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Epipolární narovnání obrazů pro stereovidění

Tématem této diplomové práce je epipolární narovnání obrazků pro stereovidění. Na
základě teoretického rozboru a znalosti současných metod jsou vybrány dva algoritmy
s důrazem na jejich schopnosti epipolárního narovnání obrázků z kamery s širokým
zorným úhlem v případě dopředného pohybu. Diplomová práce se dále zabývá možností
optimalizace vzorkovaní s přihlédnutím k lokálním spektrálním vlastnostem obrázku.
K porovnání přesnosti disparitních map získaných z rektifikovaných obrázků jsou použita
data z páru horizontálně uspořádaných kamer.

Epipolar rectification for stereovision

The topic of this diploma thesis is epipolar rectification. The theory and state of the
art are discussed emphasizing the rectification methods suitable for wide-filed-of-view
cameras with dominant forward motion. Based on the theoretical background two rec-
tification algorithms are chosen for implementation. The issue of optimized resampling
is addressed considering local spectral properties of an image. The disparity maps of
resulting rectified images are compared to a ground truth measurement obtained from
a pair of horizontally aligned cameras.
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1 Introduction

Imagine a robot who wants to explore the world. He has feet to walk on, but
no eyes to see with, just one camera. But there are many obstacles in his
way, that he must overcome. Will he be able to do that? Of course! Because,
once he starts moving, very exciting things can be done with his camera...

So what can we really do with a moving camera? We can for example retrieve depth
maps. This way our robot would be able to detect obstacles in its direction of move-
ment and act accordingly. Darpa Urban Challenge is an example of such application.
Autonomous vehicles took part in a competition proving that automobiles can drive
in traffic and are capable of maneuvers such as passing, merging and parking without
driver’s assistance. We should also mention another intersesting application, a view
prediction, which allows us to construct images previously unseen.

Another well-explored area is 3D reconstruction, Kamberov [9]. Going back to our
robot we could have him walk in a tomb of Egyptian pharaoh and get a complete 3D
model of his afterlife pallace.

So what do all these applications have in common? They all make use of stereo
matching. Stereo matching is an algorithm which finds corresponding points in given
images. In practice this usually leads to some correlation-based search, Ćech and Šára
[2]. This proves to be very demanding on both time and computational capacity. In the
worst case we have to compute correlations for all the area of the other image shifting
a correlation window pixel by pixel in both vertical and horizontal direction.

Fortunately a concept of epipolar geometry can be employed to reduce the search
dimension by looking for matches only along corresponding epipolar lines. Some stereo
matching algorithms work directly on the original images, but these methods typically do
not produce a large number of found correspondences. To obtain a very large number of
corresponding points we need to employ a dense stereo matching algorithm. In order for
it to perform efficiently, the images first have to be preprocessed by epipolar rectification.
Epipolar rectification is a geometric transformation of a pair of images mapping their
epipolar lines onto the scanlines, such that corresponding epipolar lines are on the same
row.

The focus of this thesis is epipolar rectification of an image pair with dominant for-
ward displacement. This is a typical camera setup in monocular stereovison, which
easily finds use in applications mentioned above. The thesis is structured as follows: in
Chapter 2 we see a quick overview of camera models and epipolar geometry. Chapter 3
discusses the rectification state of the art and based on the theoretical background suit-
able rectification methods are chosen and implementation details are further developed.
Chapter 4 presents an approach to optimized resampling of the image considering its
spectral properties. Experimental results are shown in Chapter 5, where disparity maps
are compared to ground truth measurements.
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2 Cameras and epipolar geometry

2.1 Perspective camera

A perspective camera realizes a perspective projection of a homogeneous scene point
X with entries

(
x, y, z, 1

)> onto the homogeneous camera sensor point u with entries(
u, v, 1

)> via a ray connecting X and camera center C as follows:

αu = PX , (2.1)

where P = K
[
R | −C

]
denotes camera projection matrix, K, R are calibration and ro-

tation matrices respectively and C is the inhomogeneous camera center. The calibration
matrix K bears an information about the intrinsic parameters of the camera, such as
pixel shape and camera center. The matrix R defines the orientation of camera-related
coordinate frame with respect to world coordinate frame. Note that in this camera
model any scene point lying on the ray through the camera center, is projected onto a
single point in the image, regardless of whether it is in front of or behind the camera.

Given two projection matrices P1 and P2 for reference and target camera respectively,
a scene point X is projected as a pair of points u1 and u2. These corresponding points
are bound by epipolar geometry as follows:

u>2 Fu1 = 0 . (2.2)

Epipolar geometry is characterised by a fundamental matrix F, which can be computed
as:

F = [e2]×P2 P+
1 , (2.3)

where epipole e2 is a projection of C1 into the target camera, e2 = P2 C1. Equation
(2.2) states that a projection u2 of a scene point X in the target view lies on the epipolar
line l2 = Fu1. An epipolar line l2 can be seen as an image of ray connecting X and C1.
Similarly l1 in the reference view is a projection of ray connecting X and C2. We see
that points X, C1 and C2 define a particular plane in space, which is called epipolar
plane. Such plane intersects the image planes in corresponding epipolar lines l1 and l2.
A line through camera centers C1 and C2 is called a baseline and it intersects image
planes of the cameras in epipoles e1 and e2.

2.2 Wide field of view camera

Wide field of view cameras are used in applications, where large visual field has to be
covered. Fish-eye lens and catadioptric system are typical examples. Using either of
them results in a warped image compared to linear camera model and we must take this
into account before we decide on rectification method.
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Perspective camera with radial distortion

Wide field of view cameras covering an angle lower than 180◦ can be described as a
perspective cameras with radial distortion. Such camera projection is modeled in two
steps. First the scene point X is perspectively projected according to (2.1) onto a point
u. Second the point u is transformed by some non-linear function r, Fitzgibbon [3], to
obtain a radially distorted point urd.

If we retrieve parameters of the radial distortion function r, we are able to remove
the image distortion introduced by it, thus leaving us with perspective camera where
epipolar geometry is described by (2.2).

Omnidirectional camera

Omnidirectional cameras are able to cover an angular field of view of up to 360 degrees.
They are often realized as a catadioptric system, i. e. an optical system consisting
of a mirror and a lens, such that their optical axes are aligned. Here a line through
the camera center has two intersections with camera image plane, as the camera sees
all around itself. According to [4] we may describe a projection of such camera by
two projection steps, where first we project onto the sphere via central projection and
second we project, depending on the mirror used in the system, from a specific point
lying between the center and the north pole of the sphere onto the plane whose normal
is aligned with optical axis.

Considering an epipolar plane in the first step we see that it is projected onto a
great circle. Projecting such great circle according to the second step onto the image
plane would yeild a general curve. We may imagine this projection as an intersection
of an image plane and a cone containing the great circle and whose vertex is a point
of projection. It is shown that in a case of parabolic catadioptric camera the point of
projection is at the north pole and that the great circles project onto circular arcs.

