corresponding

transcripts. To achieve that, we could employ e.g. the BLAST algorithm. When

further consolidating proteins into even higher-level units, we can utilize information

from different databases either on grounds of cross-database links indicated in the

database records or by calling on an explicit tool for finding corresponding identifiers,

as for instance EBI PICR. Chapter 4 shows an example of doing all that.

2.5 BLAST algorithm

Finally, I would like to shed some light on how the alignment of genomic sequences

actually proceeds. There are many ways and algorithms of sequence aligning; perhaps

the most widely used one in the area of bioinformatics is BLAST, or Basic Local Align-
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ment Search Tool. It has been designed for searching sequences in large databases

with two specifics in mind that make the use of traditional sequence aligning methods

complicated:

• the databases of genomic sequences are usually very large, which makes the

speed of an aligning algorithm more important than its accuracy

• in many bioinformatical applications, it is desirable not only to find exactly

matching sequences, but to return similar sequences as well, representing iso-

forms, homologs/paralogs of the query sequence, etc.

The search itself proceeds in three steps [7]:

1. The seeding step – The query sequence is divided into words of a defined length

k (usually k = 3 for protein sequences, k = 11 for nucleic acid sequences), e.g.

the sequence ’PEGQFG’ contains words ’PEG’, ’EGQ’, ’GQF’ and ’QFG’. For

each word, a list of best-scoring matching words (built upon a scoring matrix)

is generated.

2. The extension step – The matching words from the previous step are searched

in the database. If two non-overlappng hits in a correct distance are found,

the so called extension is invoked. Each pair of potentially matching letters is

assigned a score based on the scoring matrix (the score value may be negative).

In the process of extension, seeds (the matched words) are extended to both

sides so that the total score is maximized. This way, a so called High Scoring

Pair (HSP) is obtained.

3. The evaluation step – HSPs with raw scores under a predefined threshold level

are discarded. For each of the remaining ones, the E-value, representing the

number of alignments with the same or better score obtained on a database of

the same length one would expect to find by chance, is given by the Karlin-

Altschul equation:

E = kmne−λS (2.1)
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where k is a minor constant, m is length of the query sequence, n is length

of the database, S is the raw score and λ is a scaling factor dependent on the

particular scoring matrix. Finally, sequences containing HSPs with E-values

above the user-defined threshold are reported.
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Chapter 3

Probeset consolidation problem

3.1 Introduction

Affymetrix GeneChip is a microarray platform used to measure gene expression

at the genome scale. Each gene is represented by one or more probesets on the chip.

Ideally, different probesets representing the same gene should yield similar expression

values. In reality, however, this is not always the case. To fully understand this

problem, it is necessary to look more closely at how the expression values are actually

obtained.

During the process known as transcription, DNA is transcribed into mRNA, rep-

resenting the protein-building instructions of the genes. Each probeset consists of

eleven probes, each of which is a 25-mer oligonucleotide complementary to a particu-

lar mRNA sequence (called target). During the microarray experiment, probe-target

hybridizations are detected and quantified, and the probeset expression is computed

upon the expression values of all its probes. However, a probeset doesn’t cover the

whole sequence corresponding to a gene, only its parts. The problem here is that the

transcription of a gene (i.e. a given sequence of DNA) into mRNA is not unambiguous.

There are effects called alternative splicing and alternative polyadenylation concern-

ing some of the genes, resulting into the fact that the same gene may produce different

mRNA transcripts under different conditions (the transcript is always composed of

11



sequences complementary to the original DNA, however, the parts of the genomic

sequence that are actually transcribed may differ). When this happens, a probeset

might for example detect only one of the two possible transcripts or conversely - it

can detect more than one. In case of sibling probesets (i.e. probesets representing

the same gene), it is obvious that sometimes the supposedly synonymous probesets

detect different transcripts of the same gene, and that is also why their expression

values aren’t as correlated as desirable.

Another cause for sibling probesets to yield uncorrelated expression values are

annotation errors. As shown in [17], the Affymetrix annotation of probesets is some-

times inaccurate, the probeset being assigned to another gene than the one it actually

represents.

There are two levels at which these problems can be dealt with when consolidating

probesets: probe level and probeset level.

3.2 Probe level

The very definitions of probesets as sets of certain probes come from Affymetrix

Chip Definition Files (CDF). In these files, each probeset identifier is assigned eleven

probes as designed by Affymetrix. However, this assignment can be in principle

changed in a custom CDF so that the newly created probe aggregations represent

disjunct transcripts. Ways how to achieve this are basically the same as those de-

scribed in the next section. The main drawback of this approach lies in the fact that

the low-level probe expression values are often inaccessible to the experimenter. From

now on, I will focus solely on the probeset level approach.

