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Abstract

Abstract

Malaria  is  a  an  infectious  disease  which  is  mainly diagnosed by visual  microscopical 
evaluation of Giemsa stained blood smears. As it poses a serious global health problem, 
automation of the evaluation process is of high importance. In this work, we attempt to 
contribute  to  the  problem  of  automatic  malaria  diagnosis  in  several  ways.  We  have 
developed a graphical user interface for segmentation of red blood cells and for creating a 
database of red blood cell samples. We also propose a set of features for distinguishing 
between non-infected red blood cells and cells infected by malaria parasites and evaluate 
the performance of these features on the set of red blood cells from the created database.

The developed graphical user interface provides all tools necessary for creating a database 
of red blood cells. It allows a user to execute a segmentation method for a particular blood 
smear image or for a whole set of images. It enables manual correction of the segmentation 
results,  labeling  of  segmented  objects  and  saving  the  results.  It  can  be  also  used  for 
viewing  or  editing  previously segmented  cells  stored  in  the  database,  it  can  be  easily 
configured to include new segmentation methods or new labels, and it proved to be a very 
practical  tool.  The  segmentation  technique  developed  particularly  for  this  task  is  also 
described in this work. The method is mainly based on the processing of a thresholded 
binary image and the watershed transformation is used as a principal method to separate 
cell  compounds.  This approach proved to  deliver  good results  on images  with various 
qualitative characteristics resulting in only occasional over-segmented cells.

The main part of this work is devoted to the extraction of features from the red blood cell 
images that could be used for distinguishing between infected and non-infected red blood 
cells. We propose a set of features based on shape, intensity, and texture and evaluate the 
performance of these features on the red blood cell  samples from the created database 
using receiver operating characteristics. The results have shown that some of the features 
could be successfully used for malaria detection.

Keywords: 
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segmentation; feature extraction; Matlab program
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Abstract

Abstrakt

Malárie  je  závažné  infekční  onemocnění,  které  je  diagnostikováno  mikroskopickou 
analýzou  Giemsou  barvených  krevních  roztěrů.  Protože  toto  onemocnění  představuje 
závažný celosvětový problém, na automatizaci celého vyhodnocovacího procesu se klade 
velký  důraz.  Tato  práce  popisuje  grafické  rozhraní,  které  bylo  vyvinuto  pro  účely 
segmentace  obrazů  krevních  roztěrů  a  pro vytvoření  databáze  červených krvinek.  Tato 
databáze  je  následně  použita  pro  vyhodnocení  sady příznaků,  které  byly navrženy pro 
detekci červených krvinek napadených malarickými parazity.

Navržené  grafické  rozhraní  poskytuje  veškeré  nástroje  potřebné  k  vytvoření  databáze 
červených krvinek.  Program umožňuje  segmentovat  vybraný vstupní  obraz  nebo celou 
sadu  obrazů  pomocí  navrženého  segmentačního  algoritmu  a  dále  umožňuje  manuální 
korekci  výsledků  segmentace,  přiřazení  třídy  daným  objektům  a  uložení  výsledků. 
Program lze rovněž použít k prohlížení a editaci již segmentovaných obrazů červených 
krvinek uložených v databázi. Nové segmentační metody a třídy mohou být do programu 
snadno  přidány  editací  příslušných  souborů.  Segmentační  metoda,  která  je  využívána 
grafickým rozhraním,  je  rovněž  popsána  v  této  práci.  Metoda  je  založena  zejména  na 
zpracování binárního obrazu získaného prahováním, přičemž pro oddělení překrývajících 
se červených krvinek se využívá watershed transformace. 

Hlavní část této práce je věnována extrakci příznaků z obrazů červených krvinek, které by 
mohly být použity pro rozpoznávání a detekci infikovaných červených krvinek. Popsány 
jsou  příznaky  vycházející  z  tvaru  objektu,  jasu  a  textury.  Jednotlivé  příznaky  jsou 
vyhodnoceny na obrazech červených krvinek z vytvořené databáze s využitím ROC křivek. 
Výsledky ukazují,  že  některé  příznaky by bylo  možné  s  úspěchem použít  pro  detekci 
malárie.
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1  Introduction

1 Introduction

Malaria  is  a  serious  global  disease  and a  leading  cause of  morbidity  and mortality  in 
tropical  and sub-tropical  countries.  It  affects  between 350 and 500 million  people and 
causes more than 1 million deaths every year [30].  Yet, malaria is both preventable and 
curable.  Rapid  and  accurate  diagnosis  which  enables  prompt  treatment  is  an  essential 
requirement to control the disease [31].

The most widely used technique for determining the development stage of the malaria 
disease is visual microscopical evaluation of  Giemsa stained blood smears. This process 
consists of manually counting the infected red blood cells against the number of red blood 
cells in a slide. The manual analysis of slides is, however, time-consuming, laborious, and 
requires a trained operator [40,41]. Moreover, the accuracy of the final diagnosis ultimately 
depends on the skill and experience of the technician and the time spent studying each 
slide [39] and it has been observed that the agreement rates among the clinical experts for 
the diagnosis are surprisingly low [42]. In this context, the development of a mechanism 
that automates the process of evaluation,  quantification and classification in thin blood 
slides becomes a high priority and the aim of this work was to contribute to improvement 
upon malaria  microscopy diagnosis  by removing the  reliance on the  performance of  a 
human operator for diagnostic accuracy. 

A number  of  methods  have  been  proposed for  automatic  parasite  detection  in  Giemsa 
stained blood films based on different approaches. These approaches include pixel-based 
parasite  detection  [17,21],  detection  based  on  morphological  processing  of  segmented 
parasites [2,3], or  detection by extracting image features from the segmented cells [4]. 
These methods are summarized in section 5. In this work, evaluation of malaria is based on 
the last approach.

The problem with many published papers is that the exact definitions of methods, features 
and their parameters used for parasite detection are not presented in sufficient detail to 
allow the reader to repeat the experiment. We already encountered this sort of problem in 
our  previous  work  [1].  In  this  work,  we  propose  a  set  of  features  and  evaluate  the 
performance for a general problem of distinguishing between infected and non-infected red 
blood cells. Some of these features have already been used in other works but some of 
them may be new for the problem of malaria parasites detection. Exact definition of these 
features is provided, including description of the parameters controlling the generation of 
the transformed images and description of the preprocessing steps performed. Individual 
sets of features are evaluated on a created dataset of red blood cell samples using ROC 
curves for different parameters controlling the feature extraction. Evaluation is followed by 
a discussion on the effects of different preprocessing techniques and possible utilization of 
these  features  for  more  specific  problems  of  distinguishing  between  different  types  of 
malaria parasites.

In order to create a database of red blood cell samples, a method for segmentation of red 
blood cells  in  the input  blood smear  images  have been proposed and a  graphical  user 
interface  have  been  devised  for  manual  correction  of  the  segmentation  results  and for 
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1  Introduction

manipulation  with  the  samples  comprising  the  database.  The  segmentation  method  is 
partially based on a previously developed technique, which is described in [1], but many 
modifications have been made to improve reliability and to conform to new requirements. 

This report is organized in the following way. In section 3, theoretical background about 
malaria and blood smears acquisition is given. In section 4, the input set of images and the 
programming  environment,  in  which  all  the  methods  are  implemented,  are  briefly 
described. Section 5 gives an overview of the state-of-the-art methods proposed in other 
works. The segmentation method is described in section 6 and details on the developed 
GUI are given in section 7. Section 8 briefly describes the structure of the created red 
blood cell database. In section 9, the proposed set of features is described and the results of 
their evaluation are presented. Finally, section 10 draws the conclusions. The appendices 
include the plots of the estimated probability density functions and ROC curves for the 
evaluated features and brief description of all files that are distributed as part of this work.
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2  Objective of the Thesis

2 Objective of the Thesis

The  objective  of  this  diploma  work  was  to  create  a  database  of  red  blood  cell  from 
available Giemsa stained blood smear images containing cells  infected by Plasmodium 
parasites and propose and evaluate a set of features that could be used for detection of 
Malaria. To automate the process of database creation, a segmentation method was to be 
proposed, which would determine the regions in the original image corresponding to the 
individual red blood cells and separate overlapped and occluded cells. The second task was 
to develop a tool with graphical user interface for manual correction of the segmented 
objects, labeling, and editing the cells in the database. The goal was to create a program 
providing all necessary tools needed for creation of and manipulation with the red blood 
cell database and that could be easily configured to be possibly used in future works. The 
individual cell images comprising the database should be stored in a transparent and easily 
accessible way so that they can be readily retrieved by anyone willing to perform malaria 
detection experiments. The aim was also to preserve in the database as much as possible 
information contained in the original blood smear images.

The purpose of the feature extraction and evaluation part was to provide a general guidance 
for a reader interested in designing a classifier  for detection and evaluation of Malaria 
infection.  The aim was to present a detailed description of a set  of features that  could 
possibly  be  used  in  Malaria  diagnosis,  including  exact  definitions  of  the  image 
transformations and measurements,  description of preprocessing methods,  evaluation of 
feature  performance  on  a  general  problem of  distinguishing  between  non-infected  and 
infected  red  blood  cells,  and  discussion  on  the  suitability  of  the  features  and  their 
sensitivity to various deficiencies among the input images, such as noise, or color and 
contrast variance.
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3 Background

3.1 Malaria

Malaria is caused by protozoan parasites of the genus Plasmodium. There are four species 
of Plasmodium that infect man and result in four kinds of malarial fever: P. falciparum, P. 
vivax,  P.  ovale,  and  P.  malariae  [33].  P.  vivax  shows  the  widest  distribution  and  is 
characterized by reappearances of symptoms after a latent period of up to five years. With 
the similar characteristics, P. ovale appears mainly in tropical Africa. P. falciparum is most 
common in tropical and subtropical areas.  It  causes the most dangerous and malignant 
form of malaria without relapses and contributes to the majority of deaths associated with 
the disease [32].  P. malariae is also widely distributed but much less than  P. vivax or  P. 
falciparum. 

There are three phases of development in the life cycle of most species of plasmodia [33]: 
exo-erythrocytic  stages in  the  tissues,  usually  the  liver;  erythrocytic  schizogony (i.e. 
protozoan asexual  reproduction)  in the erythrocytes;  and  the sexual  process,  beginning 
with the development of gametocytes in the host and continuing with the development in 
the mosquito.

When an infected mosquito  bites  humans,  several  hundreds  sporozoites (the  protozoan 
cells that develop in the mosquito’s salivary gland and infect new hosts) may be injected 
directly into the blood stream, where they remain for about 30 min and then disappear. 
Many are destroyed by the immune system cells, but some enter the cells in the liver. Here 
they  multiply  rapidly  by  a  process  referred  to  as  exo-erythrocytic  schizogony.  When 
schizogony is completed, the cells produced by asexual reproduction in the liver termed 
merozoites are released and invade the erythrocytes. In  Plasmodium vivax and  P. ovale, 
some injected sporozoites  may differentiate  into stages  termed  hypnozoites which may 
remain dormant in the liver cells  for some time before undergoing schizogony causing 
relapse of the disease.

When  the  released  merozoites  enter  erythrocytes,  the  erythrocytic  cycle  begins.  This 
process is referred to as erythrocytic schizogony. Within an erythrocyte, the parasite is first 
seen microscopically as a minute speck of chromatin surrounded by scanty protoplasm. 
The  plasmodium  gradually  becomes  ring-shaped  and  is  known  as  ring  or  immature 
trophozoite (Fig.1a).  It  grows  at  the  expense  of  the  erythrocyte  and  assumes  a  form 
differing widely with the species but usually exhibiting active pseudopodia (i.e. projections 
of the nuclei). Pigment granules appear early in the growth phase and the parasite is known 
as a mature trophozoite (Fig.1c). As the nucleus begins to divide, the parasite is known as a 
schizont  (Fig.1d-f).  Dividing nucleus  tends to take up peripheral  positions and a small 
portion of cytoplasm gathers around each. The infected erythrocyte ruptures and releases a 
number  of  merozoites  which  attack  new  corpuscles  and  the  cycle  of  erythrocytic 
schizogony is repeated. The infection about this time enters the phase in which parasites 
can be detected in blood smears. 
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3.1  Malaria

Some  merozoites  on  entering  red  blood  cells  become  sexual  gametocytes,  instead  of 
asexual schizonts. When gametes are ingested by a mosquito, the cells rapidly undergo 
gamete production. This is the third phase of development in the life of plasmodium, the 
sexual process of reproduction in a mosquito. 

a)  b)  c)

d)  e)  f)

Fig. 1: Development stages of the Plasmodium parasite. Image courtesy of CDC [35]

3.2 Giemsa Stain

Giemsa stain is used to differentiate nuclear and cytoplasmatic morphology of platelets, red 
blood cells, white blood cells and parasites [34]. Giemsa staining solution stains up nucleic 
acids and, therefore, parasites, white blood cells, and platelets, which contain DNA, are 
highlighted in a dark purple color. Red blood cells are usually colored in slight pink colors. 