Given a point correspondences u1 and u2 in respective images the epipolar geometry
for parabolic catadioptric system may be defined similarly to (2.2) as follows:

ũ>2 F ũ1 = 0 , (2.4)

ũ =
(
u, v, u2 + v2 − 1

4
, 1
)>
, (2.5)

where ũ1 and ũ2 are the liftings of image points u1, u2 to a paraboloid via (2.5) and F
is a catadioptric fundamental matrix as introduced by Geyer and Daniilidis in [5].

2.3 Epipolar configurations arising from camera motion

Let us now briefly consider a moving perspective camera with fixed intrinsic parameters.
The camera at any moment is then defined by its rotation matrix R and center C. Given
two cameras P1 and P2 and connecting their centers C1 and C2 we obtain a baseline.
Now depending on the cameras’ relative rotations different epipolar configurations arise.
We may study such coonfigurations by examining the positions of epipoles in the image
planes.
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In what follows we will assume that optical axes of the cameras are aligned with the
baseline. We will now consider a rotation about an axis perpendicular to the baseline.
We see that there are certain intervals of angle θ ∈ (−α+ k π, +α+ k π) for which the
baseline intersects the bounded image area and intervals of angle θ ∈ (+α+k π, α+(k+
+ 1)π) for which it does not. If θ = ±α+ k π then the epipole lies on the boundary of
the image. We should differentiate between a case, in which the epipole is located inside
the image, and a case, in which it is ouside. As we will see in the following chapter, this
has a fundamental impact on the rectification approach taken. Having one epipole per
image there exist four possible groups of epipolar configurations.

1. Both epipoles are outside the image area and both angles of rotation θ1,2 lie within
(+α+ k π, α+ (k + 1)π). We should note a rotation of ±pi

2 as, if both cameras are
subject to such rotation, the epipolar lines become parallel to the baseline in both
views. Furthermore corresponding epipolar lines will be horizontally alligned in both
views, thus producing a rectified pair of images.

2. Both epipoles are inside the image, thus the angles of rotation are bound by (−α +
+ k π, +α + k π). In this case the epipolar planes project onto a set of half-lines
emanating from the epipole.

3. The epipole in the reference view is outside and θ1 ∈ (+α+ k π, α+ (k + 1)π), while
in the target view it is inside the image and θ2 ∈ (−α+ k π, +α+ k π).

4. The epipole in the target view is outside and θ2 ∈ (+α+ k π, α+ (k + 1)π), while in
the reference view it is inside the image and θ1 ∈ (−α+ k π, +α+ k π).

Setups 3. and 4. are considered identical as we only swap reference and target camera.
If we now, instead of the baseline, fix the orientation of the reference camera, we will
also come to four configurations mentioned above. Views with both epipoles far outside
the image arise from camera motion with dominant lateral component. For views where
both epipoles are inside the image is characteristic dominant forward motion. In the
case where target epipole is inside and reference epipole outside, the camera moved in
lateral direction and rotated so that the baseline intersects the image plane of the target
view.

2.4 Our camera

In our application the images are obtained by reversing camera with a horizontal angle
of view 130◦. Figure 2.1 shows an example. This camera most closely resembles a model
of perspective camera with radial distortion. Assuming that the radial distortion of an
image point is induced by a paraboloid of revolution and based on precise measurements
on the calibration grid the radial distortion function r was determined as follows:

r(u, ‖u‖) = u

2 b
f

1 +
√

1 + ‖u‖
f

2
, (2.6)

where u is the first coordinate of perspective image point u, b is a distance between
the center and vertex of the paraboloid and f is the focal distance of the perspective
camera and so the first coordinate of radially distorted image point urd = r(u, ‖u‖).
Seeing that the paraboloid is radially symmetric, the second entry of the distorted point
is computed in the same manner vrd = r(v, ‖u‖), leaving us with a radially distorted
image point urd = (urd, vrd, 1)>.
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Figure 2.1 A radially distorted image obtained by reversing camera.

We shall not go more into detail of radial distortion model used, as it is beyond the
scope of this thesis. More may be found in the work of Fitzgibbon in [3].

Three important things should be noted about the reversing camera in our application:
1. The radial distortion function is known and thus we may obtain a perspective camera

image and apply perspective epipolar geometry.
2. The radial distortion function is derived using a projection via paraboloid making the

distorted images suitable for epipolar geometry introduced by Geyer and Daniilidis
in [4].

3. In our application the camera’s most dominant motion component is in the direction
of optical axes.

This chapter gave us a quick overview of camera models and also discussed suitable
epipolar geometry for each of them. The topics intoduced here will be of importance in
the following chapter.
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3 Rectification methods

The goal of all rectification algorithms is to simplify the stereo matching algorithm task
of correspondence finding. This is done by some transformation mapping corresponding
epipolar lines onto the same row in both rectified images.

In this chapter we will mention the basics of rectification transformations and discuss
few of them in more detail and choose such, that are suitable for a reversing camera in
our application. Their implementation will be described.

3.1 State of the art

We may differentiate between the rectification algorithms based on the transformation
they perform to obtain rectified images.

Linear methods

The linear rectification methods are based on finding a linear projective transforma-
tion. The advantage of such approach is that only one transformation matrix needs
to be found for each view, thus resulting in high speed and simplicity of algorithms.
Another advantage is that rectified images still comply with perspective camera model.
According to [7] we look for a transformation that both sends the epipole to infinity,
thus aligning epipolar lines horizontally, and matches corresponding epipolar lines on
the same row. However a significant drawback of linear algrithms is, that they fail to
perform in such configurations, when one or both epipoles are inside the image, typically
yielding a rectified image stretching to infinity. In that case we may only process a part
of an image at a time, in order to keep the size of the rectified image within feasible
boundaries.

Non-linear methods

As opposed to linear methods we do not look for a linear transformation that would be
aplicable to the whole region of the image. There are several approaches to non-linear
rectification algorithms:

1. geometric transformations in 3D,
2. direct image domain transformations,
3. use of special camera geometry.

First approach involves some kind of geometric construction, where original images
are remapped onto a specific geometric figure to obtain rectified images. Roy, Meunier
and Cox [12] chose a cylinder which is oriented such that its axis is coincident with a
baseline. This way all straight lines on the surface of the cylinder become parallel with
focus of expansion, making them suitable as rectification targets. Now the object is to
find a map that takes corresponding epipolar lines and places them onto the surface of
the cylinder on the same angular position. This is done by first rotating the epipolar
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line in an epipolar plane so that it becomes parallel to field of expansion. Then a
transformation of coordinate system is performed to obtain the space point coordinates
with respect to a basis common for both images. The last step of the process is a
scaling, which projects the line onto the surface of the unit cylinder. Since the initial
rotation of corresponding epipolar lines is done in the same epipolar plane, these lines
will not only become parallel but also located on the same angular position. As we see
the three steps may be described by linear transformations in projective space. This
results in necessity of finding the three transformation matrices per each epipolar line.
The algorithm preserves the original epipolar line lengths, thus minimizing the lost
information in the process of resampling and is capable of rectifying images that arise
from a general motion of a camera always producing a bounded image.