3.3 Probeset level

Another way is to re-consolidate the probesets based on another criteria than just

the Affymetrix gene annotation. There are two basic ways of doing that (aside from
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naive approaches like treating all probesets as distinct genes and not consolidating

them at all): the one is empirical, using the measured expression values to compute

correlations between sibling probesets, the other is in some way using the background

knowledge hidden in the probeset sequence annotation.

3.3.1 Probeset consolidation based on empirical results

This approach follows a very simple reasoning: supposed we would like the probe-

sets to be consolidated in such way that the consolidated probesets display correlated

expression values, the easiest way to do it is to consolidate them using the measured

expression values. Because it is desirable to retain biologically meaningful entities

(genes assigned to probesets), this concept is usually used to separate probesets rep-

resenting different transcripts of the same gene rather than to combine probesets

assigned to different genes. [10] shows an example of a successful implementation of

this approach using the Analysis Of Variance (ANOVA) framework.

3.3.2 Probeset consolidation based on an a priori knowledge

Chapter 2 gave the idea of the huge amount of information available through

various sequence databases. Generally, it is possible to align the probe or probeset

nucleotide sequences against various databases to find transcripts corresponding to

the individual probesets to be further used as probeset labels instead of genes. [20]

demonstrates an example of using the BLAST algorithm to align probe sequences

against protein sequences extracted from GenBank, RefSeq and Ensembl. The au-

thors show that the newly consolidated probesets are more correlated than origi-

nally. Nevertheless, it is not necessary to perform sequence aligning independently,

as Affymetrix provides annotation files for each chip, containing the top results of

the alignment of probesets against the GenBank protein database using the BLAST

algorithm. I attempted to utilize the BLAST annotation file for the chip GPL1261

(Mouse Genome 430 2.0) and to estimate the fitness of the representation based upon

the resulting probeset consolidation, and that is what the next chapter describes.
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Chapter 4

Probeset consolidation on the

GPL1261 chip using the

Affymetrix BLAST annotation file

As outlined in the previous chapter, it is possible to group probesets by tran-

scripts they detect; the groups of probesets obtained in this way are potentially more

correlated than the original groups formed on the basis of respective genes. I chose

the chip GPL1261 (Mouse Genome 430 2.0) and decided to examine the transcript-

based (from now on denoted mostly as protein-level) probeset consolidation and its

properties, as well as to map the consolidated probesets to higher entities (KEGG

nodes and pathways) and to compare the obtained mapping with the gene-based rep-

resentation on several datasets in terms of classification accuracy and the number of

significant entities. In order to estimate the fitness of the protein-based mapping, I

decided to use the existing gene-based mappings of XGENE for comparison. XGENE

uses the standard Affymetrix probeset linking with respect to genes. The enzyme-

coding genes are mapped to KEGG nodes (nodes in metabolic pathways), and in the

last step, KEGG nodes are mapped to KEGG pathways. As a result, all units can be

represented as groups of probesets. A node or pathway expression is then computed

as the average expression across all its probesets. Note that not all probesets are

included in the mapping, as the majority of genes code non-enzymatic proteins - only
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2712 different probesets are mapped to enzymes.

To be able to compare the protein-based mapping directly with the existing gene-

based XGENE one, I had to create a similar probeset – protein – enzyme – KEGG

node – KEGG pathway mapping scheme. The whole mapping process is summarized

in Figure 4.1.

Figure 4.1: Mapping process summary

4.1 Step 1 – mapping the probesets to proteins

Two input files were used – the standard Affymetrix annotation file for the

GPL1261 platform (’Mouse430 2.na27.annot.csv’) and the Affymetrix BLAST an-

notation file (’Mouse430 2 blastx.csv’). As for the latter – all probeset consensus se-

quences had been BLASTed by Affymetrix against the GenBank sequence database,

and proteins with the best score (with an E-value under a certain threshold) were

presented as possible transcripts for each probeset. I mapped the probesets to all

their candidate proteins with E-value under 10−50, resulting into a set of GenBank

protein identifiers, each being assigned a set of one or more corresponding probe-

sets. The total number of proteins in the mapping was 56 897, however, because

15



I assigned each probeset to most of its candidate protein identifiers, many of those

proteins were redundant (meaning that their sets of probesets were identical) – only

21 366 protein identifiers had unique sets of probesets; 28 590 unique probesets were

mapped to them. Figures 4.2 and 4.3 show a comparison between the protein-based

and gene-based mappings (only non-redundant protein identifiers were taken into ac-

count). Figure 4.3 also reveals that the total number of probesets being mapped to

proteins is approximately by 9 000 lower than the number of probesets mapped to

genes. Those 9 000 probesets are the first of many losses in the process of mapping

probesets to higher entities.