3.3 Peripheral Blood Smears

Peripheral  blood  smears  or  blood  films  are  microscopic  slides  prepared  from a  blood 
sample that allow microscopical examination of blood cells. Blood smears are typically 
used for investigation of hematological disorders and for detection of parasites, such as the 
Plasmodium. Two sorts of blood smears are traditionally used [36]. Thin blood smears 
allow  better  species  identification,  because  the  appearance  of  the  parasites  is  better 
preserved in this preparation. Thick blood smears allow screening of a larger volume of 
blood and, therefore, they can give more than a ten-fold increase in sensitivity over thin 
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3.3  Peripheral Blood Smears

films.  However,  the  appearance  of  the  parasite  is  more  distorted  and,  therefore, 
distinguishing between the different species can be more difficult.

In principle, blood films are prepared by placing a drop of blood on one end or into the 
center of a slide and spread with the corner of another slide or a swab stick to cover an oval 
area along the slide. The aim is to get a region where the cells are sufficiently spread to be 
counted and differentiated. The well spread part of the blood smear, specifying the working 
area for microscopic analysis, is defined as a zone that starts on the body film side when 
red blood cells stop overlapping and finishes on the feather edge side when red blood cells 
start  to  lose  their  clear  central  zone  [37].  The  smear  is  then  thoroughly  dried  in  an 
incubator at 37ºC for around one hour. The dry film can be subsequently stained using 
Giemsa dilution.

For  malaria  diagnosis,  blood films should be prepared as soon as possible  after  blood 
samples are taken. Such films adhere better to the slides, leave a clearer background after 
lysis, and parasite and red cell changes are minimal [36]. This is a big problem in many 
laboratories in developed countries, because the delay left between taking the blood sample 
and making the blood films is too long. Further development of the sexual stages may 
occur even within 20 minutes under the right conditions and the male gametes released into 
the plasma may be mistaken for other organisms, such as Borrelia. If infected blood is left 
at warmer temperatures, schizonts will rupture and red cells may be invaded by released 
merozoites.  These  can  mistakenly  give  the  appearance  of  other  forms  of  Plasmodium 
parasites. Moreover, parasite and red blood cell morphology can be seriously affected if 
anticoagulants have to be used and blood has been in anticoagulant for too long time [38].

Microscopic examination of blood films is the most efficient and reliable malaria diagnosis 
technique and is very sensitive and highly specific, because each of the four major parasite 
species has distinguishing characteristics [39]. It allows differentiating between species, 
quantification of parasitemia, and observation of asexual stages of the parasite. Moreover, 
low material costs make the marginal costs of test very low [40].
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4 Materials and Methods

4.1 Blood Smear Images

Images  of  Giemsa  stained  blood  smears  were  selected  from the  Public  Health  Image 
Library [35] and they have the following common characteristics.

• Images  are  available  in  different  magnifications  and  sizes.  The  images  are 
available in TIFF format with the resolution of 2 to 3 megapixels

• Digital images are obtained by scanning and, therefore, contain apart of the noise 
and artifact from the sample and from the microscope light also noise from the 
chemical development process or from the scanner.

• Images exhibit high variability in color tone, intensity, contrast, and illumination. 
The overall color tone varies significantly from grayish, blue, purple, and pink to 
yellowish and it may even change from the center of the image to its borders 
(Fig.2). Some images have very low contrast (Fig.3a) while some images exhibit 
hight  contrast  between  infected  and non-infected  cells  (Fig.3f).  Many images 
suffer from irregular illumination.

• The overall shape and appearance of the cells may also vary substantially among 
the slides. Some cells lack their clear central parts (Fig.3b) and, in some images, 
cells  may  assume  shapes  that  differ  from  the  usual  circular  shape  (Fig.3c). 
Moreover,  red  blood  cells  are  often  overlapping  and  may  form  big  clusters 
(Fig.3d). Occasionally, blurring and various artifacts may also appear (Fig.3e).

         

      

Fig. 2: Samples of available stained blood smear images showing differences in color tone 
and illumination. Image courtesy of CDC/ Dr. Mae Melvin, Steven Glenn [35]

13Vít Špringl: Automatic Malaria Diagnosis through Microscopy Imaging



4.1  Blood Smear Images

      a)  b)  c)

      d)  e)  f)

Fig.  3: Cropped samples of available blood smear images showing different qualitative 
characteristics of  the input images. Image courtesy of CDC / Dr. Mae Melvin, Steven  
Glenn [35]

4.2 Matlab Programming Language

The entire project, including all functions, segmentation GUI, image database files, and 
feature evaluation scripts, have been implemented using Matlab programming environment 
version 7.7.0. Although we cannot guarantee that all functions will work properly with any 
older version of Matlab, most of the functions, and especially the GUI, were tested in older 
versions  of  Matlab  and  changes  were  made  where  necessary  to  ensure  backward 
compatibility.

Matlab  is  a  high-performance  language  for  technical  computing,  which  integrates 
computation,  visualization,  and  programming  in  an  easy-to-use  environment.  It  is  an 
interactive system using an array that  does  not  require  dimensioning as the basic  data 
element.  Typical  uses  include  math  and  computation,  algorithm  development,  data 
acquisition, analysis and visualization, modeling and simulation, scientific and engineering 
graphics,  and  application  development  including  graphical  user  interface  building.  It 
removes the need of programming many routine tasks for numerical computing and allows 
easy and quick displaying of results both in numerical form as well as in the form of 2D or 
3D graphs. The open-architecture of Matlab allows programmers to incorporate their own 
area specific set of functions implemented in separate m-files into Matlab, so that they can 
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4.2  Matlab Programming Language

be easily used by other functions and scripts written in Matlab. Information about digital 
image processing using Matlab and about programming graphics and GUIs with Matlab 
can be found, for example, in [43] and in [44], respectively. 

The following toolboxes are used and required in order to run all functions and scripts in 
the project:

• Image Processing Toolbox

• Statistics Toolbox

• Optimization Toolbox

The Image Processing toolbox is essential as it is used by most of the functions and scripts 
and it is the only toolbox required for running the segmentation method and the GUI. The 
Statistics Toolbox is used in feature extraction functions and the Optimization Toolbox is 
not strictly required as it is only used for computation of the shape measurements. 
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5  The State of the Art

5 The State of the Art

Automatic  malaria  diagnosis  based  on  Giemsa  stained  blood smear  images  have  been 
addressed in several works using different approaches.

In the work of Ross et al [4], an image processing techniques is described that is used to 
identify erythrocytes and possible parasites present on microscopic slides. The algorithm 
consists of preprocessing of the image, image analysis, image segmentation, generation of 
features, and classification of an erythrocyte as infected with malaria or not. 

The preprocessing and the image analysis parts follow, to a certain extent, the works of Di 
Ruberto [2, 3]. The preprocessing of the image includes filtration by a 5×5 median filter, 
followed by a morphological area closing filter. Only the green component of the true color 
original image is used for image analysis and segmentation.

The image analysis step includes calculation of the size and eccentricity of the erythrocytes 
and differentiating free-standing cells from the overlapping ones. The size of erythrocytes 
is determined via pattern spectrum which is calculated using granulometry. Granulometry 
is  computed  from the  difference  in  morphological  openings  using  increasing  sizes  of 
structuring elements. Free-standing erythrocytes are differentiated from overlapping cells 
by their area.

In  the  image segmentation  step,  potential  parasites  and erythrocytes  are  identified  and 
segmented from the background. The segmentation of the erythrocytes is accomplished by 
the  means  of  thresholding  of  the  green  image  component.  The  holes  in  the  resulting 
thresholded binary mask of erythrocytes are removed using morphological opening filter. 
To  segment  potential  parasites,  local  and  global  thresholding  levels  are  used  and  the 
resulting binary images are combined to obtain the parasite marker image.  To separate 
clusters of cells, a series of morphological operations is applied.

Two sets  of  features  are  proposed to  separate  classes.  The  first  set  is  based  on image 
characteristics that have been used previously in biological cell classifiers. These include 
geometric features, such as shape and size, color attributes derived from the red, green, 
blue, hue and saturation components (includes measures such as peak intensity, average 
intensity, skewness, kurtosis, and entropy of the component histograms), and gray-level 
texture features. 

The  second  set  of  features  utilizes  measures  of  parasites  and  infected  erythrocytes 
morphology that are commonly used by technicians for manual microscopic diagnosis. 
These  features  include:  the  relative  size  and  the  relative  eccentricity  of  infected 
erythrocytes,  smoothness of the cell  margin,  the relative color of infected erythrocytes, 
texture information, the number of parasites per erythrocyte, the number of chromatin dots 
per parasite, morphology of the rings, and others.

An erythrocyte  is  classified  in  a  two-stage  process.  First,  an  infection  is  classified  as 
positive or negative and, in case it is classified as positive, the species is assigned at the 
second node. Backpropagation feedforward neural networks are used for classification.
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Besides listing the features, the paper gives no details on which of the generated features 
were exactly used for the classification and includes no definitions or further specifications 
of the features. 

In  the  works  of  Di  Ruberto  et  al.  [2, 3],  objects  have  been  detected  by means  of  an 
automatic thresholding on single components of the RGB and HSV histograms based on a 
morphological approach. The articles describe morphological methods for both cell image 
segmentation  and  parasites  detection.  The  proposed  technique  uses  granulometries  to 
evaluate the size of the red cells and the nuclei of parasites and regional maxima to detect 
the  nuclei  of  parasites.  Morphological  techniques,  such  as  thinning,  gradient, 
reconstruction  by dilation,  and  morphological  filters  are  also  utilized  for  pre-  or  post-
processing of the images.

Red blood cell segmentation is performed by thresholding the green component image with 
non-uniform illumination  correction  using  fixed  paraboloid  model  of  the  illumination. 
Morphological area-opening filters are used to remove items smaller than a red blood cell 
and to fill the 'holes' left after thresholding. For the radius of the structuring element to be 
correctly set, the smallest size of the red cells is estimated from the size distribution based 
on the granulometric analysis. The morphological gradient is applied on the result to obtain 
a binary image which is used as a marker image in the watershed-based segmentation to 
find the contours of the red blood cells. Composite cells which are distinguished based on 
the roundness ratio are separated by applying a morphological opening filter.

The product of the binary thresholded H and S images is used as the marker image for the 
parasites and white blood cells detection. Morphological area closing on both the H and S 
components  and  the  regional  maxima  is  used  to  pre-process  the  images  and  the 
granulometric  analysis  is  applied  in  order  to  evaluate  the  red  cells  sizes  and  to  set 
accordingly the radius of the structuring element. The average gray levels of the nuclei 
marked by the intersection of the regional maxima on the H and S images are used as 
threshold values to detect the parasites and white blood cells in the H and S images. 

White blood cells are isolated from the parasites by means of a morphological erosion on 
the product of the binary thresholded H and S images. The white cells marked by this 
erosion are then reconstructed by dilation.

Parasites  are  classified  into  four  classes:  immature  trophozoites,  mature  trophozoites, 
gametocytes  and schizonts.  The schizonts  are  identified from the thresholded H and S 
marker image as areas with high clustering. To measure the separation of the objects in the 
image plane, Hausdorff distance [45] is used. All the objects with distance smaller than the 
average size of the red cells are considered to be schizonts. The remaining objects identify 
nuclei  of  parasites  and are  further  classified  as  immature and mature  trophozoites  and 
gameotcytes by analyzing the shape of the parasite. The presented method uses endpoints 
of digital skeletons generated by thinning algorithms to describe the shape and distinguish 
between the species of the parasites. The details of the classification method used were not 
published.

