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Abstract

Magnetic resonance has proven to be a successful method of in-vivo imaging. Although

MRI can help detect various pathologies, its ability to classify the nature of the patho-

logical tissue is limited. Magnetic resonance spectroscopy allows identifying metabolite

content of the tissue and estimating the metabolite concentration. Map of metabolite con-

centration along with the MR image allows proper classification of many pathologies, for

example progressive tumorous tissue identification in human brain. Standard methods

used to analyze nuclear magnetic resonance spectra such as singular value decomposi-

tion or curve fitting algorithms are very time consuming taking several minutes to analyze

spectrum from a single voxel. To analyze the spectra from a chemical shift imagine se-

quence (CSI) in maximal resolution hundreds of spectra need to be processed. The sug-

gested ANN framework proved to be much faster. Networks were trained on the outputs

of LCModel curve fitting algorithm. Time needed to process a spectrum from a single

voxel was reduced to the order of seconds. The total time needed to analyze a CSI in full

resolution (hundreds of spectra) was significantly reduced to 5 minutes.

Abstrakt

Magnetická resonance je uznávanou zobrazovacı́ metodou živé tkáně v modernı́ medicı́ne.

Přestože pomáhá odhalit různé patologické změny, jejı́ schopnost určit povahu patolo-

gie a přesně ji klasifikovat je značně omezená. Spektroskopie pomocı́ magnetické res-

onance umožňuje detekci metabolického obsahu tkáně a určit koncentrace jednotlivých

metabolitů. Metabolická mapa společně s MR obrázkem pomáhá přesněji popsat patolog-

ickou tkáň, napřı́klad identifikovat progresivnı́ tumor mozku. Standardnı́ metody analýzy

spekter nukleárnı́ magnetické resonance, jako napřı́klad prokládánı́ sadou křivek nebo

rozklad na principiálnı́ komponenty, jsou výpočetně velmi náročné. Zpracovánı́ spektra

z jednoho voxelu může trvat až několik minut. Ke zpracovánı́ dvojdimensionálnı́ho spek-

troskopického obrázku v plném rozlišenı́ musı́ být analyzovány stovky spekter. Navržený

postup postavený na umělé neuronové sı́ti je daleko rychlejšı́. Data pro trénink neu-

ronové sı́tě jsou zı́skávána z výsledku LCModelu, algoritmu prokládajı́cı́ho spektrum

sadou křivek. Čas potřebný k analýze jednoho samostatného spektra se snı́žil a proběhne v

řádu vteřin. Celkový čas potřebný k analýze spektroskopického obrázku v plném rozlišenı́

(stovky spekter) byl výrazně snı́žen, nynı́ proběhne do 5-ti minut.
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Chapter 1

Introduction

Accurate quantification of cerebral metabolites by in vivo proton magnetic resonance spec-

troscopy is essential to the study of many brain disorders. Proton nuclear magnetic reso-

nance (NMR) spectroscopy remains one of the few methods by which the chemical con-

tent of brain tissue may be probed non-invasively. Several procedures have been applied in

biomedical NMR spectroscopy to quantify areas of metabolite resonances from frequency

domain spectra [1]. With methods such as the lineshape fitting analysis and the linear com-

bination of model spectra, noisy 1H NMR spectra or overlapping peaks in spectra can be

assessed. However, the reliable use of the lineshape fitting analysis methods needs spec-

troscopic expertise, so that a fully automated analyzer by these methods is rather difficult

to develop. All these procedures involve relatively long computational times.

It has recently been shown that ANN analysis offers some important advantages for

biomedical NMR data analysis [2], [3]. However, these techniques were limited to the

use of simulated artificial inputs with mathematically estimated outputs for training. The

proposed study shows the ability of an artificial neural network (ANN) to estimate con-

centrations of 3 main metabolites from human brain spectrum measured. In this work, ab-

solute spectra of Free Induction Decay (FID) signals were used as input vectors. Matching

metabolite concentrations acquired from the LCModel [4] curve fitting algorithm are set

as targets.

Curve fitting algorithms, used to analyze NMR spectra in frequency domain, calculate

the best possible combination of base signals (simulated or previously measured in-vitro)

to fit the spectrum of the measured FID signal. Currently, the most commonly used quan-

tification methods are based on curve fitting using a non linear least square optimization,

such as Levenberg-Marquardt algorithm. Once the network is trained the processing of

a new (unknown) input is reduced to a set of matrix multiplications and can be done

1



CHAPTER 1. INTRODUCTION 2

within seconds. The developed ANN gives comparable results in much shorter time than

widely used curve fitting algorithms.

All the experimental data for the purpose of this thesis was measured at the Institute

for Clinical and Experimental Medicine in Prague.

1.1 Aims of the Thesis

The major aim of this work is to develop an algorithm which would approximate the results

of an application based on the LCModel NMR spectra processing algorithm in shorter

time and with the output error as low as possible. The core of the developed algorithm

is realized by an artificial neural network. Therefore, practically, the aim is to train an

artificial neural network which would be able to estimate metabolite concentrations from

in vivo NMR spectra from human brain. This goal is approached in several steps. First

an algorithm needs to be developed which reads raw data from a NMR scanner. Then a

preprocessing algorithm is designed which prepares the data to be fed to an ANN network.

The same data is processed by commercial software and results are used as targets for the

purpose of ANN training. In the next step an artificial neural network is trained and

optimized. Finally test data is preprocessed according to the developed procedure and

the results are compared to the results of the commercial software. The intention is to

duplicate the results of the commercial software in shorter computational time.



Chapter 2

Theoretical Part

In the theoretical part basic concepts of nuclear magnetic resonance, signal acquisition and

processing principles are described. Furthermore the theory of artificial neural networks

is introduced.

2.1 Principles of Magnetic Resonance

2.1.1 Larmor Precession

All atom nuclei consist of particles called protons and neutrons. These elementary kernel

particles have a characteristic inner feature accruing from quantum mechanics, so called

spin or magnetic spin momentum S. Protons and neutrons in the atom nucleus also possess

magnetic moment, therefore, they do interact with magnetic field. The overall nuclear

magnetic spin momentum I and magnetic moment µ are bound through

µ = γI, (2.1)

where γ is a so called gyromagnetic ratio characteristic for each atom nucleus.

The magnetic spin in constant magnetic field is unstable, preceding along an axis par-

allel with the outer magnetic field with a frequency ω0. This rotation can be visualized as

a movement along the surface of a cone with central axis parallel to the axis of the external

magnetic field (denoted z for the purpose of this thesis). The precession frequency ω0 is a

so called Larmor frequency and is given by

ω0 =−γB0 (2.2)

where B0 is the magnetic induction of the external magnetic field.

3
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Hamiltonian H of the nuclear magnetic spin in stationary external magnetic field B0

oriented along the axis z of the laboratory coordinate system is given by

H =−γh̄IzB0 =h̄ω0 Iz, (2.3)

whereh̄ is Planck constant and Iz is the z component of the nuclear magnetic spin operator,

which can take on any of the 2I +1 values:

Iz =−I,−I +1, ...I−1, I. (2.4)

This set of states in means of energy is called Zeeman’s multiplet.

Transitions between energy levels are induced by using an additional circularly po-

larized magnetic field B1. This magnetic field is perpendicular to the stationary field B0

and its intensity is much lower. The transition is possible only if the atom nuclei are in

resonance with the oscillating magnetic field B1. That means that the frequency of the

additional oscillating magnetic field used for excitation has to be equal to the Larmor fre-

quency of the nuclei. This ability of the nuclei to accept energy of the magnetic field and

temporary take on a state with higher energy is called nuclear magnetic resonance (NMR).

2.1.2 NMR Theory

The theory of nuclear magnetic resonance can only be thoroughly described through quan-

tum mechanics. For the purpose of this thesis a much easier, yet not as exact description

through classic physics will be given.

The theory of quantum mechanics closely describes the magnetic spin system of the

nucleus and the mechanics of its transitions among energy levels. However, for the exter-

nal field an approach of classic physics is used [5]. In this thesis, the measured samples

are large inhomogeneous groups of molecules and macromolecules—a whole set of non-

isolated magnetic spins. In this case both, the magnetic spin Hamiltonian and the wave

function, get very complicated and for the description of the NMR experiment a large

number of approximations have to be done.

The approach of classic physics is a phenomenological description of the magnetic

resonance effect which consists of a set of first order linear differential equations known

as Bloch equations. The Bloch equations describe the motion of macroscopic magneti-

zation vector M given by the sum of all the magnetization vectors of the nuclei within

the measured sample. The downside of the macroscopic, classic approach is the inabil-

ity to describe all the spin interactions on atomic level. For example the relaxation time
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constants are averaged over all nuclei of the same type. However, for the purpose of this

thesis such an approximation is acceptable.

2.1.3 Magnetization Vector and Bloch Equations

Upon insertion of the measured sample to the external static magnetic field B0 in the

state of thermodynamic equilibrium a non zero magnetic moment is present. It exists

due to anisotropic distribution of the magnetic spin polarization of the nuclei and can be

expressed as a vector of macroscopic magnetization M0. This anisotropy is caused by

interaction of the spin system with its neighboring molecule environment (grid). Magne-

tization vector can be expressed as

M0 = χ jadB0, (2.5)

where χ jad is the magnetic susceptibility. It is a macroscopic quantity that embodies

microscopic contribution of all the nuclear spins within the sample and is given by

χ jad =
µ0NVh̄2

γ2I(I +1)
3kBT

, (2.6)

where µ0 is the permeability of vacuum, NV is the number of nuclear spins in unit volume,

kB is the Boltzmann constant, and T is the thermodynamic temperature of the system.