4.2 Step 2 – assigning EC numbers to proteins

In this step, I converted the GenBank protein identifiers into UniProt identifiers

using the PICR tool. This was one of the possible ways to carry out the protein –

enzyme mapping, since UniProt indicates the EC identifier in each protein record (of

course only when the given protein forms an enzyme). The assignment of UniProt IDs

to GenBank proteins by PICR wasn’t definite, because the PICR output file stated

more possible variants of corresponding UniProt identifiers to each GenBank one. I

took into account only those having an attribute ”identical”, which means that the

respective proteins match completely (another attribute is ”logical”, which indicates

only a very similar protein). Then from the set of possible corresponding UniProt

identifiers (in case there were more than one), I chose preferably the one with an EC

identifier present in the database record, if possible.

In the end, I had 1725 different probesets mapped to 1026 enzymes. Table 4.1

shows a well-arranged summary of probeset losses in each step.
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Figure 4.2: Distribution of probesets assigned to a gene or protein

4.3 Step 3 – mapping the enzymes to KEGG nodes

and pathways

I simply used the XGENE files that map enzymes to KEGG nodes, and KEGG

nodes to KEGG pathways to set up the same mapping. The total number of nodes

in the reference metabolic map (the only map used by XGENE) is 2573, forming 261

pathways. Not all the enzymes obtained in the previous step were involved in this

mapping, and not all the nodes and pathways were covered by at least one probeset.
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Figure 4.3: Distribution of genes/proteins assigned to a probeset

Properties of the final mapping are summarized in Table 4.2. Figures 4.4 and 4.5

show cummulative histograms of the number of probesets mapped to a node both

for the protein- (Fig. 4.4) and gene-based (Fig 4.5) mappings. There is an obvious

difference between the two distributions, as the nodes in the gene-based mapping tend

to have more probesets mapped to them; the same holds true for pathways, which

agrees with the fact that there is a higher number of unique probesets figuring in the

gene-based mapping than in the protein-based one.
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Step Probesets total Probesets success-

fully mapped

Number of result-

ing units

Probesets →
GenBank protein

IDs

45100 28590 21366

GenBank →
UniProt IDs

28590 27097 17867

UniProt → EC

IDs

27097 1725 1026

EC → KEGG

nodes

1725 1337 833

KEGG nodes →
KEGG pathways

1337 1337 252

Table 4.1: Probeset losses

Mapping Unique probe-

sets

Units total Units covered Max. probe-

sets per unit

KEGG nodes,

protein-based

1337 2573 833 7

KEGG nodes,

gene-based

2712 2573 801 83

KEGG

pathways,

protein-based

1337 261 252 109

KEGG

pathways,

gene-based

2712 261 238 234

Table 4.2: Properties of the final mapping
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Figure 4.4: Probeset–node relationship for the protein-based mapping

4.4 Comparing the protein- and gene-based map-

ping upon expression correlation

As the first measure of fitness of the representation obtained in the previous steps,

I decided to employ the method used in [20]. The authors computed all pairwise

Pearson’s Correlation Coefficients (PCC) within each group of synonymous probesets

(with a number of probesets larger than one) and selected the lowest one to represent

the expression correlation of the respective group. Values obtained from all groups
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Figure 4.5: Probeset–node relationship for the gene-based mapping

were then averaged into a single value representing the overall correlation of the given

dataset. However, since the distribution of probesets among nodes in the gene- and

protein-based mappings differs, such measure is not an objective one, as larger groups

of values naturally tend to have lower minimums. That is why I added another two

values to each dataset, one computed upon the mean, the other upon the median

PCC within each group. The results, obtained on several sample GPL1261 datasets

downloaded from NCBI GEO [2] and one dataset coming from the original XGENE

case study (denoted as ”Set 1”), are shown in Figures 4.6, 4.7 and 4.8. The protein-
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based mapping consistently displays higher correlation by all three measures across

multiple datasets than the gene-based one.