In [3], some more details are given on the background of the granulometric analysis and 
regional extrema and a second classification method is presented in addition to the one 
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described already in [2]. The second approach analyses the area around the nucleus of the 
parasite looking for the presence or the absence of small spots of chromatin around it and 
compares it  with a sample image object set  based on color histogram similarity.  Color 
histogram ensures the invariance to translation and rotation of objects, partially occlusions, 
and normalizing the histogram with respect to the object area leads to scale invariance. The 
histograms are computed on the infected red cell area, which are not nuclei of the parasites. 
The HSV color space is used to compute the histograms. This method, however, strongly 
depends on the choice of the reference colors and color space representation and requires 
sample objects which are used as prototypes. The system assumes stable color tone and 
intensity  among  the  stained  images,  defined  illumination  conditions,  and  known noise 
characteristic.

An  automated  image  analysis-based  software  “MalariaCount”  for  parasitemia 
determination, i.e.  for quantitative evaluation of the level of parasites in the blood, has 
been  described  in  [46].  The  presented  system  is  based  on  the  detection  of  edges 
representing cell and parasite boundaries. 

The described technique includes a preprocessing step, edge detection step, edge linking, 
clump splitting, and parasite detection. The preprocessing of the image, which involves the 
enhancement of the image contrast  via adaptive histogram equalization,  is  followed by 
edge detection,  where a pixel is determined to belong to the boundary edge of the red 
blood cells  if  a  defined edge correlation coefficient exceeds  an empirically determined 
threshold. The resultant edge contours are linked together through their terminal points to 
form closed boundaries. The terminal points are identified using 20 different 3 × 3 masks. 
In order to split the red blood cell clumps, the concavity pixels are detected and concavity-
based rules are applied to generate the split lines. Parasites are detected as regions with 
large edge response magnitude inside the red blood cells. Parasites are neither classified 
nor any other analysis is performed on the objects detected within the red blood cells. 

The  system requires  well-stained  and well-separated cells  in  order  to  provide accurate 
result.  Moreover,  artifacts,  'holes'  inside  red  blood cells  and  noise  can  lead  to  a  false 
interpretation of a red blood cell. The program is not intended for studies involving patient 
samples.

The paper by Díaz et al. [17] evaluates a color segmentation technique for separation of 
pixels  into  three  different  classes:  parasite,  red  blood  cell  and  background,  based  on 
standard  supervised  classification  algorithms.  Four  different  supervised  classification 
techniques – KNN, Naive Bayes, SVM and Neural network – are evaluated on different 
color spaces – RGB, normalized RGB, HSV and YCbCr.

Before applying the classification process, the luminance differences in the original images 
were corrected using a local adaptive low pass filter defined for a window size of the larger 
image  feature, in this case a typical red blood cell size. The images were subsequently 
represented in four different color spaces.

In order to separate pixels  into one of the three classes, a set  of training samples was 
manually  extracted  by  an  expert  and  each  pixel  of  the  training  sample  was  labeled 
accordingly. Using this set of sample pixels, a classification model was trained for each of 
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the tested color spaces (RGB, normalized RGB, HSV an YCbCr).  The classified color 
space was then used as a look-up table. Each classification model was tuned independently 
for its own particular set of parameters and all experiments were performed using a 500 
elements training data set.

Two  kinds  of  evaluation  were  performed.  In  the  pixel-wise  evaluation,  each  pixel  is 
classified as  parasite,  red blood cell  or  background.  The best  overall  performance was 
accomplished by the combination of a KNN classifier and YCbCr color space. The results 
show that the performance is generally significantly lower for the parasite classification 
than for the red blood cell classification. It is concluded in the paper that the complex mix 
of colors present in the parasites makes it difficult to discriminate individual pixels using 
only  color  information.  In  the  interest-object  wise  evaluation,  the  same  classification 
process is performed as the first step. After the application of the classification method, a 
basic filtering process is performed to keep only relevant objects in the image. During this 
process, small  and large regions identified as flaws are removed and near unconnected 
segments are evaluated for their relevance to a given parasite and if found relevant, they 
are considered as a unique object. In this case, the test set is composed of images where 
interest-objects, i.e. erythrocytes and parasites, are labeled, whereas in the first case, the 
test set was composed of labeled pixels. The achieved performance of the interest-object 
wise evaluation was much better than the one achieved at the level of pixel classification, 
with the best overall  performance accomplished by the combination of a KNN classifier 
and normalized RGB color space.

The article presents a simple method for red blood cell  and parasite detection with no 
classification of  parasites.  The approach is  based on a  classification  process  that  finds 
boundaries that optimally separate a given color space. No details on the filtering process 
performed  to  separate  the  relevant  objects  of  interest  are  given.  The  system assumes 
constant color tone in the input images, since only luminance differences are corrected. 

The paper by Tek et al. [21] presents a method to detect malaria parasites using a Bayesian 
pixel classifier to first separate stained and non-stained pixels and a distance weighted K-
nearest  neighbor  classifier  to  further  classify  the  stained  pixels  as  parasites  or  non-
parasites.  The  second  classification  is  performed  using  four  selected  features:  color 
histogram, Hu moments, shape measurements, and color auto correlogram, which are all 
rotation and scale invariant.

Before  applying  the  classification  process,  color  of  the  input  images  is  normalized  to 
decrease  the  effect  of  different  light  sources  or  sensor  characteristics.  The  color 
normalization is performed using an adapted gray world normalization method [22] based 
on the diagonal model of illumination in which an image of unknown illumination can be 
simply transformed to known illuminant space by multiplying pixel values with a diagonal 
matrix. 

To classify pixels  as  stained or  non-stained,  a  Bayesian classifier  using an RGB color 
vector as a feature was utilized. The class conditional probability density functions are 
estimated using a non-parametric method based on histograms. A training set of images 
with  all  the  stained  objects  manually  labeled  was  formed  to  calculate  the  probability 
density functions.
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The stained structures identified in the first classification step may contain, in addition to 
parasites, also other components, such as white blood cells, platelets or staining artifacts. 
In  order  to  identify  the  structures  among  the  stained  pixels,  infinite  morphological 
reconstruction [10] is applied using the stained pixels as markers and the negative gray 
level image to approximate the cell region which includes the stained group. This process 
merges some stained pixel groups belonging to the same regions and allows some of the 
non-parasites to be eliminated by comparing to the estimated average cell size and location 
(background, foreground). The labeled stained pixel groups are subsequently used for the 
computation of the features.

To classify the stained pixels as parasite or non-parasite, a distance weighted K-nearest 
neighbor  classifier  was  utilized  using  four  selected  features  –  color  histogram,  Hu 
moments, relative shape measurements vector, and color auto correlogram. The relative 
shape  measurements  vector  is  formed of  simple  measurements  representing  the  object 
shape.

According to the results of the study, the most successful feature to classify the stained 
objects  as  parasite/non-parasite  was  the  combination of  correlogram, Hu moments  and 
relative shape measurements.
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6 Red Blood Cell Segmentation

To extract  features  of  an  object,  we need  to  separate  the  objects  of  interest  from the 
background and from each other and define the zone of measurement, i.e. the region where 
to measure the characteristics of the object. The objects of interest are in our case red blood 
cells  which  are  either  infected  or  not  by  the  plasmodium  parasite.  The  zone  of 
measurement is the area of the whole single cell. This area can be described and stored in 
form of binary mask or as a contour of the object.

The segmentation technique, which is later used by the GUI, is based on an algorithm 
developed and described in  our previous work [1].  However,  some changes have been 
made to improve the performance of the algorithm on larger variety of input images and to 
reflect  certain  changes  in  requirements,  mainly  that  we  are  now  more  interested  in 
obtaining correct shape of the segmented cell than the correct number of red cells in the 
image and that  we rather allow certain number of over-segmented cells,  which can be 
rather easily merged in the GUI, than under-segmented cell clusters. The algorithm also 
provides the output data in a defined format that can be read by the GUI.

The segmentation of the input image is a crucial step in almost all image analysis tasks and 
it is often also one of the most difficult ones [5]. The segmentation of the red blood cells 
can be performed via thresholding with an automatically estimated threshold followed by 
mask processing, which may include separation of the overlapping cells, removing artifacts 
or objects too small to be red cells, or correcting shapes of the segmented cells [2,3,4,5]. 
An algorithm based on this approach have been developed and used in this work. 

6.1 The Initial Algorithm

The aim of the study [1] was to segment red blood cells in Giemsa stained blood slides and 
count the number of infected cells versus the total number of red cells in the image in order 
to evaluate malaria. 

The presented segmentation technique consists of several steps. The input RGB image is 
first  converted to the gray level  representation by using only the green channel of the 
original image.  The noise in the image is then smoothed by a median filter  using 3x3 
window.

The average radius of the red blood cells in the image is an important parameter for many 
subsequent operations and is evaluated using a voting technique which was introduced in 
[6]. This technique detects edge pixels in the image using Laplacian of Gaussian method 
and moves each edge pixel in the direction of the image gradient at its location for different 
values of the distance parameter r. Since the red blood cells are approximately circular in 
shape, the translated edge pixels will form clusters in the centers of the cells for a certain 
value of the distance parameter r. The distance which produces the highest local maxima in 
the image with translated edge pixels is considered to be the average radius of the cells in 
the image.
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The pre-processing part continues by correction of non-uniform illumination in the gray-
scale image. Background illumination is obtained by applying gray-scale morphological 
closing using a disk-shape structuring element of size 1.5·RA, where  RA is the estimated 
average  cell  radius. Resulting  image  filtered  by  a  Gaussian  filter  is  then  used  as  a 
multiplicative error coefficient  to  compute the approximation of the undegraded image 
with uniform illumination [7].

Red  blood  cell  segmentation  is  performed  using  marker-controlled  watershed 
transformation based on the image gradient [7]. Markers are computed as a combination of 
the binary mask of the red blood cells and centers of the cells which are computed using a 
similar algorithm that was utilized for evaluation of the average cell radius. The binary 
mask is obtained by thresholding the gray-scale image with an automatically estimated 
threshold using Otsu’s method [8].

Although this algorithm performed well on the images tested in [1], certain issues appeared 
when applying it on a new set of blood smear images with higher resolution. The noise in 
the  images  was  more  pronounced  and  red  blood  cell  margins  showed  lower  gradient 
magnitude (the contours of the cells appeared to be blurrier). This caused the edge detector 
using the Laplacian  of  Gaussian  method to  fail  and mark many pixels  of  noise  while 
omitting some pixels of cell contours (Fig.4a). As a result, the average cell radius found by 
this method was, in some cases, far from the real cell radius, typically a very small number. 
The  wrong value  of  the  cell  radius  resulted  in  a  poor  performance  of  the  succeeding 
methods. 

Another issue appeared when using the marker-controlled watershed transformation based 
on image gradient. The markers are very important for correct separation of overlapping 
cells as well as for obtaining the correct mask of a cell. If a marker is placed outside the 
boundary of any cell, a mask that does not correspond to any object in the image may be 
produced. On the other hand, if a marker is not present within an area of an object that is to 
be separated from the others or from the background, the mask of the object as a result of 
the watershed transformation may be contorted or even not present at all. The markers are 
derived  from  the  local  maxima  in  the  3-dimensional  accumulator  matrix  [x,y,r] 
representing the [x,y] locations of the edge pixels moved in the direction of their gradient 
by the distance of r. It proved to be a non-trivial task to adjust the criteria for the marker 
selection on the new image set so that the markers represent only the real centers of the red 
blood cells and as many as possible cell centers are included in the marker set. A marker 
can be wrongly evaluated for different reasons. It can be omitted, for example, when a cell 
contour is blurred and produces less edge points or when a cell is elongated and has a non-
circular shape.

In some images, red blood cells have ring-like shapes with center intensity very close to 
the intensity of the background (Fig.3c). Thresholding of such images may produce ring-
shaped masks  of red blood cells with ‘holes’ inside and these images also usually have 
relatively high magnitude of the gradient within the cell which may be comparable with the 
gradient  magnitude  produced at  the  contour  of  the  cell.  This  caused,  in  certain  cases, 
additional inaccuracies in the shapes of the generated masks.
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6.2 New Algorithm

Although the issues mentioned in the previous section often caused minor errors when 
evaluating the total number of cells in the image in [1], manual corrections of the shapes of 
the masks were often required. To make the results more easily manually correctable when 
creating a red blood cell database for classification purposes using the designed GUI, a 
modified segmentation method was implemented. The aim was to develop a more robust 
algorithm with better performance on new images which produces more predictable results 
with correct contour shapes.