In the state of thermodynamic equilibrium the magnetization vector only has a non

zero z component (parallel to B0). The components perpendicular to the external field

sum up to zero due to the precession motion. The excitational oscillating B1 field can be

used to deflect the magnetization vector from the equilibrium. The time evolution of the

magnetization vector in laboratory coordinates during the excitation by a series of radio

frequency pulses can get very complicated due to time dependence of the total external

magnetic field. Therefore, the equation describing the evolution of the magnetization

vector is described in a coordinate system rotating with a frequency ωre f . In this system

the magnetic spins rotate on a new frequency ω,

Ω = ω0−ωre f (2.7)

If the frequency of the rotating coordinate system is equal to the Larmor frequency, the

effect of B0 cancels out and the total external magnetic field is time independent and equal

to B1.
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As stated above, the time evolution of the magnetization vector is described by phe-

nomenological Bloch equations:

dMx

dt
= γ(M×B)x−

Mx

T2
, (2.8)

dMy

dt
= γ(M×B)y−

My

T2
, (2.9)

dMz

dt
= γ(M×B)z−

Mz−M0

T1
, (2.10)

where B is the total local magnetic field in the rotating coordinates (z is parallel to B0). Lo-

cal field means that this field depends on the type and location of the nucleus and reflects

the electron structure around the nucleus. T1 and T2 are constant quantities introduced

phenomenologically to characterize relaxation mechanisms within the studied spin sys-

tem. Relaxation is a process in which the spin system tries to return back to the state of

equilibrium. T1 constant is a so called longitudinal or spin-grid relaxation time and ex-

presses the rate at which the longitudinal (parallel to z) component of the magnetization

vector M returns to its value at the state of equilibrium (M0). This relaxation is caused by

the interaction (energy exchange) between the spin system and the atomic grid. T2 con-

stant is a so called transverse or spin-spin relaxation time and expresses the rate at which

the transverse (perpendicular to z) component of the magnetization vector diminishes. The

transverse relaxation is a result of the spin-spin interactions within the measured sample.

As stated earlier, deflection of the magnetization vector is induced by application of

radio frequency (RF) pulses. These RF pulses are often very short compared to the relax-

ation times so that these effects during the excitation can be ignored. The measurements

itself take place at the times when the B1 RF pulses with frequency set to Larmor fre-

quency are off. Setting the frequency of the rotating coordinates ω f to the frequency of

the RF pulse leads to a constant B1. Solving the Bloch equations shows that the magneti-

zation vector M will be preceding with angular frequency ω = γB1. The orientation of the

magnetization vector once the RF pulse is turned off depends on the length and the phase

of the RF pulse. In experiments used for the purpose of this thesis two types of pulses

were used. Both are oriented along the x axis but differ in the flip angle

β =
∫

γB1dt (2.11)

First is a so called π

2 pulse (β = π/2) at the end of which the magnetization vector is

oriented in the direction of the y axis (perpendicular to both B0 and B1). The other is a so

called π pulse (β = π) which deflects the magnetization vector to the opposite direction to

B0 (the −z direction).



CHAPTER 2. THEORETICAL PART 7

The signal measured after the application of the RF pulse (during the relaxation pro-

cesses) is called free induction decay (FID) and is usually measured in the transverse

plane (perpendicular to B0). From the Bloch equations can be derived that the decay of

the transverse component of the magnetization vector after application of a π

2 RF pulse is

M⊥(t) = M0e−t/T2 (2.12)

The time varying magnetization vector induces electric currents in a set of coils used

as sensors for the measurement of the FID signal. The signal detected s(t) during the

synchronous quadrature detection is complex

s(t) = ne−t/T2ei(Ω0t+φ), (2.13)

where n is proportionate to the number of spins within the sample, Ω0 is the Larmor

frequency in the rotating coordinate system, and φ is the initial phase.

However, this only applies for a sample which consists only of magnetic spins with the

same Larmor frequency and which is placed in a perfectly homogenous external magnetic

field. In reality the decay of the magnetization vector is faster due to magnetic field in-

homogeneities and spin variety within the sample which result in variance of the Larmor

frequencies. Various Larmor frequencies make the spins come out of phase. Therefore,

the overall magnetization vector decays faster. In reality the signal decays with transverse

relaxation time T ∗2 ,
1

T ∗2
=

1
T2

+
1

Tnehomog
(2.14)

To compensate for the field inhomogeneities and reduce their effect on the transverse

relaxation time (and the peak width in the resulting spectra) a special combination of RF

pulses is used. These sequences are called stimulated and spin echo sequences. For the

purpose of this study only spin echo sequences were used and will be further explained in

detail.

2.1.4 Spin Echo Sequence

The spin echo sequence consists of two RF pulses (Fig. 2.1). First a π

2 RF pulse is applied

followed by a π RF pulse in time τ after the first pulse. After application of the first pulse

the signal decays, at the time of the second pulse no signal can be detected, in time t = 2τ

the signal reappears in a so called spin echo. The time T E = 2τ is called echo time. The

first pulse flips the magnetization vector to the transverse plane. The spins come out of
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phase due to field inhomogeneities. After the second pulse the spins start to get back to

phase. Once the spins are in phase the signal is measured. The magnitude of the transverse

magnetization vector in time t = T E

M⊥(t = T E) = M0 e−2τ/T2 = M0 e−T E/T2 . (2.15)

Fig. 2.1. Schematic of the spin echo sequence. Source: [5].

2.2 NMR Spectroscopy

Experiments in nuclear magnetic resonance have shown that even spins with the same

value of gyromagnetic ratio γ differ slightly in their Larmor frequency. Spin-spin interac-

tions show to locally affect the external magnetic field B0. Therefore, the spins within the

sample appear to be in a slightly different local magnetic field Bloc and precede with a

slightly different Larmor frequency. In biological tissue the main interactions are chemical

shift effect and J-coupling and are discussed further below. The dipole-dipole interaction,

in this case, sums up to zero.
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2.2.1 Chemical Shift Effect

Chemical shift effect in NMR spectroscopy enables the main qualitative differentiation

of signals from individual atom nuclei. The electron cloud around the nucleus provides

some sort of a shield against the external magnetic field and that way reduces the magnetic

induction of the field to

Bloc = (1−σ)B0, (2.16)

where σ is a so called shielding ratio, which describes the chemical neighborhood of the

nucleus. Larmor frequencies of nonequivalent nuclei in the sample are then

ωk = γ(1−σk)B0. (2.17)

Because the Larmor frequency is dependent on the external static magnetic field (prop-

erty of the machine used for experiment) a new parameter (independent of the external

field) for description of the chemical neighborhood of the nucleus is defined. It is called

chemical shift (denoted as δ in this thesis) and is defined as

δk =
ωk−ωST

ωST
106, (2.18)

where ωST is the standard resonance frequency. The units of the chemical shift quantity

are called parts per million (ppm). In 1H nuclear magnetic resonance spectroscopy the

resonance frequency of N-acetyl aspartate (NAA) is used as a standard (ωNAA = 2.01).

For the purpose of this study only 1H nuclear magnetic resonance was considered. In 1H

NMR most of the signal measured comes from hydrogen nuclei. The signal from hydrogen

is much stronger than from any other atom nuclei. Therefore, if there are any 1H atoms in

the sample no other signals can be detected. This is the case of human brain mostly due to

high content of water. However, there are other types of NMR, such as 31P spectroscopy,

where the atoms of phosphor are the main source of signal. NAA has a significant peak in

the NMR spectra from human brain approximately in the middle of the metabolite part of

the spectrum. The function of NAA and the shape of the NMR spectra are both discussed

further in more detail.

2.2.2 J-coupling

J-coupling or indirect spin-spin interaction is mediated through chemical bonds (elec-

trons). Chemical bonds affect the distribution of the electrons around the bound nuclei
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and therefore affect the local magnetic field and the Larmor frequency. It is characteris-

tic for splitting the signal only from nonequivalent nuclei within one molecule to several

signals. The number of multiplets X into which the signal is split is independent of the

external static magnetic field and is equal to

X = 2nI +1, (2.19)

where n is the number of nonequivalent nuclei with the quantum number I interacting with

the given nucleus.

2.2.3 Spectra Acquisition

As stated above, real sample due to mutual interactions contains N types of nuclei (protons

in case of 1H NMR) with corresponding Larmor frequencies ω1, ...,ωN and transverse

relaxation times T21, ...,T2N . The signal of free induction decay is therefore equal to

s(t) =
N

∑
k=1

nke−t/T2kei(Ωkt+φk), (2.20)

where nk is proportionate to the number of spins of the given type, Ωk is the Larmor fre-

quency corresponding to ωk in the rotating coordinate system and φk is the corresponding

initial phase.

For better interpretation, the Fourier transform of the signal is often used. The Fourier

transform (FT) transforms the signal from time to frequency domain. The resulting func-

tion s(ω) is called a spectrum. Due to the linear behavior of the Fourier transform the FT

of a sum of signals is a sum of FT of the individual signals.