Figure 4.6: Comparison among mappings using the ”mean PCC” measure

4.5 Comparing the protein- and gene-based map-

ping by means of classification accuracy

Next, I wanted to find out whether predictive classification models built upon the

two representations somehow differ in their predictive powers. Following the reasoning

in [5], where the authors point out that decision tree classifiers represent the family
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Figure 4.7: Comparison among mappings using the ”median PCC” measure

of machine learning algorithms most natural to process microarray data consolidated

into biologically meaningful units, as they allow a direct biological interpretation of

results, I conducted a series of experiments using the J48 decision tree learner (imple-

mented in the Weka software). The attributes of the samples used for classification

were pathway and node expression values, computed as average expressions across all

respective probesets.

First I chose the already introduced ”Set 1” plus another three datasets from

NCBI GEO (see below) suitable for simple classification tasks, i.e. with a reasonable

number of samples and with 2 - 3 defined classes. Then the classification learning

curves both at the node and pathway level were computed for the gene- as well as

the protein-based mappings using the data from each dataset. The beginning of a
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Figure 4.8: Comparison among mappings using the ”minimum PCC” measure

learning curve represents a situation where only a small fraction of samples is used to

train and test the classifier, while the final part of the curve corresponds to a set-up,

where the vast majority of samples is used. At each point, the partitioning into a

training and a test set was repeated ten times, the results averaged, and then the

final value was plotted as an estimate of the classification accuracy.

The chosen datasets were:

Set 1 – The dataset also used in the XGENE study, consisting of 46 samples of

hematopoetic (blood-forming) and 19 samples of stromal (supportive) cells from the

bone marrow tissue.

GSE10784 – citing the description from the NCBI GEO database record: ”This
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represents an unbiased evaluation of the transcriptional response in the prefrontal

cortex and hippocampus areas in the Df(16)A/+ mice, a mouse model of human

22q11 microdeletion syndrome.” The dataset consists of 20 wildtype control samples,

and 20 samples of Df(16)A/+ mutants.

GSE12413 – This set was originally meant to discriminate among different

cardiovascular phenotypes of mice subjected to catecholamine stress. However, since

the dataset consists of two approximately equally sized classes when divided into a

group of non-treated (41) and isoprotenerol-treated (45) samples, I decided rather to

discriminate between mice being subjected to catecholamine stress and the control

cases.

GSE7897 – A dataset created with the aim of exploring the additional somatic

alterations contributing to the heterogeneity of B-cell lymphoma tumors. 25 Eµ-

myc mice with early-onset and 25 Eµ-myc mice with late-onset lymphomas as well

as 10 control samples were subjected to a microarray analysis; the classifier tries to

discriminate among these three classes.

The resulting learning curves are shown in Figures 4.9 and 4.10. It seems that

neither the gene-based nor the protein-based mapping is superior to the other one

when used as a basis for classifier building. For comparison, learning curves were

also computed for the case of non-consolidated probesets, and especially the begin-

nings of learning curves expose a low quality of such representation. In two cases the

protein-based classifier performs slightly better than the gene-based one, two cases

display an equal performance, and in four cases it is the gene-based mapping that

leads to better results. Notably, in two cases (GSE12413 and Set 1 ), the protein-

based classifier outperforms the gene-based one at the pathway level, despite being

comparable or inferior at the node level. However, a more detailed analysis would

have to be carried out to assess whether any of the used mappings really gives better

classification results; there are even doubts if consolidating the probesets into bio-

logically meaningful units, such as pathways, is in any way more favorable in terms

of classification accuracy than consolidating them in a purely random manner when

using data from a single chip [5].

25



(a) Set 1, nodes (b) Set 1, pathways

(c) GSE10784, nodes (d) GSE10784, pathways

(e) GSE12413, nodes (f) GSE12413, pathways

Figure 4.9: Learning curves for various datasets - part I
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(a) GSE7897, nodes (b) GSE7897, pathways

Figure 4.10: Learning curves for various datasets - part II

4.6 Comparing the two mappings in terms of sta-

tistical significance

Table 4.2 reveals that the total number of probesets mapped to KEGG nodes and

pathways at the protein level is distinctively lower than it is at the gene level. That

means, in a sense, that more information get lost during the process of mapping the

probesets through transcripts than through genes. However, this ”loss of probesets”

is not necessarily a negative phenomenon, as it can also be seen as noise filtering.