Second approach is characteristic by strictly working in an image domain, choosing
corresponding epipolar lines and aligning them in an image domain of rectified images.
This approach proceeds sequentially building the rectified image line by line, enabling us
to control a the distance of two consecutive epipolar lines. Non-linear polar rectification
was proposed by Pollefeys, Koch and van Gool [11]. We may describe this algorithm
as partially linear, as we only apply a linear projective transformation to a very small
wedge part of the image with vertex at the epipole. A linear transformation has to
be found for every such wedge, which may be computationaly little more expensive,
but on the other hand leads to the ability of rectifying whole image for every possible
epipolar configuration, while keeping the size of resulting image reasonably large for
further stereo matching. The algorithm is designed in such way that no pixel loss is
guaranteed. Also the length of original epipolar lines is preserved, therefore the resulting
image is upper-bounded by 2 (W +H)×

√
W 2 +H2, where W is original image width

and H its height. An important property of this method is, that it uses a concept of
oriented epipolar geometry to reduce matching ambiguity to a half of the epipolar line
in a case of epipole inside the image. To do this one point correspondence is needed
in both views. The method uses a polar parameterization around the epipole to obtain
coordinates for rectified image points. Given two rectified images a stereo matching
algorithm performs 1

2Rc1 c2 correlations instead of Rc1 c2 needed with images obtained
by Roy et al. [12], where R stands for number of rows and c1, c2 are the numbers of
columns in respective rectified images.

Third approach uses a special type of camera geometry. A non-linear rectification
method proposed by Geyer and Daniilidis [6] is specifically designed to rectify a pair
of images obtained by parabolic catadioptric cameras. It uses a concept of parabolic
catadioptric epipolar geometry to find a closed-form rectification formula. A point in
the image is represented as a complex number and a bipolar system of coordinates is
employed to obtain the coordinates of rectified point. A bipolar system consists of two
mutually orthogonal sets of coaxal circles.

The equivalent to epipolar line in perspective image is an epipolar circle in parabolic
catadioptric image. As we have seen in the previous chapter the projections of antipodal
points are separate, and therefore a projection of camera center of one view has two
images in the other view, two epipoles e1 and e2. Any circle is defined by three points
in plane. All epipolar circles must contain both epipoles. Thus given a point z we have
a unique epipolar circle. An angle at vertex z of the triangle e1 z e2 parameterizes the
set of points lying on considered epipolar circle. Therefore we have one system of coaxal
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circles, where each circle is determined by an angle. For the other set of coaxal circles,
to comply with bipolar coordinate system, must hold that for any point w on a given
circle a ratio of distances ‖we1‖

‖we2‖ is constant. In the rectified image we want the epipolar
circle to be mapped onto a straight line. Indeed the authors had found such mapping
and furthermore it is conformal and therefore locally preserves angles. The range of this
transformation is −∞ to∞ in the real component and −π to π in imaginary component.
The epipole is a singularity of this mapping and so we must exclude the circular area
around. The size and resolution of the resulting image is determined by the position of
the epipoles.

3.2 Methods suitable for our application.

We now have enough information to make a qualified choice of the suitable rectification
method. We must exclude linear methods as they do not give reasonable results when
epipole is inside the image. From non-linear methods we have chosen the algorithms
introduced by Pollefyes et al. [11] and by Geyer and Daniilidis [6].

The selection of the first is justified by the fact that it reduces the matching ambiguity
to a half of the epipolar line in a case of epipole inside the image. Also it gives us a solid
framework for further optimization of the image resampling as will be shown in following
chapter. The latter choice has an advantage of working directly on the image obtained
by parabolic-distorted images, therefore we only need to resample the image once to get
the rectified images. Furthermore it is conformal and thus locally angle-preserving. This
may have a significant impact on the performance of the stereo matching algorithm.

3.3 Geyer and Daniilidis algorithm implementation

An existing implementation of this method may be found in a rectification toolbox
OmniRect created by Jan Heller [8]. We decided to use this toolbox as a basis for our
experiments.

3.4 Pollefeys’ algorithm implementation

Here the implementation details of the rectification method are discussed. At the end
of this section rectification capabilities are shown on synthetic images.

Common region detection

The task of this stage is to determine a pair of corresponding half-epipolar lines defining
a common region of the images. We must deal with three possible cases depending on
whether the epipoles are located inside or outside the image, Figure 3.1. Using a concept
of oriented epipolar geometry we can say that a pencil of epipolar planes intersects the
image in a set of half-epipolar lines emanating from the epipole. If the epipole is located
inside the image we need to resolve half-epipolar lines pointing in oposite direction,
which up to a non-zero scale factor are equivalent. Before we proceed further let us
state that entities belonging to or derived from the reference image are denoted by 1
in entity subscript and similarly for entities which correspond to the target image 2 in
entity subscript is used.
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Figure 3.1 Different position of epipole with respect to image leads to different common region
detection scheme. Note that in a and c the location of the epipole also determines the outer
corners of the images which are to be considered.

Both epipoles are outside.

Let us consider reference image with epipole e1. Regardless of the location of the
epipole extremal epipolar lines always touch the outer corners of the image c1, c2.
First we obtain extremal epipolar lines l11 and l21, such that l1,21 = [e1]× c1,2. Then we
compute l31 and l41, such that l3,41 = F> c3,4, where c3,4 are the two outer corners in the
target image. Checking whether the lines l3,41 intersect the picture area gives us three
possibilities, Figure 3.4:
1. Neither of the lines intersect the image, Figure 3.2a. The common region is defined

by lines l1,21 in the reference image and their corresponding lines l1,22 = Fc1,2 in the
target image.

2. Both lines intersect the image, Figure 3.2b. The common region is defined by lines
l3,41 in the reference image and their corresponding lines l1,22 = [e2]× c3,4 in the target
image.

3. Only one line intersects the image, Figure 3.2c. We now have three lines intersecting
the image l1,21 and lj1 defining regions in the image, where j ∈ {3, 4}. To determine
the lines bounding the common region we compute the lines l1,22 = Fc1,2 in the target
image. Only one line intersects the image area. Let li2 be this line. Then common
region is bound by lines li1 and lj1 in the reference image and by li2 and lj2 in the target
image.

Both epipoles are inside.

Here the issue of common region is simply resolved, because every epipolar line l1 in the
reference image has its corresponding epipolar line l2 in the target image, making all
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Figure 3.2 Possible epipolar line configurations when both epipoles are outside the image.

the image a common region. Now the problem of half-epipolar correspondence must be
reasoned. In general to arbitrary point u1 in reference image there is a corresponding
epipolar line l2 in target image. The epipole divides l2 in two half-epipolar lines. A
point correspondence to u1 must lie on one of them. To resolve on which of the two half-
epipolar lines point u2 lies we will employ a concept of oriented epipolar geometry. Given
a line l1 in the reference image its corresponding line l2 may be found by homography
H as:

l2 = H−> l1 , (3.1)

H = [e2]×F + e>2 a , (3.2)

where a is an arbitrary vector for which the determinat of H is nonzero. Let m1, m2

be point correspondences in respective images. We may use these correspondences to
determine whether the directional vectors of l1 and l2 aim towards the images of the same
scene points. To do this we compute the dot products f1,2 = l>1,2 m1,2, if they match in
sign, the epipolar line transfer by homography H is oriented, i.e. the directional vectors
of half-epipolar lines aim towards the respective images of the same scene point, if not
we simply change the sign of H.