The new algorithm uses the same functions in the preprocessing stage with only minor 
modifications. The input RGB image is first converted to a gray-scale image by using only 
the green channel of the RGB image. The gray-scale image is then filtered by median filter 
and after computing the average cell radius, the illumination correction is performed. The 
filtered gray-scale image with corrected illumination is then converted to a binary image 
by  thresholding  the  image  with  an  automatically  estimated  threshold  using  the  same 
method as is described in [1].

The problem with edge detection described in the previous section that caused the function 
evaluating the average cell radius to provide misleading results was corrected by changing 
the size of the window of the median filter to 8×8 and by using the Canny method for edge 
detection [7,9]. Canny edge detector proved to produce more connected edge lines at the 
contours of red blood cells than the Laplacian of Gaussian method while marking only a 
few noise pixels as edges (Fig.4).

For  the  problems  mentioned  in  the  previous  section,  the  marker-controlled  watershed 
transformation based on image gradient is no longer used. Instead, a rather simple and 
straightforward  approach  was  adopted  producing  more  predictable  results  with  masks 
better representing the cell shape. This approach uses only the binary mask image. The 
overlapping  cells  are  separated  using  watershed  transformation  based  on  distance 
transformation of the binary image. 

a)  b)

Fig.  4:  Comparison of  edge  detection  methods.  a)  Laplacian of  Gaussian method,  b)  
Canny method.
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6.2.1 Filling Holes in Red Blood Cells

As mentioned in section 6.1, red blood cells in some blood smear images have ring-like 
shapes and the corresponding binary mask obtained by thresholding of such an image may 
contain holes in the centers of the cells. Such holes have to be filled in order to obtain 
correct masks of the red blood cells and to allow the subsequent methods to work properly.

A hole in a binary image is a set of pixels of background surrounded and enclosed by 
pixels of foreground. Since in all images the background is connected to the edges of the 
image, we can use a flood-fill operation starting with the border pixels of the background 
to fill the background area connected to the edges and identify the holes in the image as 
background pixels that cannot be reached by such operation [10]. Such holes can be filled 
by  simply  inverting  the  values  of  the  pixels  that  were  not  reached  by  the  flood-fill 
operation marking them as foreground.

Although this operation will work in most cases, the disadvantage of such approach is that 
not all such holes in the image are necessarily also the holes in the centers of red blood 
cells to be filled. A region of background pixels may, for example, be surrounded by three 
or  more  connected  cells  and  thus  also  separated  from the  rest  of  the  background and 
identified as a hole. Markers of the cell centers that are together with the estimated average 
cell radius computed by the function getCenters can be successfully used in the task of 
distinguishing the holes in the image that are located in the centers of red blood cells. The 
holes in the cells to be filled can be identified by computing the intersection of each set of 
pixels which was marked as a hole by the filling operation with the set of marker pixels of 
cell centers. If such intersection results in an empty set, the area is not considered as a hole 
to be filled.

Two more operations are  performed before computing the intersection of the two sets. 
Marker  image  contains  only  single  pixels  representing  the  estimated  locations  of  cell 
centers. Since the holes to be filled are not necessarily located in the centers of the cells, 
each cell center marker should cover a certain area to ensure that the intersection results in 
a non-empty set even if the hole in the cell does not extend through the center of the cell. 
The operation of morphological dilation with a disk structuring element with radius RA / 2 
is used to create disk markers with radius approximately half  of the radius of the cell. 
Radius RA is the average radius estimate computed by function getCenters.

Binary morphological dilation is a morphological operation that can be used to fill small 
holes, narrow gulfs in objects or increase object size [7]. Dilation  BX ⊕  combines two 
sets using a vector addition and can be defined  as:

{ }BbXxbxppBX ∈∈+=∈=⊕  and ,:2ε (1)

where B is a structuring element, which is in our case a flat disk-shaped element with the 
specified radius and with origin in the center of the disk, and X is the object to be dilated.

The dual operator of dilation is  morphological  erosion which combines two sets  using 
vector subtraction of set elements and can be defined as
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X  { }BbXbppB ∈∈+∈= every for  :2ε (2)

In contrast with dilation, erosion is used to simplify the structure of an objects and causes 
objects  or  their  parts  with  width  smaller  than  the  width  of  the  structuring  element  to 
disappear. 

The second operation that is performed before computing the intersection of the two sets is 
morphological opening with a disk structuring element of radius RA / 10 which is used to 
remove small regions of pixels that were identified as holes and filled by the flood-fill 
operation. These  regions do not represent any real holes in the original image but rather 
occur as a result of noise or artifacts. They are therefore removed and so excluded from the 
subsequent intersection operation.

Morphological opening X ○ B is defined as erosion followed by dilation [7]: 

X ○ B = (X  B) ⊕  B (3)

where structuring element B is in our case again a flat disk-shaped element with origin in 
the center of the disk. Opening removes objects with width smaller than the width of the 
structuring element, but does not decrease the size of other objects, although it affects their 
shape close to the borders.

The  algorithm for  filling  the holes  in  the  cells  centers  is  implemented  in  the function 
fillHoles.m and can be summarized as follows:

1. Identify the holes in the input binary image I as background pixels that cannot be 
reached by filling in the background from the edge of the image and fill these holes 
by inverting the values of these pixels. The resulting image is denoted as If.

2. Compute the difference between the filled image  If   and the original image  I to 
obtain an image of only the filled regions: Ih = I – If.

3. Open the image Ih with disk-shaped structuring element SE with radius r = RA / 10 
to remove filled holes smaller than 1/10 of the cell: Iho = Ih ○ SE

4. Create a marker image Im of the size of image Ih by setting the value of a pixel to 1 
if the location of the pixel is an element of the set M containing the indexes of 
estimated centers of red blood cells: 

1),( =jiIm  if ( ) ( ){ },...,,,),( 2211 centercentercentercenter jijiMji =∈ ; else 0),( =jiIm

5. Label connected regions in  Ih and create sets of pixels  1hI ,  2hI ,  …  representing 
individual holes.

6. For each ihI  compute intersection with Im: mhmh III
ii

∩= . 

If ∅=mhi
I , revert values of pixels of a corresponding filled region in If  from 1 to 

0. Such region represents a filled hole in the original image I which is not in the 
center of any cell.
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6.2.2 Identifying Single Cells and Cell Compounds

The aim of the segmentation is to isolate each individual red blood cell in the image. Some 
connected regions  in  the binary image of the red blood cells  with filled holes already 
represent individual cells. The rest of the regions are overlapping cells that form clusters 
which need to be separated. To distinguish between single cells and cell compounds, two 
simple  criteria  with  empirically  estimated  parameters  were  used:  the  relative  area  and 
elongation of the object. In this step, also objects that are too small to represent a cell are 
removed.

The area of an object is computed simply as a sum of pixels of the object. This value is 
then normalized by the area of a circle with the average cell radius which was estimated in 
the previous steps. The area is, however, not computed directly from an object but from its 
convex hull. Convex hull can be defined as the smallest region which contains the object, 
such that if we connect any two points of the region with a straight line, all points of the 
line will belong to the region [7]. Since most single red blood cells in the blood slide image 
have circular or elliptical shape, their area will be approximately equal to the area of their 
convex hull. In some cases, however, a cell in the thresholded image appeared as a partially 
open circle (Fig.5a). This could happen due to the variations in intensities within cells in 
the image or it could be caused by artifacts. Since the inner area of such a cell, which was 
segmented by thresholding as background, is not surrounded and enclosed by pixels of 
foreground, it could not have been identified as a hole and filled in the previous step. By 
computing the convex hull of the cell, we can not only better approximate its real area 
(which could be otherwise too small and the object could be removed for not being a cell) 
but also partially repair the mask of the cell which is to be used, in case it is recognized as 
a single cell, as the output of the segmentation process. 

a)    b)

Fig. 5: Red blood cell mask with an open center area a); convex hull of the same mask b)

If the region in the image is a cell compound, the relative area of the convex hull will in 
most cases be greater than the relative area of the region itself,  which further helps to 
distinguish between single cells and compounds.

Due to the variances in cell radii, the relative area alone is not sufficient to distinguish 
between single cells and cell compounds. For example, the area of two smaller overlapping 
cells can be in some cases comparable with the area of a single infected red blood cell. 
They would, however, differ in the elongation, which was used as the second criterion.  
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Elongation is a measure frequently used to describe the shape of an object and can be 
defined as the ratio of an object’s length to its breadth [13]:

breadth
lengthE = (4)

One way of computing the elongation is based on calculating the ratio of the long side to 
the short side of the object’s bounding rectangle. This method is, however, not sufficient, 
because elongation calculated in this way is dependent on the orientation of the object.

A better way of computing the object’s elongation is to calculate it  using second-order 
moments of the object defining its major and minor axis [12,13]. Elongation in this case 
can be given by
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When the expressions for θ2sin  and θ2cos  are substituted into Eq. 6, the signs determine 

whether 
2χ  is a maximum or minimum. The minimal value of 

2χ  represents the axis of 
orientation. The  center of the object  ),( yx  is calculated as the average pixel x- and y-
location from all the pixels constituting the mask of the object.
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Following  the  definition  given  by  Eq.  5,  the  computation  of  object’s  elongation  is 
implemented in the function elongation.m.

The method for separating single cells from compounds is implemented in the function 
separateCells.m.  The  output  of  the  function  comprises  two  binary  images,  one 
containing  only  single  cells  and  the  second  containing  cell  compounds.  While  the 
compounds still have to be separated in order to obtain masks of individual red blood cells, 
the image with single cell  requires no further  processing.  The algorithm that  separates 
single cells and compounds can be summarized as follows:

1. Using Matlab's function  bwlabeln, label connected regions in the input binary 
image  I to  separate disconnected regions of foreground and,  using these labels, 
create  sets  of  pixels  1OI ,  2OI ,  … representing individual   objects  in  the image 
(single cells, compounds, and artifacts)

2. For each object iOI :

2.1 Compute  relative  area  of  an  object:  2r

I
A i

i

i

Op
O

r ⋅
=

∑
∈

π ,  where  r is  the  estimated 

average cell radius

2.2 If 0AA
ir

< , discard object iOI  and continue with step 2.1 for the object 1+iOI . 

0A  is an empirically determined parameter.

2.3 Compute object’s elongation iE .

2.4 If  1AA
ir

<  and  1EEi < , object  iOI  is a single cell, otherwise the object is a 
compound cell. A1 and E1 are empirically chosen parameters.

6.2.3 Separating Cell Compounds

To separate  individual  cells  within  clusters,  watershed segmentation  based  on  distance 
transformation of the binary image containing cell compounds is used [7,10]. Watershed-
based methods are often used for particle segmentation in biological and medical image 
analysis and different techniques have been proposed and used in previous works [2,3,14].

The term watershed is used in topography and refers to ridges that divide area drained by 
different  river  systems.  Catchment  basins  divided  by watershed lines  are  geographical 
areas draining into a river or reservoir. Watershed segmentation is based on the idea that 
image data may be interpreted as a topographic surface where the local minima of gray 
level  (altitude)  yield  catchment  basins.  Watershed  transformation  creates  an  image  of 
regions corresponding to catchment basins of the topographical surface. For segmentation 
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purposes, gradient images are often used to compute watersheds. Using gradient images, 
region  edges  in  the  original  gray-scale  image correspond to  high watersheds  and low-
gradient  regions  correspond  to  catchment  basins.  The  raw  watershed  segmentation, 
however,  produces  severely  over-segmented  images.  Regions  markers  and  other 
approaches are usually used to overcome this problem [7]. Watershed transformation can 
also  be  used  for  the  segmentation  in  binary  images  to  find  regions  corresponding  to 
individual overlapping objects. In such case, the original binary image can be converted 
into  gray-scale  using  the  negative  distance  transform.  The  distance  function  distX(p) 
associated with each pixel  p of  the set  X is  the shortest  distance between pixel  p and 
background  XC and using  operation of  morphological  erosion  (see  section 6.2.1,  Eq.2) 
distance function can be defined as:

XpΝnpXp X (in not  ,min{)(dist   ∈=∈∀ )}nB (12)

i.e. the distance distX(p) is the size of the first erosion of  X that does not contain  p. The 
negative distance transformation –dist has to computed, so that the most distant pixels, 
which are located in the centers of the cells, represent the basin (i.e. the local minima in the 
gray-scale  image  have  to  correspond  to  the  most  distant  pixels).  The  watershed 
segmentation based on the distance transformation is illustrated in Fig.6.