S(ω) =
N

∑
k=1

Sk(ω) =
N

∑
k=1

FT [nke−t/T2kei(Ωkt+φk)](ω), (2.21)

where

Sk(ω) = FT (nke−t/T2k) = nkeiφk ·T2k/(1− i(ωk−ω) ·T2k). (2.22)

The real part of the spectrum is the absorption Lorentz curve while the imaginary part

is a dispersion Lorentz curve. Usually the real part (absorption curve) is used for the pur-

poses of NMR spectroscopy, its peaks are narrower and diminish faster on the side lobes.

This helps to distinguish various peaks in the spectra especially if their resonance fre-

quencies are similar and the peaks overlap. To get the absorption part of the spectrum the

phase term needs to be negated by multiplication by a term with an opposite phase. This

multiplication is called phase correction. Phase correction is usually applied manually by
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tuning the phase of the correction term until the peaks are narrow. It is also possible to use

absolute spectra. Absolute spectra have wider peaks but do not require phase correction.

Some interesting properties of the absorption curve are:

1. individual peaks reach their maxima for ω = ωk and the maxima values are nkT2k

2. line width of the individual peaks are equal to 2/T2k

3. the surface under the individual peaks (integral of sk over ω) is equal to nkπ and can

be used to calculate concentrations of the spins of the given type within the sample.

2.2.4 NMR Spectra Localization

In order to determinate metabolic concentration correctly, it is necessary to measure spec-

tra from a predefined region. Specifically it is important to measure a signal from very

small volumes (voxels) which can be selected and localized according to previously mea-

sured MR images. Localized in vivo 1H NMR spectroscopy includes single voxel spec-

troscopy (SVS) and spectroscopic imaging (CSI).

A spectrum from a single voxel (SVS) can be acquired by measuring the signal from

the point of intersection of three perpendicular planes excited by the use of gradient mag-

netic field and RF pulses. This can be done with a PRESS (Point Resolved Spectroscopy)

or STEAM (Stimulated Echo Acquisition Mode) measuring sequence in which only a

preselected part of the sample is excited by selective RF pulses.

In spectroscopic imaging (CSI) signals from multiple regions within one plane are

measured by sequential changing of the gradient values in two perpendicular directions.

For all of the sequences mentioned RF pulses with a rectangular (or as close to as possible)

profile in the frequency domain are used (usually a sinc function). These pulses enable the

excitation of a cubical volume in the previously selected exact location.

Only PRESS sequence will be further described as it was used in the experimental

measurements for this thesis.

2.2.5 PRESS Sequence

For volume selection frequency selective RF pulses combined with application of addi-

tional gradient magnetic field are used. Signal measured in the PRESS sequence (Fig. 2.2)

is a spin echo signal discussed earlier. This sequence consists of three selective pulses,
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one π/2 pulse and two π pulses. Simultaneously with the first RF pulse a gradient mag-

netic field Gx in the direction of the x axis is applied. This way only spins in a plane

perpendicular to the x axis are excited. After time T E1/2 gradient magnetic field Gy in

the direction of the y axis is applied simultaneously with the second RF pulse. This way

spins in the plane perpendicular to the y axis are excited. In the region of intersection of

the two excited planes spin echo signal will emerge in time T E1. However, this signal

is not measured. In time T E1+T E2/2 a gradient field Gz in the direction of the z axis is

applied simultaneously with the last RF pulse. In time T E1+T E2 the spins from the point

of intersection of the three planes will come back to phase and generate a spin echo signal

only from the volume defined by all three planes.

In practice along with the gradients and RF pulses mentioned above additional gra-

dients are applied to reduce possible effect of undesirable signals. Gradients Gi can be

applied along any x, y, or z axis.

2.2.6 2D PRESS CSI

The plane selection in 2D PRESS CSI (2D Point Resolved Spectroscopy Chemical Shift

Imaging) sequence (Fig. 2.3) is analogical to the selection in the SVS PRESS sequence

itself. Unlike the PRESS sequence, here in addition N equidistant additional magnetic

field gradients G in the direction of the phase coding are switched on for time τ. In case

of 1D CSI with gradient Gx, the precession frequency ω of all the spins varies along the x

axis,

ω(x) = γxG. (2.23)

After time τ, all spins will again precede with the same frequency. However, their

phase will be different according to the difference in frequency at which they were pre-

ceding for the time τ. This will result in a phase shift Θ(x) at the end of the phase coding,

Θ(x) =−γxGτ. (2.24)

The phase shift of the preceding spins is distributed along the x axis. By introducing

the quantity kl for each value of the gradient Gl of the l-th step of the phase coding

kl =
γ

2π
Glτ =

γ

2π
l∆Gτ =−N/2...N/2−1 (2.25)

where N is the number of steps in the phase coding, the spatially dependent phase shift

Tl(x) corresponding to the l-th step of the phase coding expressed as

Θl(x) =−2πklx (2.26)
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Fig. 2.2. Basic scheme of the PRESS sequence. Source: [5].
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The signal measured is S(t,kl) is therefore a function of kl

S(t,kl) =
∫

s(t,x)e−i2πklxdx, (2.27)

where s(t,x) are the individual signals distributed along the x axis.

Fig. 2.3. Basic scheme of the 2D PRESS CSI sequence. Source: [5].

In case of 2D CSI phase coding is applied along two perpendicular directions. For

example while measuring signals from a transverse plane (presuming z is parallel to B0)

phase coding gradients in directions x and y are applied. By incremental change of these

gradients signals from individual voxels within the preselected plane are measured. This

way Nx by Ny signals are acquired.

In practice 2D PRESS CSI sequence usually follows a sequence for outer volume
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suppression (OVS) which suppresses the signal from the region surrounding the selected

CSI region which might otherwise reach into the measured area.

The data measured is reconstructed through 2D Fourier Transform from the frequency

domain (so called K-space) to the spatial domain separately for each timepoint.

2.3 NMR Spectra Processing

The task of quantitative analysis of the NMR signal is mostly to measure the integral

intensity of the signal, the frequency components of the signals and the frequencies of the

maxima and the transverse relaxation time T2. In medical practice NMR spectroscopy is

used to distinguish and identify signals of various metabolites in the spectra.

2.3.1 Metabolites of the Human Brain

Human brain contains wide variety of metabolites which can be detected through NMR

spectroscopy. The information about metabolite content in the brain tissue is helpful

in diagnosing and classifying human brain diseases and disorders such as brain tumors,

epilepsy, multiple sclerosis and many other. The main metabolites of the human brain

which can be detected in NMR spectra are N-acetyl aspartate (NAA), choline (Cho), and

creatine along with phosphocreatine (Cr+PCr).

N-Acetyl Aspartate

N-acetyl aspartate has a dominant narrow peak in NMR spectra from human brain. Its

resonance frequency is 2.01 ppm which comes from CH3 group a much weaker component

of the NAA signal is caused by CH2 groups. The role of NAA in human brain is unclear. It

occurs almost exclusively in neuronal tissue, specifically in cell sap of neurons. Therefore,

the presence of NAA is often associated with the presence of living neural cells.

Choline and Phosphocholine

Choline resonates on frequency of 3.22 ppm. The strongest sharpest peak comes from

N-CH3 groups. Choline derivates are mostly located in cell membrane or in the myelin

sheathing of the axon. From the strength of the choline signal mostly the metabolic activity

of the neuronal membrane can be estimated. In case of rapid cell death and membrane

decay, choline washes out of the membranes into the intercellular space while the intensity
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of its signal increases. Therefore, rapid increase of choline signal is often associated

with cell membrane decay. The signal of choline and phosphocholine have a very close

resonance frequency and are hard to distinguish in NMR spectra. Because of this the

signals are often considered to be one and processed together.

Creatine and Phosphocreatine

These two metabolites have two strong peaks, one from a CH3 group with the resonance

frequency at 3.01 ppm and the other from a CH2 resonating at 3.90 ppm. Creatine and

phosphocreatine play a very important role in energetic metabolism of the human body.

They participate in the synthesis of ATP,

PCr + ADP→ Cr + P + ATP. (2.28)

This reaction is extremely important because it allows the rephosphorylization of ADP to

form ATP and runs even anaerobically. Increased signal of creatine and phosphocreatine

is often associated with increased metabolic activity in the measured region. Same as the

above case of choline and phosphocholine, creatine and phosphocreatine have very similar

resonance frequencies and are again usually processed as one.

2.3.2 Determination of the Signals of Metabolites

The accurate assessment of the signals of the individual metabolites present in the mea-

sured signal is a key part of the quantitative analysis. In principle, the measured signal can

be processed in both time or frequency domain using parameterized or non-parameterized

methods and imposing a different degree of prior knowledge about the evaluated sig-

nals [6]. Each approach mentioned has its advantages and disadvantages, and the selection

of the processing method has to be considered for the given study (long or short T E, 1H

or 31P spectroscopy) and requirements (absolute quantification, processing speed). Sev-

eral programs enabling estimation of signal strengths or the concentrations of metabolites

directly have been presented. To quantify 1H SI spectra, the SI data interface CULICH,

using the LCModel program for spectra fitting, has been developed [7], [8]. The K-space

2D-FFT zero filling interpolation, K-space filtering and grid shift have been performed ac-

cording to the CULICH algorithm. The target concentrations used as targets for the train-

ing of the artificial neural network were acquired using the LCModel algorithm. There-

fore, a brief description of the CULICH preprocessing methods and signal analysis by the

LCModel program is given below.
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2.3.3 Description of the CULICH Preprocessing

CULICH is a program developed for chemical shift spectroscopic image processing and

result visualization. Currently, CULICH is used for data analysis of spectroscopic data in

IKEM; therefore the same spatial interpolation algorithm and grid shift were performed

on the input data as a part of the preprocessing process so that the results of the artificial

neural network can be compared to those of CULICH.