One epipole inside and one outside.

Let us assume that the reference image has an epipole inside it. Then the common region
is determined only by the epipolar lines passing through the outer corners c3,4 of the
target image. We then get matching epipolar lines in the reference view l3,41 = F> c3,4

and apply concept of oriented epipolar geometry described in previous part to decide
on corresponding half-epipolar lines.
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Having determined the lines bounding the common region we will now denote one
pair of corresponding half-epipolar lines lB1,2 and the other lE1,2, where B,E stand for
begin and end respectively. These lines intersect the image boundary in points bB1,2 and
bE1,2, Figure 3.3. We will refer to them as the points where the sweep begins and ends.
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Figure 3.3 Common region is defined once the extremal epipolar lines are detected.

Sweeping the image

Once the common region is determined the rectified images are built up step by step,
mapping corresponding epipolar lines to the same row in respective rectified images.
To determine the distance between subsequent epipolar lines, simple condition of no
pixel loss is imposed, therefore the perpendicular distances d1,2 between two consecu-
tive epipolar lines in respective images must be less than or equal to 1 pixel, Figure 3.4.
Starting from a point pold

1 and setting the distance d1
1 to 1 we compute the candidate

for a next consecutive epipolar line by first getting pnew
1 in the reference image. We

then compute a corresponding epipolar line in the target view and determine the per-
pendicular distance d1

2. If it is less than or equal to 1 pixel, we have found the epipolar
lines in respective views. If it is greater than 1 pixel, we determine an epipolar line
with perpendicular distance 1 pixel from a point pold

2 and transfer it to the reference
view. Without further checking we have found the epipolar lines in question. This way
the algorithm sweeps the common region saving the coordinates of sampled boundary
in each step for both images.
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Figure 3.4 Consecutive epipolar lines distance detection.
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End of sweep

To ensure that the algorithm recognizes the end of common region, i.e. all the image
boundary of common region has been sampled a dot product of vectors vstop and vcurrent

is employed. A dot product can be seen as a projection of one vector into a direction
of another. Its value varies from maximum negative value, when vectors face oposite
directions, and maximum positive value when vectors coincide.

Let us consider a case with an epipole outside the image. Here, as we sweep the image
towards the terminal point, the dot product grows at the end reaching a maximum. Thus
the algorithm will terminate the sweep when it detects a change in monotony.

When both epipoles are inside the image, we wish to sweep across whole area of
image and terminate at the starting point. At first the dot product decreases reaching
a maximum negative value oposite the starting point, from then on it increases up to
a maximum positive value at the starting point. Thus we only need to stop the sweep
when second monotony change is detected.

In a case when one epipole is inside and the other outside the image, we may rely on
detecting the end of sweep in the latter image, though the same reasoning would apply
in the first case image, as the extremal epipolar lines must contain an angle lower than
180◦. See Figure 3.5 for concept illustration.

e

vstop

vcurrent

pcurrent
pstop

pold

vorig

uorig v resampled

u resampled

Figure 3.5 End of sweep detection.

Epipolar line read-out

At this point we have obtained a list of points pi1, pi2, samples’ coordinates of the image
boundary of respective images, and may proceed with reading out the half-epipolar lines
defined by li1,2 = [e1,2]×pi1,2.
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The direction of epipolar line read-out is uniquely determined by the coordinate sys-
tem of original image and by the sense of rotation while sweeping the image. The original
image uses a coordinate system uorig, standing for row coordinate, and vorig, standing
for column coordinate. In order for the rectified image not to be mirrored we need to
preserve the handedness of the original image, thus coming to a coordinate system of
the rectified image uresampled denoting row coordinate, and vresampled denoting column
coordinate. Figure 3.5 demonstrates this concept on one epipolar line.

Let us consider one image only. We sample the epipolar line li with one pixel being
the distance between two consecutive samples to acquire coordinates si,j = [ui,jorig, v

i,j
orig]

in the original image, where i denotes a row index and j a column index of the sample
in the rectified image, Figure 3.6. Applying the above process in both images yields a
pair of look-up tables, where ith rows are corresponding sampled epipolar lines li1,2. To
get functional values of rectified images the original images are interpolated at points
specified in look-up tables.
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i,j

orig

u
i,j
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Figure 3.6 Sampling of the epipolar line and construction of the rectified image. Note that
polar parameterization around the epipole is used to obtain the coordinates look-up table for
resampled image. A circle centered at the epipole is mapped onto a column in the rectified
image.

Rectification capabilities of our implementation

A generator of camera configurations was developed to thoroughly test the functionality
and performance of our implementation. Given the two epipoles and preset camera
internal parameters it computes the camera matrices and fundamental matrix for such
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configuration. The camera matrices are used to obtain synthetic images of virtual scene.
An illustration of the algorithm performance using synthetic input data are shown in
Figure 3.7.

In this chapter we have discussed the fundamentals of epipolar rectification. Con-
sidering all the relevant information we have chosen rectification methods suitable for
reversing camera and talked about concrete implementation decisions taken.
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Figure 3.7 Epipolar configurations arising from a general motion of the camera. Synthetic
refrence and target images are shown in the first two columns. Second two columns present
the respective rectified images. The fifth column marks the positions of respective epipoles in
one of the nine possible segments of the image plane. A circle denotes the position of reference
image epipole with respect to the image, a cross the position of target image epipole.
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4 Optimized sampling

The motivation behind the idea of optimized sampling was to design such a sampling
scheme, that would either speed up the stereo matching algorithm without significantly
distorting the resulting disparity maps. This may be achived by reducing the area of the
rectified images. Now we face a question: How do we know which part of the rectified
image may be reduced without affecting the disparity map?

4.1 Properties of an image

Typical image has some areas that carry significant amount of information and other
areas that lack it. Figure 4.1 illustrates the idea. Looking at the image we see that sky
area does not contain any valuable information from scene reconstruction point of view,
because the stereo algorithm will be hardly able to find any matches. On the other hand
we can assume that processing chimneys will result in many detected correspondences.

Figure 4.1 Different areas of an image contain different amount of information.

If we now consider an amplitude spectrum of such an image computed locally in
window of certain size, we see that areas of interest produce peaks located on higher
frequencies, whereas significant peaks of areas with little information are cumulated
around the zero-frequency component.

Before further exploration of the image amplitide spectrum, we need to consider, what
in fact happens with a given area of an image in the process of rectification.
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4.2 Rectification transform details

Let us first take a more detailed look on the rectification transformation. Consider an
image I, an oriented half-epipolar line lβ containing an angle β with the horizontal image
boundary lhb = [c1]×c2, where c1,2 are corners of the image. Let a

2 be a perpendicular
distance between lβ and l1 measured at pixel center and A

2 be this distance measured
on the image boundary, Figure 4.2. A pixel is subject to rectification transformation
T, which may be locally aproximated by rotation R and scaling S, such that T = SR.
The transformation matrices R,S are determined by the angle β and the distance a, so
that

R =
[
cosβ − sinβ
sinβ cosβ

]
, (4.1)

S =
[

1
a 0
0 1

]
. (4.2)

b

c
1

c
2

l
b

a

pixel

window

l
hb

l
2

l
1

aprop

Figure 4.2 Details of pixel transformation in the rectification process.