The  standard  watershed  segmentation  in  binary  images  using  distance  transformation 
shows good results on cells with circular shapes and smooth contours. However, the shapes 
of red blood cells vary due to different reasons. In such cases, the watershed transformation 
may  produce  over-segmented  regions,  which  is  a  common  problem.  In  this  work, 
watershed-segmented regions are further analyzed and,  based on their  areas and shared 
borders, they are connected back together if a region is identified as too small to represent 
a  cell.  Each segmented  region  is  analyzed  and if  its  area  is  found to  be too  small  to 
represent a red blood cell, it is connected with a neighboring region with which it shares 
the longest border. The two regions are, however, connected only if the maximal distance 
between the contour points of the new object is lesser than an empirically set threshold. 
This additional condition prevents the regions from being merged in case the resulting 
object  would  not  represent  a  red  blood cell.  Such  situation  occasionally  occurred,  for 
example when a cell was not correctly thresholded in the original gray-scale image.

The number of over-segmented regions can also be, in some cases substantially, lowered 
by using chessboard distance transform instead of standard Euclidean as concluded in [15], 
which might simplify the post-processing task. Using this transform, however, some under-
segmented regions  were also produced containing cell  compounds which had not been 
separated. Since it is using the developed GUI in our case much easier to connect two over-
segmented parts of a cell than to manually draw a boundary between two under-segmented 
cells,  the  Euclidean  distance  is  preferred.  Moreover,  the  standard  Euclidean  distance 
transform produced more natural  boundaries  between segmented regions and using the 
post-processing of the segmented regions, it generally produced better results.

The  watershed  segmentation  algorithm  with  the  subsequent  post-processing  of  the 
segmented regions is implemented in the function  watershedDist.m. The algorithm 
can be described as follows:
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1. Compute  negative  distance  transformation  ID of  the  objects  in  the  input  binary 
image I (using Matlab's function bwdist): 

ID = –distX(I)

2. Set all background pixels in  ID to –inf to impose minima on the background and 
thus ensure watersheds at objects’ edges.

3. Compute watershed transformation (using Matlab's function watershed):

 IW = watershed(ID) 

4. For each segmented object Wi IX ⊂ :

4.1. Compute relative area of  Xi :  2r

X
A i

i

Op
i

r ⋅
=

∑
∈

π
 , where  r is the estimated average 

cell radius

4.2. If 1AA
ir

> , continue with step 4.1 for object  Xi+1

4.3. Find sets of border pixels jNB  with the neighboring objects Nj

4.4. Find object maxjN  with maximum number of border pixels )(max
jNj

B

4.5. Compute contour of the merged object iji XNC ∩=
max

4.6. Find maximum distance between points of the contour 

( ) ( )( )22

,max max nmnmCnmi yyxxd
i

−+−=
∈

4.7. If 1max dd i < , merge segmented object Xi with the neighboring object Nj

Parameters A1 and d1 are empirically set values.
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 a) b) c) d)

 e)   f)

 g) h)

Fig. 6: Separation of overlapping cells using watershed transformation based on distance 
transformation
a) Original image of overlapped red blood cells
b) Binary image obtained by thresholding image a)
c) Labeling of the connected areas in the binary image
d) Selecting mask of the overlapped cells (based on the area and elongation)
e) Negative distance transform on inverted binary image with imposed minima on 
background pixels
f) Negative distance transform image (image c) displayed as topographic surface in 3-D, 
where the third dimension (altitude) corresponds to the gray level values 
g) The result of watershed transformation with typical over-segmented parts
h) Resulting contours of separated red blood cells
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6.2.4 Contours of Red Blood Cells

From the previous methods, we have two binary images, one with regions representing 
single  cells  and the  second one containing red  blood cells  separated  by the watershed 
technique. The contour points, which are one of the outputs of the segmentation function, 
are not calculated directly from the the binary mask images of segmented red blood cells, 
but, instead, from their convex hull (see section 6.2.2). Since a red blood cell has typically 
a circular or elliptical shape, which is a convex shape, the convex hull of most red cells in 
the image is equal to the original cell  shape. This operation,  however,  helps to correct 
shapes  of cells  which were not  optimally thresholded and their  shape contain gulfs  or 
holes. Moreover, since the watershed segmentation does not produce optimal cuts (Fig.6g), 
the convex hull helps to better approximate the real shape of the cell (Fig.6.h).

Convex  hull  is  calculated  using  Matlab's  function  convhull.  This  function  returns 
indices of the points on the convex hull which are used as contour points of the red blood 
cells.

6.3 Additional Issues

Two more problems occasionally occurred in certain images when using the segmentation 
method described in the previous sections. These issues had to be additionally corrected. 
To ensure the repeatability of the results on the images in which red blood cells had already 
been  segmented  using  the  original  method  and  stored  in  the  database,  the  original 
algorithm was not changed, but instead two other variants  of the segmentation method 
were created.  Additional processing steps in the original algorithm can be activated by 
supplying  specific  input  parameters  to  the  implementing  function.  Another  reason  for 
keeping the option to segment the cells using the original method was motivated by the 
fact that there was a certain possibility that the changes made would not produce optimal 
results on the standard set of images. 

The additional problems occurred mainly because the input images used for the creation of 
the  database  were  from diverse  sources  and  varied  in  many  characteristics,  including 
variations in illumination,  hue,  contrast  and scale,  noise characteristic,  smoothness and 
gradient of the cell margin, and the overall visual appearance of the cells. Although our aim 
was to propose a universal segmentation method working properly with all input images, 
providing several variations of a method may also be a good approach. The reason for this 
is that due to a limited number of input images, the optimality of the method cannot be 
assessed for all  the possible variations  of the characteristics of the input  image.  When 
providing more variant of the segmentation method, some of them can perform better on a 
new image than the other. For this reason, the developed GUI provides an easy option of 
registering new algorithms and selecting between them.

The proposed algorithm did not perform well in two cases – when the contrast in intensity 
between stained infected red blood cells and non-infected cells was too high and when the 
image contained many parasites in the early stage of development with well defined edges 
and red blood cells with rather rough and blurry edges. 
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The first problem occurred mainly when the image contained one or more red blood cells 
infected with parasites in later stages of development which were shown in dark saturated 
color while the rest of the red blood cells were rather pale and shown in light color (Fig.3). 
When using the Otsu’s method for thresholding the gray-scale image, only the pixels of the 
infected  cells  were  marked  as  foreground  while  the  rest  of  the  cells  were  marked  as 
background. Although all the other parts of the segmentation method worked well, only 
contours of the infected cells were present in the resulting set of segmented red blood cells. 
To overcome this problem, contrast-limited adaptive histogram equalization (CLAHE) is 
performed  before  the  gray-scale  image  is  thresholded  [16].  The  aim of  the  histogram 
equalization technique is to create an image with equally distributed brightness levels over 
the whole brightness scale. Histogram equalization enhances contrast for brightness values 
close  to  histogram  maxima,  and  decreases  contrast  near  minima.  Standard  histogram 
equalization  operates  on  the  whole  image.  Adaptive  histogram  equalization,  instead, 
operates  on small  regions  (tiles)  in  the image and enhances  contrast  of  each  tile.  The 
neighboring tiles are combined using bilinear interpolation. CLAHE moreover allows us to 
limit  the contrast  enhancement  to  avoid over-saturation and amplifying of noise in the 
image  especially  in  homogeneous  areas.  The  number  of  tiles  was  set  to  8  in  both 
dimensions,  uniform distribution was set  as desired histogram distribution and contrast 
enhancement  limit  was  set  to  0.05.  With  this  additional  pre-processing  step,  the 
thresholding  method worked properly in  all  tested  images.  CLAHE is  implemented  in 
function adapthisteq which is included in Matlab's Image Processing Toolbox.

The second problem appeared in the function computing the estimated average radius of 
the objects in the image together with the indexes of the object centers (getCenters.m). 
In images that contained many parasites in the early stage of development, which appeared 
as small circular dots, and red blood cells with rather uneven cell borders, the edge detector 
sometimes found relatively small number of edge pixels at the border of the cell and many 
edge pixels  on the contour  of  the parasite.  In  some cases,  the method in such images 
returned the radius of the parasites instead of the radius of the red blood cells. Since the 
parameter of the estimated radius of red blood cells in the image is important for almost all 
subsequent methods, the wrong value of the radius (which was typically around ten times 
smaller) caused the following methods to perform inadequately. Typically, the red blood 
cells in the gray-scale image were suppressed during the succeeding step of illumination 
correction and, as a consequence, only parasites were present in the thresholded binary 
image. The output of the segmentation function then typically contained only the contours 
of  the  parasites.  This  problem  was  corrected  by  modification  of  the  function 
getCenters.m,  which  was  originally  proposed  and  described  in  [1].  The  function 
estimates the average radius of red blood cells as a distance which produces maximum 
number of edge pixels accumulated in certain image locations when the pixels are moved 
in the direction of their gradient by this distance. A modified version of the method was 
created that searches for the presence of the second maximum, if the radius found is a 
small number. If the second maximum complies with certain criteria that are based on its 
value relative to the value of the first maximum and on the distance between these maxima, 
the average red blood cell radius is evaluated as the value corresponding to the second 
maximum.  The  modified  version  of  the  method  is  implemented  in  the  function 
getCenters2.m.
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6.4 Description of the Implementing Function

The segmentation method is  implemented in the function  RBCsegmentation.m and 
can be summarized as follows: 

1. * Convert input image from RGB to gray-scale

2. Filter image with median filter

3. * Calculate locations of cell centers and estimate the average red blood cell radius 
(using either function getCenters or getCenters2)

4. Correct non-uniform illumination

5. * Equalize histogram using adaptive histogram equalization

6. Convert image to binary representation using thresholding

7. Fill holes inside the cells

8. Identify and separate single cells and cell compounds

9. Separate overlapping cells using watershed transformation

10. Calculate red blood cell contours and create output data structure

(Steps marked by * depend on additional input parameters or input data format.)

The output of the function is a cell array which contains information about the contour of 
each  segmented  red  blood  cell  in  the  image.  When  the  function  is  used  without  any 
parameters, a dialog box is opened to choose an image file to be processed and a figure 
displaying the original image with the contours of segmented cells is shown automatically 
after the segmentation is finished. If the first parameter is a matrix representing the input 
gray-scale  or  RGB  image,  the  segmentation  of  this  image  is  performed.  Additional 
parameters can be provided to specify the file name and path of the image to be loaded, to 
show images of individual processing steps, or to set the modification of the method to be 
used, specifically whether to use the adaptive histogram equalization or whether to use the 
modified  function  getCenters2.m.  If  neither  the  input  image  nor  the  filename 
parameter is provided, a dialog box is automatically opened to select an image file. The 
function checks the inputs using Matlab style. If wrong parameter is supplied, a message 
with  details  about  the  type  of  expected  input  parameter  is  displayed.  The  details  on 
function usage are given below.
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6.4.1 Syntax
RBCsegmentation
RBCsegmentation(I)
RBCsegmentation(filename)
RBCsegmentation(I,param1,val1,param2,val2...)
RBCsegmentation(filename,param1,val1,param2,val2...)
DB = RBCsegmentation(...)

6.4.2 Description

RBCsegmentation segments red blood cells in a blood smear image and computes their 
contours.  When no input parameters are  supplied,  an open dialog box is  automatically 
shown to select an image file to be processed. If no output parameter is specified, a figure 
is opened at the end of the segmentation process displaying the original image with the 
contours of segmented cells.

RBCsegmentation(I) segments red blood cells in gray-scale or RGB image I. If I is 
a gray-scale image, the initial preprocessing step converting the image from RGB to gray-
scale is skipped.

RBCsegmentation(filename) segments red blood cells in an image stored in the 
file specified by the string  filename. If the file is not in the current directory, or in a 
directory on the MATLAB path, the full pathname or the pathname relative to the current 
directory have to be specified. If the string filename is an empty string, an open dialog 
box is automatically shown. This is an alternative to providing no parameters which can be 
useful when specifying additional parameters described below.