Because the point spread function is not rectangular and extends over many voxels, the

signal measured at the given position (the given voxel, in reality) is always contaminated

by the signals from other locations in the sample. This signal ‘bleeding’ leads to the loss

of localization precision, and it is the determining factor for the resulting resolution of the

SI experiment. The elimination of this effect by the deconvolution of the measured con-

centrations into the known point spread function and the true metabolite signal is generally

not possible, because all spectra in the SI grid are never available with the sufficient qual-

ity and deconvolution methods are very prone to noise. Even if the relative contributions

of distinct voxels are small, the contamination by lipid signal can be severe due to big

differences in metabolite and fat concentrations (1:103). Moreover, because the frequency

of the lipid resonances in distant areas are often shifted (owing to different magnetic field

strengths), signal bleeding may result in the spoiling of the whole spectral range.

For a fixed size of field of view, the profile of the point spread function improves if

the number of phase-encoding steps is increased. However, due to time constraints and

sensitivity reasons, a compromise in the number of encoding steps is necessary. Even if

the number of phase-encoding steps is limited, other possibilities of improving the point

spread function shape are available. Because the FT of the product of two functions is

the convolution of their FT, multiplying measured k-space data with a filter function will

influence the resulting point spread function. This post acquisition k-space filtering, also

called apodization, is realized by the multiplication of the measured k-space data with

symmetrical filters having the maximal value in the center of the k-space and smoothly

decreasing toward its edges. The operation is performed for all time points. By using a

proper filter function w(l,m,n), the point spread function profile can be improved. In this

case the Hamming filter

w(l) = 0.54+0.46cos(
πl

2lmax
), (2.29)

where l ranges over Nx sampled values, and lmax stands for the maximal sampled value of l.

Apart from the k-space filtering two additional preprocessing steps are usually performed:

Zero filling and grid shifting.
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After spatial reconstruction of SI data has been performed, spectra in all voxels of the

spectroscopic grid are available. It is possible to increase the number of voxels artificially

after the measurement. This operation, called zero filling, consists in appending zeros

symmetrically to the signal in K-space prior to the FT. Zero filling represents an interpo-

lation method and does not affect real spatial resolution. On the other hand it represents a

FT-tailored interpolation which helps to improve the readability of spectroscopic images.

Another unique feature of the FT reconstruction is the possibility of adjusting the exact

position of the grid after the measurement. This operation is based on the shift theorem of

FT. A multiplication of all k-space values by a proper phase factor before the DFT results

in shifting all positions of the voxels (the whole spectroscopic grid). This is very useful

since the partial volume effects play an important role due to the large voxel size. By

means of grid shifting, the area of interest can be centered to a specific voxel.

2.3.4 Description of the LCModel Program

The LCModel program is a commercial program, dedicated originally to single voxel

spectra processing. The program decomposes the measured in vivo spectrum into spectra

of individual metabolites measured in vitro, which form a basis set (see LCModel User’s

Manual [7] for more details.

To ensure the correct decomposition of the spectrum, the basis set must contain all

metabolites detectable in the in vivo spectrum. Since the concentrations of all in vitro

spectra in the basis set are known (Fig. 2.4), the basis set also serves as a concentration

reference, enabling the calculation of concentrations of in vivo metabolites in the spec-

trum. The concentrations are determined as follows: First both the in vivo data and the

in vitro basis set are zero filled to double the number of points in the time domain and

Fourier transformed. The discrete in vivo spectrum Y (νk) is then modeled using the basis

set metabolites Ml as

Ŷ (νk) = e−(φ0+νφ1)
[ NB

∑
j=1

β jB j(νk)+
NM

∑
l=0

Cl

NS

∑
n=−NS

SnMl(νk−n,γl,εl)
]

(2.30)

with the constraints

Cl ≥ 0 (2.31)

γl ≥ 0 (2.32)

(2.33)
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NS

∑
n=−NS

= 1, (2.34)

where Cl are concentrations of the NM metabolites measured in vitro.

Fig. 2.4. The decomposition of the spectrum (upper picture) into individual metabolites included
in the basis set (lower picture). Source: [4].

The NM metabolite spectra in the basis set, Nl(ν,0,0), are broadened to account for

shorter T2 times in vivo (the parameter γl) and shifted to account for small errors in refer-

encing the spectra (parameter εl).

The basis set metabolites Ml (νl , γl , εl) with the parameters γl and εl are calculated

from

M(νl,γl,εl) = FT (ml(t)e−t(γl+iεl)), (2.35)

where FT denotes discrete Fourier transform and ml(t) is the inverse DFT of the model

spectrum Ml(νl,0,0). The sum

NS

∑
n=−NS

SnMl(νk−l,γl,εl) (2.36)
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is a discrete convolution of the basis set metabolites Ml with the lineshape coefficients Sn

to account for field inhomogeneities and eddy currents. The baseline is modeled by NB

cubic B-splines, B j(ν) with equally spaced knots. Φ0 and Φ are zero and first order phase

corrections.

The model parameters are estimated using a Marquard modification of a constrained

Gauss-Newton least squares method

1
σ2(Y )

N

∑
k=1
{Re[Ŷ (νk)−Y (νk)]}2 +T = minimum, (2.37)

Besides the usual squared difference between the model function and the measured

spectrum resolved in N data points, the term T containing additional contributions im-

posing the smoothness and zero boundary conditions on lineshape coefficients Sn and the

smoothness of spline baseline in the minimized function is considered. The calculated

concentration values are provided along with estimates of their Cramer-Rao bounds.

The scaling of basis set metabolites and of the measured in vivo spectrum is performed

automatically by LCModel according to the volumes of the voxels and corresponding

transmitter reference amplitudes. The remaining corrections have to be performed indi-

vidually by the user. The standard output of LCModel analysis is shown in a figure below.

Original phased spectrum, fitted spectrum, residuum, baseline and estimated concentra-

tions with their Cramer-Rao bounds can be seen in the standard output (Fig. 2.5). In

addition, all estimated parameters as well as details of the spectra fitting are available in

the special text files.

2.4 Artificial Neural Networks

An artificial neural network (ANN), often just called a neural network (NN), is a math-

ematical model or computational model based on biological neural networks. It consists

of an interconnected group of artificial neurons (perceptrons) and processes information

using a connectionist approach to computation. In many cases an ANN is an adaptive sys-

tem that changes its structure based on external or internal information that flows through

the network during the learning phase.

In more practical terms neural networks are non-linear statistical data modeling tools.

They can be used to model complex relationships between inputs and outputs or to find

patterns in data.
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Fig. 2.5. The standard ‘one page output’ showing the results of the LCModel analysis. The fit of
the spectrum is shown by the thick line and the baseline by the solid black line under the fitted
spectrum. The residuum is shown in the upper part of the figure. On the right the estimated con-
centrations along with Cramer-Rao bounds and the ratio to creatine are shown for all metabolites
in the basis set. Source: [4].
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There is no precise definition as to what a neural network is, but most definition agree

that it involves a network of simple processing elements (neurons), which can exhibit

complex global behavior, determined by the connections between the processing elements

and element parameters. The original inspiration for the technique was from examination

of the central nervous system and the neurons (and their axons, dendrites and synapses)

which constitute one of its most significant information processing elements. In a neural

network model, simple nodes (called neurons or perceptrons) are connected together to

form a network of nodes—a neural network. While a neural network does not have to

be adaptive per se, its practical use comes with algorithms designed to alter the strength

(weights) of the connections in the network to produce a desired signal flow.

These networks are also similar to the biological neural networks in the sense that

functions are performed collectively and in parallel by the units, rather than there being a

clear delineation of subtasks to which various units are assigned.

In modern software implementations of artificial neural networks the approach in-

spired by biology has more or less been abandoned for a more practical approach based

on statistics and signal processing. In some of these systems neural networks, or parts of

neural networks (such as artificial neurons) are used as components in larger systems that

combine both adaptive and non-adaptive elements. While the more general approach of

such adaptive systems is more suitable for real-world problem solving, it has far less to do

with the traditional artificial intelligence connectionist models. What they do, however,

have in common is the principle of non-linear, distributed, parallel, and local processing

and adaptation.

Neural network models in artificial intelligence are usually referred to as artificial neu-

ral networks (ANNs); these are essentially simple mathematical models defining a math-

ematical function mapping a set of inputs on a set of outputs. Each type of ANN model

corresponds to a class of such functions.

There are various types of ANN, for the purpose of this thesis simple feedforward

artificial neural network were trained by a supervised learning algorithm called scaled

conjugate gradient backpropagation.

2.4.1 Feedforward Artificial Neural Network

The feedforward neural network was the first and arguably simplest type of artificial neural

network devised. In this network, the information moves in only one direction, forward,

from the input nodes, through the hidden nodes (if any) and to the output nodes. There are
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no cycles or loops in the network.

2.4.2 Supervised Learning

In supervised learning, we are given a set of example pairs (a set of targets x and a set

of outputs y), and the aim is to find a function f (x) in the allowed class of functions

that matches the examples (find f (x) so that y = f (x)). In other words, we wish to infer

the mapping implied by the data. The learning process is usually iterative. In order to

quantify the progression of the learning process a cost function needs to be defined. The

cost function is related to the mismatch between our mapping and the data and it implicitly

contains prior knowledge about the problem domain.