We will now look at the transformation as a sequence of four steps, when firstly 2D
image function is reconstructed in continuous domain, secondly the continuous image
function is transformed, thirdly the transformed image function is filtered by a low-pass
filter, before producing resulting image by sampling. We see that filter application prior
to sampling according to Nyquist sampling theorem is a part of the transformation, that
may result in spectrum losses. If we could measure these losses, it would give us an idea
of how severely the spectrum of rectified image is distorted [10].
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We will employ Bracewell’s affine theorem [1], according to which, if we apply a linear
tranformation expressed by matrix T on the image I to obtain an image I ′ , then the
amplitude spectrum of I ′ will undergo a linear transformation of T−>. This can be
rewritten as T−> = (SR)−> = R−> S−> = RS−>. Note that while in image domain
the scaling factor is 1

a in frequency domain it becomes an a.

Let us now consider an image I ′′ , which is obtained from I
′ by backward transforma-

tion T−1. The spectrum of such an image is in fact a clipped spectrum of original image.
The clipped area of spectrum is determined by Nyquist bounding box transformed by
T> according to Bracewell’s affine theorem. Inversely, looking at the spectrum of the
image I, we may directly infer, what part of the spectrum will be clipped off during the
rectification transformation.

4.3 Spectral loss function

We have seen, that it is possible to establish a measure of spectrum losses introduced by
rectification transformation. Now it is at hand to compute such measure with reagrds
to the epipolar geometry, so that it would tell us what sampling should be employed in
specific image areas.

Let p be an image point lying on lβ . Let β and A be the parameters of the trans-
formation as defined previously. Let L be a distance from the epipole to a furthermost
point on the image boundary measured on a line lβ and l be a distance from the epipole
to the point p. Then the parameter a at point p is given by a = l

L A.

Let W be a square window of size w × w, where w is an odd positive integer. Then
IWp is a part of the image I cut out by window W centered at p and F

{
fWp
}

is a
Fourier transform of continuous function fWp reconstructed from IWp . According to
Matoušek [10] we may now compute a local spectrum loss at a point p as follows:

λ(p | T) =
∫∫

S(T,p)

h
(F{fWp }(u)

)du, (4.3)

where S(T,p) denotes an area of lost frequencies at a point p given a transformation T
and h(·) is a frequency weight kernel.

Let us now consider a set of equally spaced points pi on the line lβ . A point pi
and its near surroundings are subject to transformation Ti, which may be expressed as
Ti = SiR. Since rotation remains the same for all the line lβ , the only difference is the
scaling factor ai = li

L A, where li stands for a distance between the epipole and a point
pi. We now define a spectrum loss Λβ along the epipolar line lβ .

Λβ =
∑
i

li
L
λ(pi | Ti) , (4.4)

where factor li
L is a weight, saying that the closer the area is to the epipole the lower sig-

nificance it has. This comes from a fact that the density of epipolar lines grows inversely
to the distance from the epipole, thus resulting in larger overlaps. To compensate for
these large overlaps we introduce the above mentioned weight.
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Figure 4.3 Loss function look-up detail. Different colors stand for a different distance between
two consecutive epipolar lines, i.e. the parameter Ak.

To define a spectrum loss function for all the image, Figure 4.3, we start with a set of
half-epipolar lines lβj , where consecutive lines are separated by a constant perpendicular
distance on the image boundary. Each such line defines an angle βj and a point on the
boundary bj . We may want the perpendicular distance to be less than or equal to a half
of the window size w in order to provide a sufficient overlap between two consecutive
windowed image parts. We now compute a spectrum loss along each epipolar line lβj

according to (4.5),

Λβj =
∑
i

li,j
Lj
λ(pi,j | Ti,j), (4.5)

where li,j is a distance measured from the epipole to the point pi,j , Lj is a distance
from the epipole to the point on the boundary and Ti,j is a transformation defined by
scaling factor ai and an angle of rotation βj .

The values Λβj are in fact samples of some continuous function. This function is
computed for certain value of parameter Ak, i.e. for certain perpendicular distance
between consecutive epipolar lines. We will denote such function as Λ(β | Ak).

Total spectrum as a function of epipolar lines

Let us now define a local spectrum total as

τ(pi) =
∫∫

S
h
(F{fWp }(u)

)du, (4.6)
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Figure 4.4 Total spectrum (thick blue curve) accumulated along the epipolar lines along with
lost frequencies for different parameter A. The value computed for a particular wedge segment
of epipolar lines shows a hypothetical loss for a case when whole segment is left out during
the rectification transformation. The red spot marks the position of the epipole.

where S is an area of whole amplitude spectrum F
{
fWp
}
. Similarly to spectrum loss

along the epipolar line we obtain spectrum total along the epipolar line

Tβ =
∑
i

li
L
τ(pi). (4.7)

Finally we compute the spectrum totals Tβj for each epipolar line lβj . Summing these
values yields a total spectrum T computed along the epipolar lines. Figure 4.4 shows
both total spectrum and spectrum loss function computed in the manner described
above.

4.4 Sweeping the image according to the loss function

In order to rectify the images with regards to their local spectral content, we first need
to retrieve these spectra and set other important parameters of the transformation and
then we move on to a decision scheme working on the basis of these data and parameters.

Parameters

Let B be a total length of the boundary between the two points bB and bE defined
by common region and let bj be a distance between a point bj on the boundary and a
point where the sweep begins bB measured along the boundary, Figure 4.5.
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Figure 4.5 Loss function parameters illustration.

We may now wish to limit a total amount of lost spectrum over all the image by a
certain number computed as ∆ = ηT, where η ∈ 〈0, 1〉. We define a maximum allowed
loss per unit length as δ = ∆

B . We compute a total amount of lost spectrum cummulated
up to a point bj as Γb

j
= bj δ.

Spectral content retrieval

Before we proceed further, we need to employ the concept of spectral loss function,
which offers a measure of information significance of considered image area. Given
arbitrary half-epipolar line lβa we would like to find such a scheme, that would tell us,
with regards to the local spectral content of an image, what is the maximum angular
step θ such that the following half-epipolar line is lβa+θ. An approach, that is based on
retrieval of spectral loss function samples, was chosen.

Let us consider a growing sequence of parameters Ak. Each such parameter defines
a continuous spectral loss function Λ(β | Ak) in a given image. These functions were
sampled at points bj to obtain a look-up table, where to each point bj and distance
bj corresponds a set of samples Λβj

Ak
. From now on by LUT we will understand such

look-up table and by LUT bj a set of samples at bj .