RBCsegmentation(filename,param1,val1,param2,val2...)
RBCsegmentation(I,param1,val1,param2,val2...) 
specifies any of the additional parameter/value pairs listed in the following table. The case 
of the parameter does not matter. All of the parameter values are logical types so that they 
can be either true or false. If the value is a numeric type, it is converted to a logical 
type so that 0 is considered as false and any non-zero value is considered as true.
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Parameter Value

'ShowImages' If  true, images resulting from the individual processing 
steps are displayed. This option is mainly for educational 
and debugging purposes. The displayed images include the 
gradient image, image with edges, illumination correction 
mask,  raw  thresholded  binary  image,  watershed 
transformation,  the  original  image  with  contours  of 
segmented cells and a few others.

Default: false

'UseGetCenters2' If true, the modified version of the method estimating of 
the  average  red  blood  cell  radius  (function 
getCenters2.m) is used (see section 6.3) which checks 
for the presence of the second maximum if the radius found 
is too small.

Default: false

'UseAdaptHistEq' If  true,  contrast-limited adaptive histogram equalization 
is  performed before the gray-scale  image is  converted to 
binary using thresholding (see section 6.3).

Default: false

Tab. 1: Description of the parameter-value pairs used as input arguments of the function  
RBCsegmentation

DB = RBCsegmentation(...) 

returns a cell array in which each item is a structure array containing information about the 
cell and mask of the segmented cell. The fields of the structure array are specified in Tab.2.
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DB{i}.x1 x-coordinate  specifying  the  beginning  of  the  window 
containing  the  i-th  segmented  red  blood  cell.  This 
window is computed as the cell’s minimum bounding 
rectangle.

DB{i}.x2 x-coordinate of the end of the window

DB{i}.y1 y-coordinate of the beginning of the window

DB{i}.y2 y-coordinate of the end of the window

DB{i}.img Binary image with the mask of the segmented cell. The 
position of the mask in the original images is specified 
by x1, x2, y1, and y2 and the size of the mask is [x2 
– x1 + 1, y2 – y1 + 1].

DB{i}.cont Two-column  matrix  with  the  contour  points  of  the 
segmented  object’s  mask.  Each  row  of  the  matrix 
contains the x- and y-coordinates of a contour point.

DB{i}.cellRadius The  value  of  the  estimated  average  cell  radius.  This 
value  is  stored  merely  for  the  computational 
convenience and is the same for all indexes i.

Tab. 2: Description of the fields of the structure array generated for each cell as the output  
of the segmentation function

6.4.3 Class Support

The input gray-scale or RGB image I can be of class uint8, uint16, int16, single, 
or double. 

6.4.4 Examples
RBCsegmentation(I,'showImages',true)
Segments input gray-scale or RGB image I and displays the images of the results of the 
intermediate processing steps. 
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RBCsegmentation('','useGetCenters2',1,'useAdapthisteq',1)
RBCsegmentation('','useGetCenters2',true,'useAdapthisteq',true)
Since  an  empty  string  is  provided  as  the  image  filename,  an  open  dialog  box  is 
automatically shown to select the image file to be segmented. Segmentation is performed 
using the modified function for estimating the average cell radius and using the adaptive 
histogram equalization. Only the figure with final results of the segmentation showing the 
original red blood cell image and the contours of segmented cells is displayed.

DB = RBCsegmentation('c:\images\image1.jpg')
DB = RBCsegmentation('..\image1.jpg')
Image file specified by an absolute or relative path and a file name is segmented using the 
default segmentation parameters. The information about segmented cells is stored in the 
structure array DB and no figures are displayed.

Fig. 7: Output of the segmentation method
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7 Red Blood Cell Segmentation GUI

7.1 Motivation

In order to be able to evaluate the performance of the proposed features, we need to create 
a set of red blood cells with sufficient number of both infected and non-infected samples. 
To create such set of cells, or a database, we need to both segment the cells in the original 
image and label the segmented objects according to the class to which they belong. It 
proved not to be a trivial task to develop a segmentation technique that would not require 
manual correction of the results. This task was even more difficult since we used images 
with  various  characteristics,  compared  to  other  works  where  images  obtained  under 
controlled conditions were used, and since we had only a limited number of images with 
similar characteristics available for testing of the segmentation method. Besides, even if 
such segmentation method existed, we still need a tool for manual labeling of the samples 
by an expert.  We also required a tool that  would enable displaying and editing of any 
previously created data,  so that  any contour or any label can be changed, cells  can be 
deleted or all the contours can be recalculated using a new segmentation method. Our aim 
was also to create a tool that could be easily configured and modified for use in further 
projects and with other segmentation methods, if necessary. 

7.2 Requirements

The red blood cell segmentation GUI was develop based on the following requirements:

1. File manipulation:

• Open dialog box for selection of the image files to be segmented

• Saving  the  information  about  the  contours  of  segmented  cells  and  their 
labels into an external file

• Loading of image contours and labels from the external file if the image was 
already segmented and the data file exists

2. Execution of the segmentation method. There should be a possibility to register a 
new segmentation technique or change the one currently used.

3. Displaying results of the segmentation either in form of contours in the original 
image or as a contour/mask for each segmented cell.  The same for images with 
contour data loaded from the external file.

4. Labeling:

• Manual assigning and change of labels representing the class of the object

• There should be a possibility to edit the list of labels
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5. Editing of contours/masks:

• Deletion of contours/masks

• Editing of contours/masks

• Possibility to manually create a new contour of a cell

7.3 Creating a GUI in Matlab

Creating the GUI in Matlab has several advantages. Mainly, all the other developed Matlab 
functions can easily be used by the GUI and the GUI itself can be used by other Matlab 
functions or m-scripts and it can easily be modified so that the program can be reused and 
changed,  if  necessary,  to  be  ready to  serve  in  similar  tasks  in  the  future.  Although it 
requires adopting some new principles, all the functions of the GUI are implemented using 
the standard and familiar Matlab m-files. 

The drawback of creating a GUI in Matlab is the limited number of components, their 
properties and their actions. More complicated or otherwise specific problems may thus 
require  rather  awkward  solutions.  Also,  it  is  sometimes  not  an  easy  task  to  find  the 
specifications of certain properties,  their  values or the actions of the GUI components. 
Matlab GUI is thus suitable mainly for implementing simple control elements, selection or 
option  boxes,  confirming  actions  with  buttons,  etc.  This  is  in  accordance  with  our 
requirements.

It is possible to create the whole GUI with all its components dynamically in a Matlab 
function or a script. This requires first creating the figure in which the components are to 
be  displayed  and  then  manually  creating  all  the  required  components  using  the 
uicontrol function. All component properties, such as the type (style) of the component 
(i.e. a pushbutton, a check box, axes, etc.), position, or any other parameter values have to 
be specified within the code. Moreover, for each action, such as a button click or check box 
selection, a callback function has to be provided and associated with the component. The 
callback  function  can  also  be  specified  when  creating  the  component  using  the 
uicontrol function.  This approach is  suitable mainly for simple GUIs,  especially if 
most of the components have to be, for some reason, created dynamically anyway. Since 
all the components are created in the m-file, no figure file is needed to store the properties 
of the components.

For more complicated GUIs, the described approach may be a little tedious, the code might 
be  difficult  to  read  and  modified,  and  the  lack  of  visual  control  may  cause  some 
unexpected results. The easier and usually preferred way of creating a GUI, which was also 
utilized in this work, is to use the Matlab GUI creator called GUIDE, which can be opened 
by the guide command. GUIDE (GUI Design Environment) is a layout editor that allows 
one to create or edit GUIs interactively by simply selecting a component and placing it into 
the figure using the mouse. The editor also includes a property inspector in which we can 
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easily edit all the properties of the component. By default, the editor also automatically 
creates  a  template  m-file  with  generated  empty  callback  functions,  which  have  to  be 
implemented. This file has the same name as is the name of the GUI figure file containing 
the components definitions. The GUI thus consists of two files now, the m-file and the 
figure file. We can run the GUI by executing the function implemented in the generated m-
file  in  the  same  way we call  any other  Matlab  function  and we can  even supply the 
function with defined arguments. The GUI will, however, not work properly by simply 
opening the figure file.

Callbacks  for  the  components  are  routines  that  execute  in  response  to  user-generated 
events, such as mouse clicks and key strokes, and they indicate, for example, that a button 
was pressed, an item in a listbox was selected etc. All callback functions in the generated 
GUI m-file have the following standard input arguments:  hObject,  eventdata, and 
handles.  The  first  argument  hObject is  the  handle  of  the  object,  e.g.  the  GUI 
component,  for  which  the  callback  was  triggered.  It  can  be  used  to  obtain  relevant 
properties of the object. For instance, get(hObject,'Value') can be used to retrieve 
the toggle state of a check box, option box, toggle button, etc. If we want to change a 
property  of  the  component  issuing  the  callback,  we  can  use  the  function  set: 
set(hObject,'PropertyName',PropertyValue).  The  second  argument 
EventData is a stream of data describing user gestures, such as key presses, scroll wheel 
movements, and mouse drags. For components that provide event data, this arguments is a 
structure which varies in composition according to the component that generates it. The 
last argument handles is a structure that contains handles to all the objects in the figure. 
It can be used to retrieve or set parameters of any object in the figure, but also for storing 
application data. 

When  GUIDE  generates  the  template,  it  creates  the  callback  function  with  the  name 
consisting  of  the  component's  Tag property,  underscore,  and  one  of  the  component's 
callback properties, which is usually 'Callback'. The Tag property is a unique name of 
the  component  which identifies  a  component  within  the GUI.  For  instance,  a  callback 
function automatically generated for a pushbutton with the Tag  pushbutton1 has the 
following syntax:

function pushbutton1_Callback(hObject,eventdata,handles)

The component may have other callbacks, for example a CreateFcn or a DeleteFcn, 
which GUIDE populates in the same way.

The  handles structure is maintained as  GUI data which is a mechanism for sharing 
property values and application data. We can use the function guidata to store a single 
variable  associated  with  the  GUI.  When using  GUIDE,  this  variable  is  the  handles 
structure which is automatically passed as an input argument to every callback function 
and, therefore, it is typically used to store any application data that should be accessible to 
other  callback  functions.  The  application  data  is  stored  as  a  value  of  a  field  of  the 
handles structure. An important thing to do after any changes are made to the handles 
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variable  inside  the  callback  function  is  to  update  the  variable  by  calling 
guidata(hObject, handles). This function is typically called at the end of each 
callback function, because without it all the changes in the  handles variable are lost. 
Function guidata(object_handle,data) stores the variable data as GUI data. If 
object_handle is not a figure handle (in our case it is usually a component handle 
hObject), then the object’s parent figure is used.

Matlab  GUI  can  consist  of  fourteen  available  components:  push  button,  slider,  radio 
button, check box, static text, edit text, pop-up menu, listbox, toggle button, table, axes, 
panel, button group, and ActiveX component. Axes enable the GUI to display graphics 
such as graphs and images. Panels allow GUI components to be visually grouped. Button 
groups are similar to panels but also allow managing exclusive selection behavior for radio 
buttons and toggle buttons. ActiveX components enable displaying ActiveX controls in the 
GUI. 

Matlab GUI also enables creating of menus and custom toolbars. We can create menu bars 
with pull-down menus as well as context menus that can be attached to components. In 
addition  to  creating  a  new toolbar,  it  is  also  possible  to  display (or  hide)  the  Matlab 
standard figure toolbar, which can be modified to display only desired tools. 

7.4 Data Structure Specification

Contours of segmented red blood cells are stored in a variable named dbx which is saved 
in an external MAT-file. Matlab MAT-files are compressed binary files which are used for 
saving Matlab variables and can be easily loaded by any Matlab function or script using 
function  load. One such file is created for each processed image and the file contains 
information about the contours of all segmented red blood cells in the image. The MAT-file 
has the same name as is the filename of the image (without the extension) and is saved in 
the same directory as the image. For example, if the image filename is ‘2710.tiff’, the data 
will be stored in the file ‘2710.mat’. 

Variable dbx is a cell array with the length equal to the number of segmented objects in 
the image. Each cell contains a structure array with the fields specified in Tab.3. 