A commonly used cost is the sum of squared error which tries to minimize the overall

error between the network’s output, f (x), and the target value y over all the example

pairs. A common training algorithm for training neural networks which employs gradient

descent for the class of neural networks called Multi-Layer Perceptrons to minimize this

cost is called backpropagation.

Tasks that fall within the paradigm of supervised learning are pattern recognition, clas-

sification, regression, and function approximation.

2.4.3 Linear Perceptron

The Perceptron (Fig. 2.6) is a classifier that maps its input x (a vector) to an output value

f (x) (a single value). It is a simple decision machine. The perceptron can be viewed as

a classifier choosing its decision based on a set of advice from its advisors and adding its

own bias. The input vector can be viewed as a set of votes of the advisors. The classifier

has a certain trust in each of the advisors which affects how important the opinion of the

advisor is for the final decision. It weighs the opinions of its advisors based on the trust it

has in them and adds its own opinion (bias). The decision is made according to the sum of

the weighted votes. In practice the perceptron consist of a set of weights (a weight vector

w) used for the calculation of a weighted sum of the inputs (input vector x). To the total of

the sum a bias is added. Sometimes the result is run through an activation function which

maps the result to an interval within set bounds or a discrete set of output values (y).
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Fig. 2.6. Basic scheme of a perceptron. Image taken from the web.

Simple Perceptron Classifier

A single perceptron can work as a classifier used for classification into 2 classes 1, -1 with

inputs being real vectors from Rn vector space defining a decision hyperplane. Vector x
(x1, . . . ,xn) is the input vector defining a single point in the Rn vector space that needs

classification. Output y is the decision of the classifier (either 1 for class one or -1 for class

two). Vector w (w0,w1, . . . ,wn) defines the weights of the perceptron corresponding to the

values in the input vector, w0 is the bias of the pereptron. For the purpose of easier notation

a vector x′ is defined, where x′ = (1,x1, . . . ,xn). The activation function of the classifier is

a simple step function f (t) =−1 for t < 0 and f (t) = 1 otherwise. This function maps the

outputs of the weighted sum onto the set of classes 1, -1.

The perceptron classification function y(x) can be expressed as

y(x) = f (w0 +
n

∑
j=1

w j · x j) = f (w.x′), (2.38)

f (t) = sign(t) (2.39)

where the “.” Operator in w.x′ denotes a dot product of the two vectors.

Learning of a Perceptron

To get the classifier to work properly it needs to be trained on a set of examples, e.g. a set

of input vectors with a known affiliation to one of the classes. In the training (learning)
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process the weight vector w of the perceptron is adjusted so that all the examples are

classified correctly.

The perceptron can be viewed as a hyperplane dividing the input vector space into two

subspaces which define the two classes. Therefore, only linearly separable classes can be

correctly classified by a perceptron classifier.

The learning process is iterative, in each step the hyperplane is deflected so that the

new example lies on the correct side of the hyperplane. At first the weight vector is picked

randomly, then in each step the weights are adjusted following this pattern:

wnew = wold +α(yt− y)x′, (2.40)

where wnew is the new vector of perceptron weights, x′ is the extended input vector x, yt

is the correct target class for the input vector x, y is the output class assigned by the per-

ceptron to vector x according to the old weight vector wold, and α is an optional constant

called learning rate which affects the importance of each new example. From this pattern

it is obvious that the weight vector is adjusted only if yt is not equal to y, only if the classi-

fication is incorrect. This procedure is performed for each example from the training set.

If the two classes are linearly separable then the perceptron learning algorithm will always

converge to a solution.

Since the inputs are fed directly to the output unit via the weighted connections, the

perceptron can be considered the simplest kind of feedforward neural network.

2.4.4 Multi-Layer Perceptron

A multilayer perceptron is a feedforward artificial neural network model that maps sets

of input data onto a set of appropriate output. It is a modification of the standard linear

perceptron in that it uses three or more layers of neurons (nodes) with nonlinear activation

functions, and is more powerful than the perceptron in that it can distinguish data that is

not linearly separable, or separable by a hyperplane.

If a multilayer perceptron consists of a linear activation function in all neurons, that

is, a simple on-off mechanism to determine whether or not a neuron fires, then it is eas-

ily proved with linear algebra that any number of layers can be reduced to the standard

two-layer input-output model. What makes a multilayer perceptron different is that each

neuron uses a nonlinear activation function which was developed to model the frequency

of action potentials, or firing, of biological neurons in the brain. This function is modeled

in several ways, but must always be normalizable and differentiable.
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The main activation functions used in current applications are sigmoids, a differen-

tiable variation of a step function such as

f (t) =
1

1+ e−at (2.41)

or a hyperbolic tangent.

f (t) = tanh(t). (2.42)

The multilayer perceptron (Fig. 2.7) consists of an input and an output layer with one

or more hidden layers of nonlinearly-activating nodes. Each node in one layer connects

with a certain weight wi j to every other node in the following layer.

Fig. 2.7. Illustration of a 3-layer neural network. Image taken from the web.

2.4.5 Learning through Backpropagation

Learning occurs in the perceptron by changing connection weights (or synaptic weights)

after each piece of data is processed, based on the amount of error in the output com-

pared to the expected result. This is an example of supervised learning, and is carried

out through backpropagation, a generalization of the least mean squares algorithm in the

linear perceptron.
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To be able to adjust the weights a measure of error needs to be defined. In this case of a

multi-layer perceptron the output error is a function of all the weights in all the perceptrons

in all the layers. A backpropagation algorithm adjusts the weights in the output layer first

and then propagates backwards through the hidden layers adjusting the weights of all the

other perceptrons. The correct weights are such that minimize the output error. Therefore,

the task of the backpropagation algorithm is to find the minimum of the error function by

adjusting the weights. It is based on gradient minimization method, in each step a gradient

of the error function is calculated and the new weights are modified in the direction of the

greatest descent of the error function.

A common measure of the output error is the sum of squared error E over all N inputs

used for training

E =
N

∑
i=1

(yi− ti)2. (2.43)

Then then new vector of weights w(k +1) can be calculated from the old vector w(k)

w(k +1) = w(k)−α
∂E
∂w

, (2.44)

where α is a constant called the learning rate which defines by how much the new weights

will change in the direction of the greatest descent of the output error. So that the gradient

can be calculated, all activation functions of the perceptrons have to be differentiable. This

explains why sigmoids have replaced the step function used in single perceptron models.

First the error of the neurons in output layer is calculated. Then the error term for

hidden neurons is calculated by summing the error terms for each output neuron influenced

by the hidden neuron, weighting each of the error terms by the weight connecting the

hidden neuron to the output neuron. This weight characterizes the degree to which hidden

neuron is responsible for the error in the output neuron.

The training process is repeated for each of the input examples from the training set

and then for the whole set again until the convergence criterion is met. Some tasks allow

for the error to descent to zero for most a certain threshold is set. If the error descent below

the threshold or if it does not noticeably decrease for a number of iterations the training is

terminated.

Here is the basic scheme of the backpropagation algorithm:

1. Choose initial weight vector wk and set k = 1.

2. Determine a search direction pk and a step size αk so that

E(wk +αkpk) < E(wk).
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3. Update vector: wk+1 = wk +αkpk.

4. If E(wk) > T threshold then set k = k + 1 and go to 2. Else return wk+1 as the

desired minimum.

2.4.6 Scaled Conjugate Gradient Backpropagation

Scaled conjugate gradient backpropagation is a variation of a backpropagation algorithm

that optimizes memory usage and step size selection using principals of conjugate gra-

dient minimization developed in numerical mathematics for multivariate function mini-

mization [9]. It is useful especially for large scale neural network training where classic

backpropagation algorithms might run out of system memory. It also speeds up the con-

vergence of the training process considerably. The conjugate gradient method chooses the

search direction and the step size more carefully by using information from the second

order approximation of the output error as well.

2.5 Hankel-Lanczos Singular Value Decomposition

HLSVD is an accelerated approximation of singular value decomposition (SVD) through

Lanczos algorithm applied on a Hankel matrix. SVD is a method of identifying principal

components of a non-square matrix. Let’s assume a signal of length N which can be

expressed as a sum of M various damped sinusoids. It was shown that if such a signal is

rewritten in a matrix X so that the i-th row of the new matrix is equal to the signal rotated

to the right by (i-1) elements. This way an N by N matrix is formed. This new matrix has

M non-zero principal components. The first row of each principal component corresponds

to one of the damped sinusoids which formed the base signal.

SVD is not an elementary operation and for large matrices take in order of minutes to

run. If the number of damped sinusoids in the signal is known (M) a much smaller matrix

with the same principal components can be formed. This matrix is called Hankel matrix.

The Hankel matrix H has N−M + 1 rows and M columns. In the first row are the first

M elements of the signal. In the second row is the second to (M+1)st element and in the



CHAPTER 2. THEORETICAL PART 29

(N−M+1)st row are the last M elements of the vector:

H =



x1 . . . xM

x2 . . . xM+1
... . . . ...

xN−M . . . xN−1

xN−M+1 . . . xN


If M is a lot smaller than N then the size of the Hankel matrix H is a lot smaller than

the full matrix X and SVD runs a lot faster. To restore the vector corresponding to the

principal component the first column and the last row are read (elements x1 through xN).

For very complex signals even the Hankel matrix is too large to be fully decomposed.