Decision scheme

Let us now consider a pair of corresponding half-epipolar lines lp1,2 defining points on the
boundary bp1,2 in both images. In a reference image we have LUT1 given at points bm1 ,
spectral loss per unit length δ1 and cummulated lost spectrum Γb

p

1 . For target image we
have LUT2 at bm2 , δ2 and Γb

p

2 . To obtain a pair of following half-epipolar lines lq1,2 we
will first decide on the maximum angular step in each image separetely and then choose
such step, that would comply with the condition of maximum allowed spectrum loss in
both images.
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Maximum angular step in one image

We project the perpendicular distances Ak onto the image boundary to obtain Ak,proj .
Then a linear estimate of cummulated spectral loss is computed for each Ak,proj such that
ΓckL = ck δ, where ck = bp +Ak,proj . We now use the look up table to find out function
values LUT ck at distances ck and compute a functional estimate of cummulated spectral
loss as ΓckF = Γbp + LUT ck . We may now compare the values of linear ΓckL and functional
ΓckF estimate and look for such k for which ΓckF ≤ ΓckL . Choosing a maximum k from
the sequence obtained and a corresponding value of parameter Ak ensures a maximum
angular step θ, while limiting the spectral loss to desired value.

Spectral loss with regards to epipolar geometry

Following the above pattern we compute the values of parameter A for both images and
we will denote them A1 and A2 for reference and target image respectively. From these
parameters we obtain candidate half-epipolar lines lh1 and lg2 and their correspondences
in the other image lh2 and lg1. These lines are separated by a perpendicular distance
Ah2 and Ag1 from lp2 and lp1 respectively. We now choose either A1 or A2 depending on
whether A1 ≤ Ag1 or A2 ≤ Ah2 holds. This way we know that, while in one image coming
very close to a maximum allowed spectral loss, we will certainly stay under the limit in
the other image. This way we have determined a pair of corresponding epipolar lines lq1
and lq2, thus we are now able to sweep whole area of common region.

4.5 Rectified images obtained considering spectral criterion

Here we present the results of spectral criterion application to rectification. The pair of
input images, Figure 4.6, was obtained by a camera forward motion. In Figure 4.7 we
may observe the effects of allowing different spectrum loss in rectification transformation.
Note the difference between leftmost and middle-left image. In the latter the chimney
and roof areas are preserved while the sky area is reduced. The number of rows is
reduced by 10%. The sky area is reduced even more in the middle-right image, but
here we observe some degradation of possibly significant areas, though it mainly occurs
on chimney tubes. The image size was reduced by 36%. The reduction of 55% in size
was achived in fourth image. Here the sky area is reduced to 10% of the image size,
while in the image rectified by non-spectral Pollefeys algorithm it is 28%. We see that
setting the allowed spectrum loss to higher numbers brings a significant reduction of
insignificant image area, this is summarized in Table 4.1.

Spectral loss % 0 1 3 5
Image area % 100 90 64 45

Table 4.1 Image size reduction as a function of allowed spectral loss.

For illustration of how the algorithm acts upon having the information about local
spectrum see Figure 4.8. The algorithm needs to comply with spectral criterion in
both images, while choosing corresponding half-epipolar lines. These two constraints on
the maximum perpendicular step become obvious around pixel 200. Here the reference
image loss function drops to a valley even with the little peak in the middle. This would
lead to a much larger perpendicular step, if it were not for relatively higher loss function
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Figure 4.6 Input images which are considered in this section.

values in the target image. But as there is local trough in the function, the algorithm
decides for a larger step in comparison to previously swept parts of the image. Similarly
we may look at the area starting at pixel 480, where peaky target loss function produces
peaky course of perpendicular steps. Note the plateau of maximum steps at the end of
reference function, leading to sloping sequence of perpendicular steps in target image.
This again is due to the fact,that corresponding epipolar lines must be chosen.

Finally we mention that further reduction of rectified image size may be achieved by
low-pass filtering of the image prior to rectification. The proposed spectral-conscious
rectification algorithm reacts to noise present in the image. Assuming that the data
are corrupted by noise with known or estimated characteristics, we may apply such
image filtration which would reduce the amount of noise while not harming the data
significantly. To illustrate this idea we show Figure 4.9. Here the size of rectified image
was reduced by 22%. More interesting is the reduction of sky and chimney tubes area,
where in filtered image it is 22%, while in non-filtered it is 32%.

We have shown that allowing different amount of spectral loss results in dramaticly
different size of rectified images. We presented the comparison of perpendicular steps
taken and spectrum loss function to prove that areas with little information tend to be
sampled coarsely, while areas with high amount of information are preserved. The image
size reduction is desirable as the stereo matching algorithm searches for correspondences
in smaller area. The question we need to answer is, whether the results obtained are
comparable with results obtained from images rectified by Pollefeys’ algorithm. This
question is addressed in the following chapter along with experimental results.
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Figure 4.7 Rectified reference image for different values of allowed spectral loss. The images
are shown preserving the relative ratios of their heights. Leftmost image: original Pollefeys
algorithm, middle-left image: spectral criterion allowing 1% loss of total spectrum, middle-
right image: spectral criterion allowing 3% loss of total spectrum, rightmost image 5% loss
of total spectrum.
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Figure 4.8 Illustration of image sweep and values of perpendicular steps separating consecutive
epipolar lines. The loss functions for different values of parameter A are scaled down so that
they are comparable with perpendicular steps. These are marked by × mark and connected
by dash-dot line. The data pertaining to reference image are in blue, data pertaining to
target image in red. The latter are plotted with 6 pixel offset for better intelligibility.
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Figure 4.9 A comparison of spectral criterion rectification with and without filtering. Left:
input image was not filtered, right: input image filtered with gaussian rotationally symmetric
kernel of size 5×5 pixels and standard deviation σ = 0.6. Both images were subject to
rectification transformation allowing a total spectrum loss of 3%. The images are scaled
so that it becomes obvious which areas become compressed.
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5 Experiments and their results

In this chapter the experiments are desribed and their results are presented. We first
look for a measure of accuracy of a disparity map obtained via stereo matching algo-
rithm from images rectified by our implementation of Pollefeys’ algorithm. Second we
focus on comparison of disparity maps resulting from Pollefeys’ algorithm and rectifica-
tion algorithm using proposed spectral criterion. Third the data obtained by reversing
camera used in cars are processed and resulting disparity maps are shown. All dispar-
ity maps were obtained by stereo matching algorithm ’GCS’ introduced by Čech and
Šára [2].

5.1 Disparity map accuracy

The following experiment was carried out on data from .enpeda..1 project [13], which are
publically available. The data consisted of image sequences, ego-motion data and time
stamps. The image sequnces were obtained by a pair of horizontally aligned cameras,
such that the resulting images were almost completely rectified. Precisely rectified
images were obtained by standard projective epipolar rectification. This camera setup
provided us with ground truth image pair for our experiment. Another pair of images
was obtained from the left camera moving in forward direction, Figure 5.1.

The latter pair of images was rectified by our implementation of polar rectification
described in previous chapter. We used the rectified horizontal pair of images as a
reference set and tested the rectified images obtained from forward cameras against it.
Once we obtain the rectified images 5.2 we apply the stereo matching. The result of
matching is represented by a disparity map, where to a position of found correspondence
in one image we assign a scalar saying where in the target image the matching point is
located, specifically:

D(u, v1) = v1 − v2 , (5.1)

where D(u, v1) is a value of disparity at point (u, v1) computed from column coordinates
v1, v2 of matching points located on row u. Note that only a scalar is needed, since the
images are rectified, i.e. vertical disparity component is always zero.