The  structure  may contain  also other  fields  created,  for  example,  by the  segmentation 
method (see section 6.4.2), but only the fields specified above are used by the GUI. Any 
other fields are preserved and saved without any change. Moreover, the field desc is not 
required, but it will be added to the structure array when the corresponding red blood cell 
is labeled.
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DBX{i}.x1 x-coordinate specifying the beginning of the window containing 
the i-th segmented red blood cell.

DBX{i}.x2 x-coordinate of the end of the window

DBX{i}.y1 y-coordinate of the beginning of the window

DBX{i}.y2 y-coordinate of the end of the window

DBX{i}.cont Two-column matrix  with  the  contour  points  of  the  segmented 
object’s  mask.  Each row of  the matrix  contains  the x-  and y-
coordinates of a contour point.

DBX{i}.desc A string with the description (label)  of the cell  specifying the 
cell’s class.

Tab. 3: Required fields of each structure array in the cell array variable dbx.
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Fig. 8: The red blood cell segmentation GUI
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7.5 Program Description

The  GUI  window (Fig.8)  is  visually  divided  into  five  parts.  The  main  portion  of  the 
window  consists  of  the  axes  component  which  displays  the  original  image  with  the 
contours of segmented red blood cells and is also used for any operation with the cells 
(deletion, labeling, creating new contour, …). The axes also display the size of the image 
in pixels, so that we can easily see the resolution of the image and the real size of the 
zoomed  region  in  pixels.  The  four  remaining  panels  group  components  with  similar 
functions. Panel ‘Zoom & Move’ enables zooming in the image and moving the zoomed 
window across the image. Panel ‘Image files’ enables fast switching between loaded image 
files. In the panel 'Run segmentation', we can select and execute the segmentation method. 
Panel ‘Cell manipulation’ groups all the functions for correcting the segmentation results. 

After executing the GUI m-file, the figure is automatically opened and the initialization 
function (named OpeningFcn) is called. This function is executed just before the GUI 
figure  is  made  visible.  Besides  the  standard  three  input  arguments  hObject, 
eventdata, and  handles, where  hObject is the handle to the figure, the opening 
function  also  has  the  argument  varargin.  This  cell  array  is  a  variable  length  input 
argument list which contains optional input arguments passed to the main GUI function. 
By default,  the GUI m-file accepts certain input arguments that allow executing nested 
callback  functions.  Additionally,  the  function  also  accepts  an  argument  specifying  the 
directory from which the images are to be loaded (see section 7.6 for more details). If the 
argument with valid directory pathname is provided, the initialization function scans the 
directory and loads all images of the following file types: .jpg, .png, .tif, .tiff, and .bmp. 
After the GUI figure is opened, the images found in the directory are displayed in the 
listbox and the first image is automatically displayed in the axes component. Furthermore, 
if the corresponding mat-file is found, the contours of the segmented red blood cells are 
automatically  displayed  as  well.  The  initialization  function  also  loads  the  list  of 
segmentation methods and the list of labels which are to be displayed in the corresponding 
pop-up menus (see section 7.8).

The opening function also sets the  output field of the  handles structure to be the 
handle  to  the  figure,  i.e.  it  assigns  to  it  the  value  of  input  argument  hObject.  The 
handles.output variable is used by the output function (OutputFcn). This function 
returns specified output to the command line and is executed when the opening function 
returns control and before control returns to the command line. Thus, the outputs have to 
be generated in the opening function, or function uiwait has to be called in the opening 
function to pause its execution while other callbacks generate outputs. The handle to the 
figure is the only output variable used by this GUI. Having the figure’s handle enables us 
to set and query the values of the figure’s properties by using the functions set and get 
and to control  the behavior  of  the figure,  for  example remove it  by using the  close 
function. 
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7.5.1 File Manipulation

If no input arguments are supplied, the GUI will open with no images loaded. The images 
to be segmented can be opened by clicking on button ‘Load images’, which will  open 
standard dialog box for retrieving files. We can select one or multiple image files of the 
following types: .jpg, .tif, .tiff, .png, or .bmp. After the image files are selected, their names 
will  be  displayed  in  the  listbox  located  below the  button  and the  first  image  will  be 
automatically shown in the axes including the contours of segmented red blood cells if the 
corresponding mat-file is found. The current image can be changed at any time by selecting 
another  file  from  the  listbox.  The  red  blood  cell  contours  are  always  displayed 
automatically if the mat-file exists. However, when a new image is selected either from the 
listbox or using the dialog box, any changes made to the contours of the current image are 
lost, if they have not been saved.

There is one more component located on the right top panel. It is the button ‘Delete db file’ 
which can be used to delete the mat-file with the cell contours of the current image. It has 
the  same  effect  as  if  the  mat-file  with  the  same  name  as  is  the  name  of  the  image 
(excluding the extension) was deleted from the directory where the image is located. The 
manual deletion of the database files may be, however, more useful when large number of 
files has to be deleted without the need of visual inspection. 

The ‘Delete db file’ button is used mainly when executing the segmentation method for all 
files loaded in the listbox (using the ‘Run all’ button). Since this function processes only 
image files  for which the corresponding mat-file does not exist,  the database files can 
easily be deleted using this button if the current segmentation method did not produce good 
results and these images can be segmented again using another segmentation method. 

7.5.2 Segmentation

The middle panel contains four components for setting and executing the segmentation 
method. The pop-up menu in  the upper part  of the panel lists  the names of registered 
segmentation methods.  The functions  implementing these methods and their  names are 
configured in a separate m-file (see section 7.7 on how to configure this file). The two 
buttons are used to run the segmentation algorithm. Button ‘Run’ executes the selected 
segmentation  method  only  for  the  current  image.  During  the  execution,  most  of  the 
components are disabled and cannot be used. The red blood cell contour data is not saved 
automatically when the segmentation method is finished, so that we can safely run the 
segmentation without rewriting the saved data. If we are not satisfied with the results, we 
can simply discard them by selecting another image file or closing the GUI. However, if 
we wish to save the results of the segmentation or any changes made, we have to always 
press the ‘Save’ button.

Since the segmentation may be a time consuming process, we usually first wish to run the 
segmentation  for  all  selected  images  without  any user  interaction  and then  review the 
results and perform any necessary corrections. Button ‘Run for all & save’ executes the 
segmentation method for all image files listed in the listbox and automatically saves the 
result in the corresponding mat-files. However, only images for which the database mat-
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file  does  not  exist  are  segmented.  This  is  to  protect  the  already created and corrected 
contours from being rewritten. If we wish to run the segmentation method again for images 
that already contain the database file, we can either use the ‘Run’ button to segment only 
the current image and then rewrite the saved data by pressing the ‘Save’ button or we can 
delete the mat-files one by one by the button ‘Delete db file’ and then run the segmentation 
method for all these images using the ‘Run for all & save’ button.. Alternatively, we can 
delete the corresponding mat-files manually in the image directory.

When the segmentation is run for all image files from the listbox (using the ‘Run for all & 
save’ button),  a  progress  bar  window is  displayed  showing  the  name of  the  currently 
processed file and a bar indicating the percentage of files already processed. The window is 
modal, so that it prevents any other components from being used during the computation. 
The window also contains a ‘Cancel’ button. When the user clicks on the ‘Cancel’ button 
or the close button of the figure,  the segmentation process is  aborted.  The calculation, 
however, does not stop immediately. The user has to wait until the segmentation of the 
current image is finished. Moreover, during the segmentation process textual information is 
displayed in the Matlab command line window with the number of currently processed 
image, total number of images to be processed, name of the image file and description of 
the operation performed. Also, the images in the GUI figure are updated during the process 
to show the currently processed image.

The  last  component  on  this  panel  is  the  checkbox  ‘Show  images’.  The  value  of  the 
checkbox is passed as an argument to the segmentation method (see section 7.8 for more 
details about the requirements on the segmentation function). If the box is checked, the 
segmentation method is  supposed to display figures with results of individual processing 
steps. The type and the number of images shown is solely dependent on the segmentation 
function. This feature is intended mainly for educational and debugging purposes. If the 
segmentation method does not  perform well  on a  particular  image,  we can toggle this 
feature  on  to  easily  identify  which  processing  step  is  responsible  for  the  inferior 
performance.  The images can also clearly demonstrate how the segmentation technique 
works, what are its weaknesses, and which steps could possibly be improved.

7.5.3 Correction and Labeling Functions

The right lower panel groups all available tools for correction of the segmentation method 
results  and for  labeling of  red  blood cells.  The ‘Select  cells’ toggle  button  activates  a 
selection mode. The mouse pointer changes to a cross-hair and certain components are 
deactivated to show that their functions are not available during the selection mode. In the 
selection mode, we can select a contour in the image by clicking on the area inside the 
contour using left mouse button. The selected contour changes its color to red. To deselect 
a contour we can simply click within its area again and the contour will change its color 
back. The selection mode is ended by right mouse button click anywhere in the figure. 
However, if we click using the right mouse button within the contour area, this cell will 
still be selected / deselected as the last one. This approach accelerates the work slightly, 
because, for instance, if we wish to select a single cell contour, we can simply click on the 
cell using the right mouse button. The contour selection made is lost if the selection mode 
is  quit  and  entered  again.  The  selected  cells  can  be  deleted,  labeled  according  to  the 
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selected class or merged.

Button ‘Select all cells’ selects or deselects all red blood cell contours in the image. This is 
useful mainly for changing the labels of all cells in the image.

Red blood cell contours of unacceptable quality can be, after being selected, deleted using 
the ‘Delete’ button. ‘Label as…’ button assigns a label chosen in the pop-up menu right 
next to the button to all selected cells. Each label represents a certain class of objects and is 
associated with specified color and line style of the contour. After assigning the label to the 
selected cells, the color and the line style of the corresponding contours will be changed 
accordingly. The following labels are currently supported: ‘Red blood cell’, ‘Parasite’, and 
‘Other’. The list of labels as well as the color and the line style of the associated contours 
can be configured in separate m-files (see section 7.7 for more details). We can also display 
a legend by pressing button ‘Show legend’ located at the bottom. This will display a list of 
all labels together with their line styles inside the axes.

The  ‘Merge’ button  can  be  used  for  connecting  over-segmented  parts  of  an  object. 
Similarly as for the deleting and labeling buttons, the function applies only to selected 
contours. The merged object is obtained by computing the convex hull of the constituting 
parts,  which  is  based  on  the  presumption  that  the  shape  of  a  cell  is  convex.  This 
assumption proved to be justified for practically all red blood cells and the computation of 
the convex hull often corrected minor shape deficiencies which would appear if the merged 
cell  was obtained by simply joining the areas  of the parts.  Moreover,  the convex hull 
provided a convenient solution for filling the potential gaps between the constituting parts. 

The last  component  on the contour  editing panel  is  the ‘Mark new cell’ button which 
provides  one of  the  key functions  of  the whole GUI.  If  the contour  of  a  cell  did not 
represent sufficiently the real shape of the cell and had to be deleted or if, for any reason, 
the contour was not generated at all by the segmentation method, the GUI provides the 
option of manually drawing the contour of any object using the mouse. After entering this 
mode, the mouse cursor will change to a cross-hair and any left button mouse click within 
the image will create a contour point. Right mouse click within the image will create the 
last contour point and exits the drawing mode. Right mouse click inside the GUI figure but 
outside the image exits the drawing mode without creating the last point. The first and the 
last  created  point  (as  well  as  each  two  other  neighboring  points)  are  automatically 
connected by a line to produce a closed contour. We can exit the contour marking mode at 
any time by pressing the Escape key. In such case the already created part of the contour 
will be discarded. Although we cannot use the ‘Zoom’ button during the drawing, we can 
move the zoomed window using the ‘Left’, ‘Right’, ‘Up’, and ‘Down’ buttons available on 
the ‘Zoom & move’ panel. 