Lanczos algorithm was developed to approximate the first largest singular values and the

principal components associated with them.
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Experimental Part

In the experimental part the protocols and equipment which were used to measure the data

that were further processed for the neural network training and performance testing are

described.

3.1 Simens Magnetom Trio-3T

For the purpose of magnetic resonance spectroscopy measurements in studied subjects

Magnetom Trio-3T designed by Siemens was used. Through superconductive coils cooled

by liquid helium it generates static magnetic field of magnetic induction 2.89 T. Full body

coil was used for excitation. The spectroscopic data was measured by an 8-channel Trans-

mitter/Receiver head spectroscopic coil with proton resonance frequency of 123.26 MHz.

3.2 Institute for Clinical and Experimental Medicine

The data used for the purpose of this thesis were measured at the department of magnetic

resonance at the Institute for Clinical and Experimental Medicine (IKEM) in Prague. Data

were measured on both healthy volunteers and patients. All the data from patients were

taken as a part of standard examination protocol used in IKEM; no additional burden was

put on the patients in order to gather data for the purpose of this thesis. Data for ANN

modeling and testing were taken from clinical examinations of patients and healthy vol-

unteers with written consent. The measurement procedures followed a protocol approved

by the Ethic Committee.

30
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3.3 MR Examination

Before the examination all the patients and volunteers were informed of the measurement

procedure. Most of all it was confirmed that the subject does not have any ferromagnetic

implants, cardio stimulator or a pacemaker.

During the measurement the examined subject is required to lie on his back back in

the tunnel of the MR scanner. His head is placed in the head spectroscopic coil. For

the purpose of best magnetic field homogeneity the center of the table is moved into the

tunnel so that the center of the spectroscopic coil is in the center of the body coil. For

safety measures each subject holds a signal balloon which can be pressed to signal any

distress or danger.

To localize the subject within the scanner a localizer sequence was performed. Then

proper MR images were taken. Lastly 2D CSI spectroscopic image was taken.

3.4 MR Image Acquisition

MR images were taken in 3 perpendicular directions: sagital, frontal, and transversal. In

each direction multiple slices were measured. The images were measured using a turbo

spin echo sequence (TSE). The slice thickness was 4 mm and the distance between two

equidistant slices was 10 mm. The MR images were used for proper volume of interest

(VOI) selection for the spectroscopic image acquisition. Once all the spectroscopic data

was measured and processed the results were projected onto the nearest MR image for the

purpose of visualization.

3.5 Spectroscopic Image Acquisition

Based on the MR images a slice for excitation is selected. In all the experiments used in

this thesis the slice thickness is 15 mm. Once the slice is selected the region of interest

within this slice is chosen. The volume of interest is divided based on the phase coding

step sizes into separate voxels. In this study the voxel length and width was set to 10 mm.

With slice thickness of 15 mm it means each voxel was 1.5 ml in large. The volume of

interest standard size is a grid of 8 by 8 voxels but for some of the experiments it was

adjusted slightly to fill the region needed for proper examination of the subject.

Once the volume is selected the magnet needs to be tuned to local inhomogeneities

of the magnetic field in the region of interest. The tuning (shim) is done by a set of 16
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coils. First the magnetic induction of the magnetic field is mapped. Then in an automatic

process process the inhomogeneity function is being minimized as a function of electric

currents in the shimming coils. This is a key part of the measurement. If the field is

not homogeneous enough the peaks in the NMR spectra are too broad to be distinguished

and properly identified. If the automatic shimming procedure fails the currents in the

shimming coils were adjusted manually. During the measurement additional sequence for

outer volume suppression (OVS) was applied.

A standard 2D PRESS CSI sequence was used for all the spectroscopic images. Rep-

etition time (TR) was set to 1510 ms while the echo time (TE) was 30 ms.

3.5.1 Water Suppression Sequence

The signal of hydrogen bound in molecules of water is the strongest component of the FID

signal from human brain tissue. With no water suppression the FID consists almost only

of the water component. For the purpose of this thesis water suppression was done by

application of an additional water saturation pulse during the 2D PRESS CSI sequence. In

water saturation an RF pulse is used to keep the hydrogen protons in the water molecules

fully excited so that they can not react to the next excitation pulse and that way contribute

to the FID signal.

For each subject two measurements were taken, one with water suppression using a

water saturation RF pulse, one with no water suppression. The signal of water is used

as a scale and allows quantifying the concentration of metabolites from the signal with

suppressed water by comparing it to the strength of the signal of unsuppressed water.

3.5.2 Spectroscopic Data Averaging

Because the MR signals measured in vivo have a low signal to noise ratio, signals acquired

through more measurements are averaged for better results. The signal of unsuppressed

water is so strong that only one acquisition needed to be taken compared to four averages

without the suppression. The number of averages is limited by the total time of the mea-

surement. A 2D PRESS CSI sequence with 4 averages used in this study takes 7 minutes

and 15 seconds to run. The maximum time spent in the magnet at once is 1 hour. Within

this time all the examinations prescribed by the doctor have to be done including possible

manual shimming which might be quite time demanding.



CHAPTER 3. EXPERIMENTAL PART 33

3.5.3 Delta Frequency

The volume of interest is excited by a sequence of radio frequency pulses. The position

of the excited volume is coded through frequency band of the excitation RF pulses. Since

the resonance frequency varies based on the type of the proton (or based on the metabolite

in which the proton is bound) the position of the excited volume varies slightly for each

proton type (metabolite). To minimize this effect the carrier frequency of the RF pulse,

is set to the central frequency of the metabolite spectrum. The difference between the

resonance frequency of water in vivo and the carrier frequency of the RF pulse is called

the delta frequency. For the purpose of this study the delta frequency was set to -2.2 ppm

(close to the resonance frequency of NAA) for measurements with water suppression and

to 0 ppm with no water suppression (so that the resonance frequency of water is in the

center).

3.6 Data Export

Once the data is measured it is exported from the scanner to sPACS, a database server, in

dicom format used for the purpose of medical imaging. Further processing of the magnetic

resonance signals was done on a PC in mathematical software called MATLAB. In order

to access the data in MATLAB a script widely used in IKEM designed to read dicom files

and decode the stored data was used.

3.7 Metabolite Concentration Quantification Toolbox

An application was designed in MATLAB which uses several dicom files from the scanner

as inputs: a set of T2 weighted MR images measured in slices parallel to the slice of the

chemical shift image, a 2D chemical shift image with water suppression, and a 2D chemi-

cal shift image with no water suppression. The application processes the 2D CSI measured

with water suppression (the metabolite spectrum), creates a voxel grid and assigns con-

centrations of NAA, choline, and creatine metabolites to each voxel. The 2D CSI image

with no water suppression (the spectrum of water) is used to estimate the water content

in each voxel. The signal from each voxel is devided by the water content in that voxel,

this means that final signal expresses the ratio between the metabolite content and water

content in the particular voxel—the metabolite concentration. Once the concentration of
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the metabolites are calculated for each voxel the result is plotted as a 2D map over a MR

image measured in the closest plane to the center of the CSI slab.

The application also allows optional uploading of corresponding results acquired from

the commercial LCModel software for comparison of the two methods. Once the LCM

results (targets) are uploaded an error map is calculated and the differences between the

two sets of results are processed statistically. The calculated error as well as the target

concentrations from LCM can be also plotted over the same MR image for comparison.

3.8 Spectroscopic Data Processing

Several steps of signal processing of the spectroscopic data are done before the data is

ready to be fed into the artificial neural network (illustrated in Fig. 3.1). First the 2D CSI

signal is interpolated to double number of voxels in each direction in within the measured

slice. Then the residual signal of water is removed from the signal. Then the signal is

filtered to reduce noise level. Then the signal is referenced to the signal of water. Now the

spectra are calculated and in the next step the baseline correction is applied to the spectra.

Now the data is ready to be used for ANN training, or if the network is already trained,

it can be fed into the network to obtain the desired concentration maps. Finally the maps

are visualized over a MR image. The procedure is summarized in a diagram in Fig. 3.2.

Below each step is described in detail.

3.8.1 2D Data Interpolation

The measured signals were stored by the 3T Siemens Trio Tim system in spatial domain.

To virtually increase spatial resolution (for the purpose of better transparency of the result,

the resolution of the MR experiment is not affected) the data were interpolated. In order

to interpolate a two dimensional inverse Fourier transform was preformed, then the data

were symmetrically padded by zeros to double resolution, then again transformed back

to spatial domain by a 2D-FFT. That way the size of the matrix from one subject was

32 by 32 voxels with a signal of 2048 time points each. The principals of the 2D FFT-

based interpolation are described in the theoretical part of this thesis.
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Fig. 3.1. Absolute NMR spectrum illustration. (a) Spatial configuration (16x16 voxel) of NMR
recording. (b) example of NMR raw spectra. (c) after HLSVD water suppression apodisation and
zero filling. (d) Same spectrum after baseline correction.
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3.8.2 HLSVD Residual Water Signal Removal

Since the signal of free induction decay is a sum of damped sinusoids (one from each type

of protons from the measured sample) the HLSVD algorithm can be used to identify each

component and quantify the concentrations of the metabolites associated with it. An open

source application which implemented this algorithm is called MRUI [10]. The perfor-

mance of MRUI on in vivo noisy signals measured with low external field homogeneity is

poor. However, this algorithm is very strong in residual water component identification.

Even after application of water suppression a significant remainder of the signal of

water persists in the signal. To remove the remaining water component HLSVD was used.