To see the impact of rectification on disparity map accuracy we employed a ground
truth measurement, where as a reference set we considered a pair of images obtained by
horizontally aligned cameras Pl

1, P
l
2. The evaluation scheme was:

1. The point correspondences found in forward pair rectified images were triangulated
to obtain a cloud of scene points X.

2. Scene points X were then projected into the cameras Pl
1, P

l
2 of stereo pair. We denote

these projections by ul1p, u
l
2p.

3. Disparity of projected points ulp1 , u
lp
2 was computed as D(ulp, vlp1 ) = vlp1 − v

lp
2 .

4. Applying a stereo matching algorithm to the images from cameras Pl
1, P

l
2 produced

a disparity map DG.
5. The disparity map DG was interpolated at points ulp1 to get values DG(ulp, vlp1 ).

1http://www.mi.auckland.ac.nz/DATA/6D/Examples01.htm
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Figure 5.1 Cameras’ setup used in this experiment. Bottow row: a pair of horizontal images.
Left column: two consecutive images from left camera are used to obtain a pair of forward
motion images.

6. Values of disparities D(ulp, vlp1 ) and DG(ulp, vlp1 ) were subtracted to obtain an error
of disparity ED(ulp1 ) at points ulp1

The results of this experiment are shown in Figures 5.3 and 5.4. Vast number of error
realization lie within the range < −5, +5 > pixels. In relation to the total number of
disparities considered the percent occurence moves around 80% depending on the frame
considered.

Analysis of disparities’ density in reference image prove that disparity content of
similar density in relation to the horizontal pair of cameras may be obtained from
forward motion cameras with typical value being 80%.

In both camera setups we can observe areas where stereo matching algorithm per-
formance is impaired. In horizontal pair these areas are characterized by little or null
texture in the direction of cameras baseline. The problem in forward pair is around the
epipole, where very small image area is stretched to a large area in the rectified image
and thus the texture is reduced. This may result in many ill estimated disparities in this
region and thus become a source of large error of disparites transfered to the horizontal
pair.
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Figure 5.2 Rectified images along with their disparity map. From top: reference rectified
image, target rectified image, disparity map. The colorbar shows the mapping of disparity
value in pixels to colors. The images are rotated by 90◦.
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Figure 5.3 Results of disparity map comparison. Here the disparity values are plotted to the left
camera of the stereo pair. Top left: disparities resulting from forward motion transfered to
the horizontal pair. Note the area of mixed extremal disparities on the ground. Consdidering
that the ground is static and is very near to the camera, we should get large positive values of
disparity in this region, that is to say that negative values of disparity are wrong. Top right:
disparities from stereo pair. The bottom left picture shows the error E at corresponding
points. Vast majority of realization lie within < −5, +5 > pixel interval. We see that the
area of mixed extremal disparities becomes populated with large errors. Bottom right picture
shows the histogram of error E.
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Figure 5.4 Results of disparity map comparison. Same positions of images as in Table 5.3.
Note the large number of mathes found on the horizontal bar of traffic light in top right corner
of the image in forward motion case and almost none in case of stereo pair. This may be
explained by almost no texture along the epipolar line in case of stereo pair, whereas forward
motion produces epipolar lines that cut across the horizontal bar at some angle. Interesting
atrifact may be seen in error picture. Here the matches on the car produce a very large
positive error values. This is caused by the motion of the car in forward camera pictures. An
increased number of large positive errors may be accounted to this fact.
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5.2 Spectrum motivated rectification and Pollefeys
rectification disparity maps

Now we return to the concept of optimized sampling introduced in previous chapter.
Having obtained the rectified images allowing for different amount of lost spectrum we
compare them to the method not considering spectral information. The comparison is
done on resulting disparity maps.

Figure 5.5 Rectified images: leftmost Pollefeys’ algorithm, middle-left 1% of total spetrum loss
allowed, middle-right 5% of total spetrum loss allowed, rightmost 10% of total spetrum loss
allowed. The images are presented maintaining their relative height ratios.

Figure 5.5 shows the resulting rectified images. Allowing a maximum spectral loss of
1%, 5% and 10% reduced the size of images to 90.5%, 46.8% and 29.6% of an image
resulting from Pollefeys’ algorithm respectively. Note that areas with high texture are
preserved. The most significant compression is done on the ground and the sky area.
We would prefer the compression of the sky area to the ground compression. But as we
may observe there are clouds in the sky that result in significant contrast change along
the epipolar lines. This may also be seen on Figure 5.6 where higher loss function values
are obtained for this area than for the ground area.

The results of stereo matching are shown in Figure 5.7. Here we may observe that
the more dense the disparities are in an area the less likely the area is to be reduced.
This certainly is what we tried to achive. Note the areas of sparse disparities in the
leftmost image grow denser as we move to the right. This means that the algorithm
preserves valuable information even in the areas that are compressed. Detailed versions
of disparity maps are in Figure 5.8. Here the Pollefeys’ disparity map was scaled down
verticaly to match the height of a disparity map obtained allowing a 5% spectral loss.
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Figure 5.6 Total spectrum accumulated along the epipolar line along with computed loss
function. Note the peaks on the left and on the right which in original image correspond to
the respective sides of the road, e.g. trees and buildings.

We immediately see, that in the right image, relatively to its height, the disparity dense
areas occupy larger parts of the map.

Disparities transfered to their proper positions in the original reference image are
shown in Figure 5.9. The difference in top two images is impercievable, note the top-
right image is obtained from images with height reduced to 90.5%. We may see that even
the bottom-left image is comparable to the top images. The allowed 10% spectral loss
lead to severe compression of the image and thus significantly lower density of transfered
disparities. Table 5.2 compares the considered rectification processes numerically. The
time consumption values say what portion of time unit is necessary for stereo matching
and are computed as a ratio of given rectified image number of rows and number of rows
in rectified image obtained with Pollefeys’ algorithm. The values of time consumption
are in relation to Pollefeys’ algorithm time consumption which is a unit cost. This
table also demonstrates how the disparity map density grows with growing spectral loss
allowed. The density is computed as a sum of all found matches, i.e. defined disparity
values, divided by total number of pixel in the image. Similarly we compute the density
of disparities transfered to original image. Indeed we see that visual impression, that
the top two images in Table 5.9 are the same, is supported by the disparity density
values, which differ only by 1.2% in favor of Pollefys’ algorithm.

Figure 5.10 shows a distribution of disparities in 100th row of all images presented in
Figure 5.9. Further visualization of the line is in Figure 5.11, where a detail of first 100
disparity line values are plotted with a relative offset. In both figures we may observe
that disparity values of all lines closely match, but different density of disparity samples
is achieved. Table 5.2 presents the number of computed disparities in chosen lines in
all four images. Again note the similar scores for first two methods. Lines 75 and 100
exhibit an interesting fact, because the number of defined disparities is actually higher
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in reduced image. This may be accounted to the fact, that in general each method
chooses different half-epipolar lines. Note that one line of disparity values comes from
many lines of disparity map, i.e. from many half epipolar lines. Therefore it is possible
that the algorithm chose such lines, along which the contrast is better preserved.