Indeed, the correlation results suggest that the signal to noise ratio in the protein-

based mapping is rather strengthened, but there still remains a question that has to be

addressed: at the level of nodes and pathways, is the number of highly discriminative

units built upon proteins at least comparable to the number of such units built on

genes?

To answer that question, I decided to use the standard SAM (Significance Analysis

of Microarrays) method [18] implemented in R. SAM is a method specifically designed

to determine which genes (if any) are significantly differentially expressed in the two

given classes.

The fundamental quantity in SAM is called relative difference, and it is in principle
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(a) Set1, node level, gene-based mapping (b) Set1, node level, protein-based mapping

(c) Set1, pathway level, gene-based mapping (d) Set1, pathway level, protein-based map-

ping

Figure 4.11: SAM plots for several datasets - part I
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(a) GSE10784, node level, gene-based map-

ping

(b) GSE10784, node level, protein-based map-

ping

Figure 4.12: SAM plots for several datasets - part II

the change in the mean gene expression between two classes relative to the standard

deviation of repeated measurements. The relative difference d(i) for gene i is:

d(i) =
x̄1(i)− x̄2(i)

s(i) + s0

(4.1)

where x̄1(i) and x̄2(i) are the mean expression values of gene i in classes 1 and 2, s0

is a small positive constant and s(i) is defined as follows:

s(i) =

√
a{

∑
m

[xm(i)− x̄1(i)]2 +
∑
n

[xn(i)− x̄2(i)]2} (4.2)

where xm(i) is is the expression of gene i in measurement m in the class 1, xn(i) is

the expression of gene i in measurement n in the class 2, and

29



a =
1
n1

+ 1
n2

n1 + n2 − 2
(4.3)

where n1 and n2 are the numbers of measurements in states 1 and 2 respectively.

In the process of finding significantly changed genes, relative differences of all

the genes are computed, and the genes are ranked by the magnitude of their d(i)

value so that d(1) represents the largest relative difference, d(2) the second largest

etc. Subsequently, the expression values are permuted multiple times, the relative

differences of all genes are again computed and the genes are ranked, so that dp(i)

is the ith largest relative difference in the pth permutation. The expected relative

difference e(i) of a gene is then defined as follows:

e(i) =

∑
p dp(i)

P
(4.4)

where P is the total number of permutations.

By plotting d(i) vs. e(i), it is immediately evident which genes lie close to the the

diagonal (and therefore aren’t of any interest) and which lie more far (and therefore

are more likely statistically significant). By defining a threshold distance, above which

the genes are declared as ”significantly differentially expressed”, one can easily count

if, and how many such genes there are in the given dataset. The threshold distance

is set empirically so that the FDR (false discovery rate) is acceptably low. The

number of falsely significant genes is computed by counting genes with d(i) exceeding

the interval between the lowest positive still significant d(i) and largest negative

still significant d(i) (the so called horizontal cutoffs) in each permutation, and then

averaging the number across all permutations. Finally, FDR is a ratio between this

value and the total number of significant genes.

Even though the whole method was originally designed for genes, it can be utilized

to count the numbers of significantly expressed KEGG nodes or pathways just as

well. I did that for the three datasets I used in the previous step where two classes

were defined, and the plots of d(i) vs. e(i) for some of them are shown in Figures

4.11 and 4.12. The obtained results are summarized in Table 4.3. In order to get
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Dataset Level Mapping Significant

units

FDR

Set 1 Nodes Gene-based 445 0,005

Set 1 Nodes Protein-based 462 0,005

Set 1 Pathways Gene-based 106 0,005

Set 1 Pathways Protein-based 96 0,005

GSE10784 Nodes Gene-based 21 0,006

GSE10784 Nodes Protein-based 20 0,006

GSE10784 Pathways Gene-based 14 0,005

GSE10784 Pathways Protein-based 29 0,005

GSE12413 Nodes Gene-based 163 0,001

GSE12413 Nodes Protein-based 149 0,001

GSE12413 Pathways Gene-based 77 0,001

GSE12413 Pathways Protein-based 82 0,001

Table 4.3: Summary of the SAM analysis

comparable values, I tried to maintain the same FDR within corresponding rows,

but because of rounding, there is a certain tolerance interval around the numbers

of significant units, and therefore they cannot be precisely compared when close to

each other. Still, it is obvious that the values are relatively similar, and thus the

opening question can be answered as follows: numbers of significantly differentiated

units for the representation built upon protein-based mapping consistently come up

to those for the gene-based one. Moreover, visual inspection of SAM plots reveals

that protein-based representation often gives several extremely discriminative units,

even if no such units are present in the gene-based one. Those could be of use when

attempting to biologically interpret the obtained results.
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4.7 Results summary