The most significant principal component of the signal after SVD shows to be a good

approximation of the remaining water signal [11]. In order to quickly calculate the first

singular value and the corresponding vectors, the Lanczos algorithm was applied on a Han-

kel matrix composed for the signal from each voxel. Once the component corresponding

to the first singular value is calculated it is subtracted from the signal (Fig. 3.3).
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Fig. 3.3. An example of raw NMR spectrum (blue) and NMR spectrum after HLSVD residual
water signal removal (red), the frequency axis is in samples.
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3.8.3 Noise Removal

To reduce noise the signal was multiplied by a time damped exponential e−t/500ms.

The significant signal components are time damped as well. After multiplication by

a damped exponential the significance of noise does not increase as rapidly with time.

Basically, each time point of the signal is weighted based on the SNR in that point.

The noise level is constant throughout the whole experiment while the signal diminishes

with time. Therefore the weighting function follows the absolute amplitude evolution of

the signal. The spectra calculated after this noise reducing procedure are significantly

smoother. However, the signal is damped as well and the metabolite peaks in the spectrum

are widened. Therefore, the time constant has to be selected carefully. For the purpose

of this thesis several values were tested, the value of 500 ms showed a good compromise

between peak broadening and noise level reduction.

3.8.4 Water Referencing

The same processing is done for the signals measured with no water suppression so that the

amplitudes of both signals are processed equally. Discrete fast Fourier transform (DFFT)

of the reference 2D-CSI signal of water, measured with no water suppression, is then

calculated and integrated across all frequencies for each voxel separately. The integral

corresponds to the water content in the particular voxel. For each voxel the amplitudes

of signal with water suppression are divided by the integral of the water spectrum of that

voxel.

3.8.5 NMR Spectrum Calculation

After removing the remaining water components, noise reduction and water referencing

the signal is padded with zeros to double resolution in time domain. Then discrete fast

Fourier transform is preformed and an absolute value is taken.

3.8.6 Baseline Correction

The spectrum now consists of a few metabolite peaks and an underlying baseline. The

points of the spectrum that are part of the peaks are usually a part of relatively a steep

slope. To identify the location of the peaks for each point of the spectrum a standard devi-

ation of the points in its near neighborhood is calculated. If the standard deviation is above
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a certain threshold (set to 20% of the maximum amplitude in the metabolite spectrum) the

point is classified as a part of a metabolite peak. The remaining points are classified as a

part of the baseline. Through these a polynomial of the order of 6 is fitted and subtracted

from the spectrum resulting in baseline correction (see Fig. 3.4). This is important since

the spectrum also contains signal components from larger macromolecules which are char-

acteristic with low amplitude very wide peaks. If these peaks are not removed from the

signal they can significantly affect the metabolite concentration estimation. The baseline

correction is applied only to a part of the spectrum, a wider neighborhood of the part of

the spectrum which contains all of the metabolite peaks. The polynomial fit error is largest

on the borders of the fitted area. Therefore, the area of interest is increased slightly for the

purpose of polynomial fitting (by 50 points on each side).
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Fig. 3.4. An example of NMR spectrum after HLSVD residual water signal removal (blue), and
the same spectrum after baseline correction (red), the frequency axis is in samples, frequency band
selection corresponds to the band used for ANN training.
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Fig. 3.5. An example of unprocessed NMR spectrum, the frequency axis is in samples, frequency
band selection corresponds to the band used for ANN training.

3.8.7 Spectral Band Selection

Finally only 800 points of the spectrum in frequency band from approximately 0 ppm to

4 ppm (all the metabolite peaks are within this band) is cut. Therefore, the final vector

representing the metabolite spectrum used as an input for the neural network is 800 points

long.

A raw NMR spectrum within this frequency band and a fully-processed spectrum

within the same frequency band are shown in Fig. 3.5 and Fig. 3.6, respectively.
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Fig. 3.6. An example of fully processed NMR spectrum, the frequency axis is in samples, fre-
quency band selection corresponds to the band used for ANN training.
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3.9 Training Data

Now that the preprocessing of a NMR chemical shift image is done enough data needs

to be collected and processed to allow training of an artificial neural network. For best

results the training set needs to be as large as possible with maximum possible variety to

maximize the generalization ability of the network. For best results 11 2D chemical shift

images from 10 subjects (over 2000 spectra altogether) were used for training. 7 subjects

were healthy volunteers, one was a patient diagnosed with a brain tumor, and two were

patients diagnosed with epilepsy. The quality range of the spectra was as wide as possi-

ble matching the quality range of the measurements that are found sufficient by the MR

department in IKEM for the purpose of medical diagnosis.

3.10 ANN Set-up

The set-up of the artificial neural network was determined experimentally. Networks with

two to four layers were tested. A network with only two layers (a perceptron) was tested

mostly to verify the complexity of the problem and to justify application of a multi-layer

perceptron neural network. Because of the size of the dataset larger four layer networks

were very time and memory consuming to test and in any of the set-ups tested did not

deliver acceptable results. In the three layer models a variety of hidden layers were tested

ranging from 30–300 neurons. The smallest number of neurons in the hidden layer that

allowed for the training algorithm to converge was 85 neurons. The initial idea was to train

one network with three output neurons, one for each metabolite. But separate networks

for each metabolite were tested later on and showed much better results and convergence

ability of the training process.

Finally the following set-up was chosen: The neural network has three layers. 800 points

in the input layer are necessary to meet the length of the input vector. The number of neu-

rons in the hidden layer was set to 100. The output layer consists of only one neuron. The

output is a real number and is directly equal to the approximation of the concentration of

the metabolite for which the network was trained. Concentrations are in laboratory units

(no correction for T1, T2, white and gray matter, and CSF or field inhomogeneity were

done). The output function for the hidden layer is tansig. There is no output function in

the output layer (it remains purely linear). Three networks were trained to calculate con-

centrations of three main metabolites in the NMR spectra of human brain (NAA, choline,

and creatine). As a convergence criterion the sum of squared error was used. Scaled conju-
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gate gradient backpropagation algorithm was used to train the network. Several variations

of the backpropagation training algorithm were tested. The scaled conjugate gradient

backpropagation proved to cope with the large scale of the data the best (memory-wise

as well as time-wise). The convergence criterion was set to total sum of error squared

of 0.5 in all 700 inputs used for training. The time needed for the training algorithm to

converge was approximately 10 minutes and 3000 to 5000 iterations were needed.

3.10.1 Training Dataset Reduction

Because of bad homogeneity of the magnetic field, some of the signals were not good

enough to be processed correctly. While such signals were present in the training set

the training algorithm could not converge. To enable the convergence of the training al-

gorithm the number of vectors in the training set was reduced to 700 spectra randomly

selected from the spectra of the training subjects. Moreover, the spectra too different from

an average spectrum from the training set was restricted from the training. Even though,

large variety of the training data is good for generalization ability of the network, some

spectra were totally out of phase or just of such bad quality that including them in the

training set prevents convergence of the training procedure of the neural network. The

similarity was determined by the correlation coefficient of the spectrum and an average

spectrum calculated from a large set of manually picked spectra used for training (a stan-

dard good quality spectrum). The right threshold needed to detect useless spectra was

found experimentally and set to 0.8.

3.10.2 Application of the Artificial Neural Network

Once the networks were trained they were ready for testing. For a CSI signal from a

MR tomograph to be analyzed by these networks it needs to be preprocessed by the same

procedures as were all the training signals. Once the set of spectra (one for each voxel

from the volume of interest) is calculated it is fed one by one to the three neural networks

to calculate the concentrations of NAA, choline, and creatine respectively for each voxel

separately.
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3.11 Data Visualization

When the concentrations are calculated a metabolite map can be plotted over a correspond-

ing MR image to demonstrate the spatial distribution of the metabolite. In the dicom file

downloaded from the scanner a precise location of the excited volume is noted. This infor-

mation is used to calculate the distance of each MR image slice measured from the central

plane of the chemical shift image. The MR images are measured from slices 4 mm thick

while the CSI slice is 15 mm thick. Moreover, the center of the MR image does not have to

match the center of the CS image. This has to be taken in consideration while evaluating

the images; the MR image serves mostly better orientation and special localization within

the CS image.

Once the MR image closest to the CSI slice is selected the metabolite map is plot-

ted over it. Some of the spectra from the measured volume of interest might be of very

low quality—usually the spectra from border areas or some areas of local field inhomo-

geneities which might be caused by bones, ferromagnetic metal deposit, tooth fillings,

brain cavities, etc. Such spectra were not included in the training data set and therefore

the result of the artificial network analysis can not be predicted. These results have very

low information. Moreover, these results can be numerically incomparable to the rest of

the data and affect the colormap scale of the plotted metabolite map in such a way that no

other data is readable. To avoid this effect the correlation coefficient of each spectrum with

the previously introduced standard spectrum (an average spectrum from a large number of

spectra in the training dataset) is calculated. The user can then manually pick a threshold.

Spectra from each voxel with the correlation coefficient lower than the selected threshold

are not shown in the plot.
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Results

4.1 Performance Test Data

Some data from healthy volunteers was used for optimization of all the parameters defining

the procedure such as network topology, noise reduction filter time constant determination,

convergence criterion value determination and other. To avoid dependence between the

data used for optimization and testing a completely new dataset was measured for the

purpose of testing of the developed application.

The performance of the system was tested on three healthy volunteers, one patient with

a progressive brain tumor, one patient with a suspicion for a brain tumor and one patient

with a suspicion for a metabolic disease.