Size Disparity map density Time
Absolute Transfered Relative Relative

Pollefeys 1943 × 428 52.5% 37.6% 1 1
Spec. crit. 1% 1758 × 428 53.7% 36.4% 0.97 0.91
Spec. crit. 5% 910 × 428 57.8% 27.4% 0.73 0.47
Spec. crit. 10% 575 × 428 57.9% 20.1% 0.53 0.30

Table 5.1 Comparison of considered rectification processes. The size of original image was
481×640 pixels. Note large differences in computational cost.

Row 75 Row 100 Row 200 Row 275 Row 300 Row 400
Pollefeys 284 322 364 353 240 124

Spec. crit. 1% 304 328 362 351 238 90
Spec. crit. 5% 260 293 312 248 171 25
Spec. crit. 10% 187 237 269 148 124 12

Table 5.2 Comparison of considered rectification processes. Here we show a number of detected
matches in one row in images from Figure 5.9

Figure 5.7 Disparity maps corresponding to the images shown in Figure 5.5, same order is
followed.
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Figure 5.8 Illustration of reduced areas. On the left: a disparity map resulting from Pollefyes’
algorithm. The map was vertically scaled down to match the size of disparity map on the
right. On the right: a disparity map resulting from images rectified considering spectral
criterion allowing a loss of 5%. We may observe that areas with small number of disparaties
in left image get reduced in right image.
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Figure 5.9 Disparities plotted to their proper coordinates in the original reference image.
Disparity values originate from disparity maps shown in Figure 5.7. Top-left: Pollefeyes
rectification, top-right: 1% spectral loss resulting in height reduction to 90.5%, bottom-
right: 5% spectral loss resulting in height reduction to 46.8%, bottom-left: 10% spectral loss
resulting in height reduction to 29.6%.
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Figure 5.10 A profile of 100th disparity row projected onto the original image for rectification
methods: Pollefyes in blue, Spectral 1% loss in red, Spectral 5% loss in green, Spectral 10%
in magenta.The values of disparities are plotted with a relative offset 0.1 pixel so that the
visual comparison is possible, since the values coincide in most cases.
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Figure 5.11 A profile of 100th disparity row projected onto the original image for rectification
methods: Pollefyes in blue, Spectral 1% loss in red, Spectral 5% loss in green, Spectral 10%
in magenta. Detail of first 100 columns. The values of disparities are plotted with a relative
offset 0.1 pixel so that the visual comparison is possible, since the values coincide in most
cases.
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5.3 Rectification of wide field of view cameras

In this section we present the data obtained with reversing camera. The camera was
mounted on the rear part of the vehicle. Motion by this camera has a dominant forward
(in this case backward) displacement component. Figure 5.12 shows two consecutive
frames.

Figure 5.12 Original input images obtained by reversing camera. The camera was found to
closely match a perspective camera model with radial distortion.

Figure 5.13 Images obtained by radial distortion removal from images in Figure 5.12. Note
that large part of the view is occupied by insignificant data, e.g. license plate and hood of
the car.

Pollefyes’ polar rectification

As was noted previously the camera was found to closely follow the model of perspective
camera with radial distortion, thus producing warped images. The radial distortion (2.6)
was removed from the images, resulting pair of images is shown in Figure 5.13. As we
may observe there are large areas in the image, which we do not wish to process, as
they to not bear any significant information, therefore the images are further cropped
to finally produce images which are suitable for rectification, Figure 5.14. The images
were rectified and results are shown in Figure 5.15 along with disparity map computed
by stereo matching. Again the disparities were transfered to the input reference image
to produce 5.16.

42



Figure 5.14 The images here were obtained by cropping images in Figure 5.13 with aim to
remove areas of image that do not possess any significant information.

Geyer and Daniilidis rectification

Here we ought to present the results obtained using a chosen implementation of this
conformal rectification. Unfortunatelly we were not able to match the calibration of
reversing camera with camera model used in [8], although large amount of time was
dedicated to resolve this problem. Therefore we have not obtained any results that
would be comparable to outputs presented in previous sections.

We have presented the experiments and their results in this chapter. A ground truth
measurement of disparity map accuracy was conducted and results obtained show that
disparity maps from forward motion pair of images are comparable to disparity maps
from a stereo pair of horizontal cameras both in density and accuracy. Employing spec-
tral criterion we have provided a scheme reducing disparity map computation time,
which is of interest with regards to potential real-time performance of considered ap-
plications. We have also shown that reversing camera may be used to obtain dense
disparity content and commented on the set-back in experiments carried out using Om-
niRect toolbox [8].
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Figure 5.15 Images from Figure 5.14 were rectified and stereo matching was performed. The
top two are the rectified images of reference and target image respectively and in the bottom
a resulting disparity map is shown.
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Figure 5.16 The disparities in disparity map Figure 5.15 were plotted to their proper position
in the reference frame. Note that the disparities on the front part of the car to the right are
all close to zero, although quite far away from the epipole. This is due to the fact that the
car is moving in such way that relative motion of the car and the camera is close to zero.
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6 Conclusion

In this thesis we studied the topic of epipolar rectification with regards to wide field
of view cameras and dominant forward motion. This lead to a choice of rectification
methods that were found most suitable for our application. The algorithm described
by Pollefeys et al in [11] was implemented and throughly tested not only on the data
provided by reversing camera but also on vast set of synthetic data, which were provided
by data generator. An existing implementation of rectification method suitable for
omnidirectional camera introduced by Geyer and Daniilidis in [6] was chosen to carry
out the experiments but due to the fact, that calibration model of reversing camera could
not be translated into a camera model used in OmniRect toolbox [8], it was not possible
to obtain any results suitable for comparison with previously mentioned method.

The rectified images were used as input data for stereo matching algorithm which
provided us with disparity maps. The accuracy of disparity maps obtained was measured
by comparison with data from a pair of cameras aligned to produce rectified images. The
results of this measurement showed that the two disparity maps are comparable both
in density and accuracy. Relative density of 80% the density of disparity content from
horizontal pair of images was a typical value. Disparity map accuracy measurement
showed that around 80% of error realizations lie within < −5, +5 > pixel range. We
have seen that different information can be retrieved from horizontal pair of cameras and
pair of forward cameras. While there are situations when stereo matching perfoms better
in the horizontal pair, there are also situations when better results are obtained with
forward pair. A topic to explore in the future work is the fusion of the two information
channels. We could for example use them to identify moving objects, because these
would stand out in the disparity error image.

The topic of optimized sampling was addressed and lead to a proposition of evaluating
local spectral content of the image. Significant size reduction of resulting rectified images
was accomplished. We have also demonstrated how the disparity maps are affected by
the image size reduction. We used disparity maps obtained from images rectified by
polar rectification as reference and proven that spectrum-conscious approach leads to a
significantly higher reduction of rectified image size in relation to the density reduction
of resulting disparity map. This results in lower time needed to compute a disparity
content of specific density. One example for all: a disparity map density of 75% of
reference density may be achieved in half the time needed for reference disparity map
computation time.

We have seen that valuable content can be retrieved from a single moving camera
and that it should be considered as a valid source of complementary information to that
obtained from a pair of cameras.

...and the robot has moved.
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