I used the Affymetrix BLAST annotation file for the GPL1261 chip to assign

probesets to proteins. Subsequently, a mapping to KEGG nodes and pathways syn-

onymous to the XGENE mapping was created upon the proteins and compared with

the gene-based one. The main drawback of the resulting mapping is a decreased

number of probesets being mapped to the final entities. Anyway, it shows a higher

correlation within the defined units (nodes and pathways), so if the aim of searching

for an alternative probeset consolidation is to increase the expression correlation, the

protein-based representation is clearly competent. In terms of classification accuracy

and number of significantly differentially expressed units, the protein-based mapping

proved to be an equally good option to the gene-based one.
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Chapter 5

Final notes

The main motivation at the very beginning of my work was to find a way of using

the sequence annotations to consolidate probesets so that their correlation increases.

While doing the research and looking for articles dealing with the same or similar

subject, I stumbled across an article appearing to solve my problem completely and

in an elegant way [20]. The authors show what I attempted to prove as well, namely

that consolidating probesets on the basis of proteins is in terms of correlation superior

to the gene-based consolidation. However, as already mentioned in section 4.4, they

used the minimum PCC measure, which is utterly misleading when the distributions

of probesets differ between the compared mappings. Despite its obviousness, it took

me quite some time, during which I was getting splendid results, to realize this. I

guess people tend not to challenge their results if they are in line with what they

would like to get.

In the protein-enzyme mapping step, I was trying to minimize the probeset losses.

To achieve that, I examined several ways of mapping proteins to enzymes. Aside

from the described assignments directly through UniProt, I also tried to map the

proteins using the KEGG API, which provides a function get enzymes by gene(), as

the UniProt records often contain cross-links with KEGG gene identifiers. There

were two main reasons why I decided not to use that mapping in the subsequent

steps: first, the number of probesets assigned to enzymes was just as low as when
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assigned directly through UniProt, and second, I wasn’t sure if using the KEGG gene

identifiers doesn’t actually take me back to the gene level. I also tested the ability

of NetAffx to assign EC identifiers to probesets downright without even mapping

probesets to proteins, but the correlation of the resulting consolidation was markedly

lower than in the other cases. Besides that, it was difficult to find any information

about how the probesets were actually mapped to enzymes and I wanted to retain

full control over the mapping process.

In spite of having disadvantages of its own, the final protein-based consolidation

fulfills the original objective, i.e. to consolidate probesets in such way that they are

more correlated than when consolidated upon genes. At the present moment, I don’t

know if this result will be of any practical relevance, but the protein-based approach

might get integrated into the future versions of XGENE. I believe that it has a big

potential as it fits to the actual biochemical nature of the processes in the organisms

and in the microarrays more correctly than considering probesets to be equivalent

with genes.
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Appendix A

List of Software

Bash Bourne-Again Shell - A system-oriented scripting language.

I used it in conjuction with Cygwin to co-ordinate actions

of the individual scripts.

PICR Protein Cross-Reference Service - an on-line tool provided

by EBI for finding corresponding protein identifiers in var-

ious databases.

Python An open-source programming language. I also used sev-

eral freely available third-party extension modules, namely:

Psyco - a Python library for enhancing the speed of code

execution, NumPy - a scientific computing library (among

others containing functions for fast matrix operations) and

Statistics for Python. Most of the tasks (computation of

correlation, the actual probeset consolidation, etc.) have

been accomplished using Python.

R A statistics-focused scripting language. All figures in this

text have been exported from R, plus I used the XGENE

scripts for normalization and SAM-analysis provided to me

by Mr. Jǐŕı Kléma. These scripts use Bioconductor, a third-

party R package containing various bioinformatics-related

functions.

Weka A machine-learning environment. I used it to compute the

learning curves.
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Besides from what’s mentioned here, I used various databases and on-line tools

(such as NetAffx) referenced throughout the text.
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Appendix B

Contents of the CD

The CD content is divided into the following directories:

data Sample data (mostly from NCBI GEO) meant to be pro-

cessed by the scripts.

doc Additional information related to the directory structure

and notes to the actual implementation of the scripts.

latex LATEX source codes of this text.

pdf This text in the pdf format.

scripts Relevant scripts in Python, Bash and R. There are two

subdirectories containing the mapping-related scripts and

the scripts used for correlation measurement, automated

classification and SAM analysis.
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