4.2 Test Criteria

The main aim of the artificial neural network analysis was to duplicate the results of the

LCModel algorithm. Therefore the test criteria were set to describe the similarity between

the two algorithms. The main criterion is the visual similarity between the metabolite maps

calculated by each method. This similarity does not have to match in colors since those

are affected by the color scale which is defined by the maximal and minimal values within

the dataset. It is important that the areas with lower and higher metabolite concentrations

match for both algorithms.

Along with the visual criterion a few statistical values are calculated to describe each

method. To show the difference between the two methods an error map is calculated, it is

simply the map of absolute difference between the results delivered by the neural network

44
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and the LCModel algorithm. Then the average values of both methods are compared to

determine whether the neural network approximation is biased. To show how good an es-

timate of the LCModel results is the neural network able to deliver the standard deviations

of the methods are compared. Along with it an average relative error is calculated. All the

averages are calculated over all spectra from the CSI voxel grid.

4.3 Test Results

The spectra of healthy volunteers are usually very similar in each voxel of the excited

volume of interest. Therefore, this data is good for general performance test but it can

not be used to demonstrate the ability of the network to distinguish the difference between

spectra. Based on the results the data used for performance testing can be divided in three

groups.

First group of high quality spectra from two healthy volunteers measured from a large

area at the top of the frontal lobe of the brain did not show almost any variety. This data

was analyzed correctly with maximum relative error of 10%, the estimate did not show

to be biased (the average concentrations varied by ±5% and the standard deviations were

similar as well). This is a very good result. However, this was expected for this type of

data, such data can be processed successfully by the means of much simpler algorithms

(such as simple maximum amplitude detection) in shorter computational time.

Next group of the test subjects is represented by one patient with a suspicion for a brain

tumor. The measurement quality was very low and even the results from the LCModel

were questionable. The comparison of the ANN approach and LCModel was possible but

the meaning of the result is questionable.

The last group of test subjects was of most significance. The key test subject was a

patient diagnosed with a brain tumor. The LCModel identified the tumor as progressive.

Another good test subject was a 7-month old patient with a suspicion for a metabolic

disease. LCModel showed no significant asymmetry in the metabolite map. Data from one

of the volunteers was measured from cerebellum and was of poor quality. LCModel was

able to successfully identify the concentrations of metabolites from most of the volume

of interest. These results for these three test subjects are further discussed in more detail.

Table 4.1 summarizes the statistical comparison of the LCModel and ANN approaches for

this data.



CHAPTER 4. RESULTS 46

Table 4.1. Comparison of LCModel and ANN algorithm performance. Subject 1 is a patient

diagnosed with a brain tumor, subject 2 is a 7-month old patient with a suspicion for a metabolic

disease, and subject 3 is a healthy volunteer. High error and discrepancies in mean or variance are

usually caused by a small number of voxels near the border of a measured volume with the poorest

signal quality.

Choline Creatine NAA

Subject Method avg std er(%) avg std er(%) avg std er(%)

1 LCM 1.40 3 5.16 1.83 6.86 1.89

ANN 1.42 2.56 17.7 5.42 3.15 34 6.75 2.20 13.50

2 LCM 1.63 0.46 5.37 1.89 5.16 1.5

ANN 1.58 0.45 8.90 5.15 2.10 12.90 5.23 1.29 12.5

3 LCM 1.48 0.61 7.45 2.43 6.36 2.07

ANN 1.51 0.46 19.1 7.63 2.32 15.9 6.13 1.67 16.2

4.3.1 Patient Diagnosed with a Brain Tumor

An MRI scan showed pathological tissue in the brain of the patient, possibly a brain tumor.

High concentration of choline and low NAA points out low content of healthy neurons,

rapid cell membrane decay along with high amount of creatine showing intense metabolic

processes. The pathological tissue is probably a progressive brain tumor. Both LCM and

ANN models show the location and point out the nature of the pathology (Fig. 4.1).

4.3.2 7-Month Old Patient with a Suspicion for a Metabolic Disease

Analysis of 7-month old patient with a suspicion for a metabolic disorder is reported in

Fig. 4.2. In this examination it is vital to detect possible asymmetry in metabolite dis-

tribution in the two hemispheres. Both LCM and ANN models showed good symmetry

and almost exactly the same space distribution. The diagnose would not differ no matter

which model is used. However, ANN approach takes 5 minutes compared to several hours

in case of LCM.

4.3.3 Cerebellum 2D CSI of a Healthy Adult Volunteer

The data of adult healthy volunteer was acquired from the cerebellum as can be seen in

Fig. 4.3. The surrounding brain cavities and bone tissue causes magnetic field inhomo-

geneities and therefore the signal measured from this region is characteristic for its low
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(b) LCM detection (c) ANN detection
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(d) Error between LCM and ANN

(a) Suscipious brain tumour

Fig. 4.1. Comparison of choline, creatine, and NAA metabolite map calculated by LCM. (a) MR
image of suspicious brain tumor. (b) and ANN model (c) in case of patient with brain tumor. Tumor
can be seen in the left image. The tumor was detected very precisely in both cases.
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(a) LCM detection (b) ANN detection
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(c) Error between LCM and ANN

Fig. 4.2. Comparison of choline, creatine and NAA metabolite map calculated by LCM (a) and
ANN model (b) in case of a 7-month old patient with a suspicion for a metabolic disorder.



CHAPTER 4. RESULTS 49

quality. The results manifest the ability of the ANN model to follow the pattern of the

curve fitting algorithm even in case of these low quality inputs. Although the error is

significantly higher than in case of signals measured from the upper parts of the brain.

4.4 Discussion

In total over 1000 FID spectra were registered. The spatial distribution represented by the

metabolite map according to LCModel curve fitting algorithm was visually very close to

the approximation calculated by the neural network. For each subject the mean relative

error and sum of square error was calculated. Also mean and variance of the targets and

the calculated values were compared. The method did not show to be biased and the

concentrations estimated by the neural networks showed to have a similar variance.

The performance of the developed application was tested on a PC system powered

by an Intel Pentium 4 CPU with 512MB RAM while the LCModel application is run

on a local server in IKEM. Therefore, the computational complexity is hard to compare.

However, the ANN framework has reduced the computation to a couple of matrix multi-

plications and most of the computational time is spent on the signal preprocessing.

The LCModel license allows installation of the software to one hard drive exclusively

and was bought by IKEM for a considerable amount of money. The developed ANN

framework can be run on any PC which is able to run MATLAB 2006 or higher.

The LCModel performance can be rapidly increased by the means of advanced hard-

ware server upgrade which can be expected based on the pace of development of infor-

mation technology. This might seem to limit the usefulness of the ANN approximation,

which might turn obsolete, an already fast algorithm would not need further speed im-

provements at the cost of additional error introduction. However, the LCModel algorithm

is not the most advanced system used for spectral analysis. More advanced systems such as

non-linear curve fitting algorithms are already being tested. Such algorithms are currently

not used precisely due to their computational demands. With the advance of powerful

information technology hardware development of neural network approximation of these

much more complex algorithms might be considered. Moreover, with the advancement

of computational hardware the new artificial neural networks might be trained on much

wider set sets of training data and therefore, better generalization ability with lower output

error can be expected.
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(a) LCM detection (b) ANN detection
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(c) Error between LCM and ANN

Fig. 4.3. Comparison of choline, creatine and NAA metabolite map calculated by LCM (a) and
ANN model (b) in case of adult healthy volunteer.
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Conclusions

A preprocessing procedure was developed and an artificial neural network was trained

successfully. The ability of the designed application to analyze in-vivo spectroscopic data

from human brain was demonstrated.

The approximation using neural networks can give results with the mean error of under

15% within 5 minutes. Since the whole measurement is affected by a significant error due

to high amount of noise and bad homogeneity of the external magnetic field the error of

15% is acceptable.

The method is limited by the error of the LCModel algorithm. Since the LCModel

results are the only data used for training it is certain that the systematic error of the

LCModel algorithm is included in the output of the neural network framework. To counter

this effect including results acquired from multiple methods in the training dataset might

be considered. However, as of now the LCModel has a dominant position in the field of

in-vivo NMR spectroscopic data analysis and finding of a comparable system might be

difficult.

The designed framework is a black box algorithm and has limited generalization abil-

ity. It is impossible to ensure proper function for inputs significantly different from the

training set. For best results the training set needs to be as large as possible with maximum

possible variety. The training dataset might be broadened by including a set of artificially

generated spectra along with estimated results [2]. That way the variety of the dataset

could be increased to include samples of spectra specific for various known pathologies

that were not yet measured on the current scanner and therefore could not have been yet

included in the dataset.

The optimal topology of the network can not be derived. Due to the size of the in-

puts the training process for a large training set is time and memory demanding. Testing

51
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the performance for more possible topologies as well as reducing the length of the input

vector could improve the convergence of the training algorithm and that way enable larger

training sets to be used.

It was shown that an artificial neural network is able to cope with the metabolite con-

centration assessment problem. However, other methods such as the support vector ma-

chine might be considered as well.

The preprocessing does not count for possible phase shift. Some spectra are improp-

erly classified because of being out of phase. Phase correction as a part of the preprocess-

ing might be considered.

Even though the processing through the neural network is almost immediate the pre-

processing of the signals takes up to a couple of seconds for each signal. Commercial

software LCModel takes in order of minutes to process a signal from a single voxel. The

processing of a full CSI signal takes several hours to run.
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