7.5.4 Changing the View

The last panel located in the left bottom corner of the GUI figure contains buttons for 
zooming  and  moving  of  the  zoomed  window  in  the  image.  The  zoom  function  was 
introduced  mainly  for  the  purpose  of  creating  more  precise  contours  when  manually 
marking an object’s contour using the ‘Mark new cell’ button. It can be, however, also 
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useful for more convenient object selection or merely for visual inspection of the image. 
After entering the zooming mode, we can zoom in by clicking anywhere within the image 
using the left mouse button. The zoom mode allows zooming in only one step at a time and 
for repetitive zooming we always have to press the ‘Zoom’ button again. After zooming in, 
the image is automatically centered according to the zooming point. Right button mouse 
click within the image will zoom the image to the original view and any mouse click in the 
GUI figure outside the image or any key press exits the zoom mode. The four buttons 
‘Left’,  ‘Right’,  ‘Up’,  and  ‘Down’  allow  us  to  move  the  zoomed  window  in  the 
corresponding directions. The axes show in pixels the real region of the image currently 
displayed which can be useful for fast orientation in the image.

7.5.5 Other Functions

The GUI contains three more buttons which are not grouped in any panel.  The ‘Save’ 
button saves any changes made, including deleting, merging, labeling, and newly created 
cell contours, to the corresponding mat-file. If the mat-file already exists, all the data is 
rewritten and if not, a new mat-file is created. As mentioned in the previous sections, the 
data have to be saved before we select another image file from the file listbox or using the 
‘Load image(s)’ button, otherwise all the changes are lost. When manually correcting the 
results of the segmentation method, it is a good practice to save the intermediate results of 
our work using the ‘Save’ button, because some of the operations, most importantly the 
deletion and merging, cannot be reverted. 

The second button ‘Show legend’ was also already mentioned. For each registered label, it 
shows a sample of the line type and color of the contour together with the corresponding 
text label. 

The third button ‘Display help’ displays description of the GUI and of the function syntax 
in  the  Matlab  command  window.  Clicking  this  button  is  equivalent  to  typing  help 
RBCsegm in the Matlab command line and is included merely for convenience. 

7.6 Description of the Implementing Function

As mentioned in  section  7.3,  the  GUI consists  of  two files  –  the  figure  file  with  the 
extension  .fig  and  the  standard  m-file.  The  figure  file  contains  the  layout  of  the  GUI 
including all the components with defined initial values of their parameters. The m-file 
contains  callback  function  for  all  components  in  the  figure  file,  opening  and  output 
functions and certain initialization procedures.

The segmentation GUI consists of two main files RBCsegm.m and RBCsegm.fig and 
several auxiliary m-files implementing various functions utilized by the main GUI function 
RBCsegm.  Description  of  three  of  these  functions,  getAlgorithms, 
getDescriptions, and getContourColor, is given in section 7.7. These functions 
are,  in  fact,  small  configuration  files  that  contain  names  of  the  algorithms  and  their 
implementing functions, names of the classes used as labels, and colors and styles of the 
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contours for individual object classes. We can use these files to easily modify certain GUI 
parameters. A brief description of the rest of the functions utilized by the GUI is given in 
Appendix B.

If the figure file is opened, a figure with the segmentation GUI layout will be displayed. In 
case the corresponding m-file is in the Matlab’s current directory or on the Matlab path, the 
callback functions will be found and executed properly. However, the GUI will not work 
properly,  because  the  opening  function  is  not  executed  and  the  GUI  is  not  correctly 
initialized. Therefore, it is always important to run the GUI as a standard Matlab function 
either from Matlab command line or from another m-script or function. 

For  demonstration  purposes,  Matlab  script  runGUI.m,  which  is  located  in  the  root 
directory of the red blood cell segmentation project, can be used for convenient execution 
of the segmentation GUI. This script will set the directory with the GUI functions as the 
current directory, opens the segmentation GUI and automatically loads all images from the 
images/highres3 directory. Moreover, the script will also display the help for the GUI in the 
Matlab command line window.

7.6.1 Syntax
RBCsegm
h = RBCsegm
RBCsegm(‘CALLBACK’, hObject, eventData, handles,...)
RBCsegm(‘ImageSrc’,imageSrc)

7.6.2 Description

• RBCsegm 

creates a new RBCsegm segmentation GUI figure or raises the existing singleton. 
By default, only one instance of the program (singleton) is allowed to run. In case 
an instance of the GUI is already running, the figure is focused instead of opening a 
new one. 

• RBCsegm(‘CALLBACK’, hObject, eventData, handles, ...) 

calls the local function named CALLBACK in RBCsegm.m with the given input 
arguments.

• RBCsegm(‘ImageSrc’, imageSrc) 

creates  a  new RBCsegm segmentation GUI or raises  the existing singleton and 
loads all the image files of the types .jpg, .png, .tif, .tiff, and .bmp located in the 
directory specified by the string  imageSrc.  When a new figure is opened, the 
names of the image files will be automatically shown in the image file listbox and 
the first image will be displayed in the axes. If an instance of RBCsegm is already 
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running, the list of image files will be rewritten with the list of files found in the 
specified directory and the first  image will  be displayed.  All  changes that  were 
made in the currently displayed image and that were not saved will be lost.

• h = RBCSegm(...)  

returns the handle to a new RBCsegm figure or the handle to the existing singleton

7.7 Modification of the Configuration Files

Three  m-files  located  in  the  same  directory  'gui',  where  all  the  segmentation  GUI 
implementation files are located, are intended for easy configuration of the GUI. These 
files are short Matlab functions including definition of several variables and their names 
are:  getAlgorithms.m,  getDescriptions.m,  and  getContourColor.m.  By 
modifying these files, we can change the names of the segmentation methods which are 
displayed in the GUI’s select segmentation method pop-up menu and the names of the m-
files implementing these methods. We can also change the list of labels which are not only 
displayed in the labeling pop-up menu, but also used in the .desc field of the structure 
array to store information about each segmented object. Additionally, we can also modify 
the contours line styles and colors associated with individual labels.

7.7.1 Function getAlgorithms

Function getAlgorithms consists of the following code:

function [alg_src, alg_desc] = getAlgorithms()
alg_src = {'RBCsegmentation1','RBCsegmentation2',... 

'RBCsegmentation3'}; 
alg_desc = {'Standard algorithm',...

'Standard alg. + 2nd maxima detection',...
'Standard alg. + adaptive histogram eq.'};

The function returns two cell arrays alg_src and alg_desc which have to be of the 
same length. Cell array alg_src consists of strings specifying the names of the function 
implementing the individual segmentation methods. By default, the functions’ m-files (i.e. 
in  this  case:  RBCsegmentation1.m,  RBCsegmentation2.m,  and 
RBCsegmentation3.m)  are  located  in  the  directory  ‘Algorithms’.  They  can  be, 
however, in any directory on the Matlab path. If appropriate, we can add any path to the 
Matlab path using function addpath. These functions have to follow certain syntax and 
support input and output arguments specified in section 7.8. The current mechanism of the 
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segmentation  function  call  does  not  support  passing  additional  arguments  to  the 
segmentation function. In case we want to use the same segmentation function but we want 
to  display  in  the  pop-up  menu  several  versions  of  the  method  with  predefined  set  of 
parameter values, we have to write a separate function for each version of the method 
displayed in the pop-up menu. As long as these functions support the specified input and 
output arguments, they can call any other method with specified set of input parameter 
values.

The segmentation function call  is implemented in this way also in our case.  Functions 
RBCsegmentation1,  RBCsegmentation2,  and  RBCsegmentation3 are  short 
auxiliary functions which all call the main segmentation function  RBCsegmentation. 
The second and the third functions call the main method with additional parameter-value 
pairs specifying the modification of the method to be used. In our case, these parameters 
are:  ‘UseAdaptHistEq’  and  ‘UseGetCenters2’ (see  section  6.4.2  for  more 
details).

The  second  cell  array  returned  by  getAlgorithms function  (variable  alg_desc) 
contains string values specifying the names of the methods to be displayed in the pop-up 
menu for  selection of  the  segmentation method.  These strings  are  used solely for  this 
purpose and they should be sufficiently descriptive. 

7.7.2 Function getDescriptions

Function getDescriptions contains the following code:

function descriptions = getDescriptions()
descriptions = {'rbc', 'parasite', 'other'};

This function returns a cell array  descriptions,  which can be modified in order to 
change  the  list  of  available  labels.  Variable  descriptions  consists  of  strings 
specifying the names of object classes. These strings are displayed in the label selection 
pop-up  menu  and  they  are  saved  together  with  other  contour  description  data  in  the 
external file for each labeled segmented object in the image. Since these string are stored in 
the  external  mat-files  as  part  of  the  segmented  object  description,  the 
getDescriptions function  should  not  be  edited  once  a  new  project  is  started  to 
prevent possible inconsistencies among the files constituting the red blood cell database. 

7.7.3 Function getContourColor

The third configuration function  getContourColor can be used to change the color 
and the line style of contours belonging to a particular class. In contrast to the previous two 
functions, this function is intended for customization rather than configuration and the GUI 
will work properly even if the colors are not specified for all possible labels (in such case, 
predefined  colors  or  the  default  color  will  be  used).  This  function  also  contains  short 
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implementation part which should not be edited. The configuration part of the function is 
as follows:

function color = getContourColor(desc)
% --- edit contour colors and line styles here ---
contourColors = {'b','g','c'};
colorWithoutDescription = 'k—';

% --- implementation section, do not edit ---
... 
... 

The  function  has  one  input  argument  desc,  which  is  a  string  containing  the  class 
description, and one output argument color, which is a string specifier of the contour line 
style  and  color.  Two  variables  can  be  modified  to  specify  the  line  style.  Cell  array 
contourColors consists of shortcut strings specifying the style and color of contours 
belonging  to  the  same  class.  The  index  of  the  string  specifier  as  stored  in 
contourColors variable corresponds to the class name index in the cell array returned 
by  getDescriptions function. String  colorWithoutDescription  contains  a 
line style specifier which is used for an unknown or undefined class name. If a class with 
the name specified by input argument desc is defined in function getDescriptions, 
the  corresponding  line  specifier  with  the  same  index  will  be  returned  by 
getContourColor function, provided that the specifier with such index is defined in 
contourColors. If the class name exists but the line specifier with the corresponding 
index is not defined in contourColors, the function will return an empty string. In case 
the class name specified by desc is not found, the function will return the line specifier 
defined in the variable colorWithoutDescription.

The line style and the color specified by  colorWithoutDescription is also used 
for contours of objects that have not been labeled yet. In our case, all red blood cells after 
being segmented by the segmentation function are displayed in the color and line style 
specified by  colorWithoutDescription,  because the segmentation method does 
not perform any classification of the objects and the output argument of the function does 
not contain the .desc field with the class description.

The  line  style  and  color  specifier  is  a  character  string  which  consists  of  an  element 
specifying the color and an element specifying the line style and its syntax follows Matlab 
convention used by LineSpec function. Combination of the characters listed in Tab.4 are 
allowed. If the line style character is missing, the default solid line is used.
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Character Color

r Red
g Green
b Blue
c Cyan
m Magenta
y Yellow
k Black
w White

   
Character Line Style
– Solid line
–– Dashed line
: Dotted line
–. Dash-dot line

   a)        b)
Tab. 4: String specifiers for color a), and line style b), used by function getContourColor

7.8 Requirements on the Segmentation Function

In order for the segmentation GUI to work properly with newly registered segmentation 
functions, all Matlab functions specified in the getAlgorithms.m file have to comply 
with the following syntax:

DB = RBCsegmentation(filename, 'ShowImages', showImages)
where  filename is a string specifying the name and full path of the image file to be 
segmented and showImages is a boolean value indicating whether the algorithm should 
display results of the intermediate operations. Since this parameter is intended only for 
setting the visual output of the segmentation function and is not supposed to affect the 
results of the segmentation in any way, it can be ignored by the function as long as the 
function does not terminate with error if this parameter-value pair is supplied.

Output  of  the  function  must  be  a  cell  array  of  structure  arrays,  where  each  structure 
represents a segmented object.  The following fields are  required to be present  in  each 
structure: x1, x2, y1, y2, and cont. The first four are scalars and the last one is a matrix 
with  two  columns  (see  section  7.4  for  more  details).  Field  desc,  which  is  a  string 
containing the name of the object’s class, is not required but if present, it can be read by the 
GUI.  In  case  the  name  is  found  in  the  list  of  names  returned  by  the  function 
getDescriptions the contour color and line style will be set accordingly. If the name 
is not registered in the getDescriptions function, the contour will be displayed with 
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the  style  set  for  an  unknown  or  unrecognized  class.  (see  descriptions  of 
getContourColor and getDescription function in the previous section).

The  structure  may  contain  also  any  other  fields  specifying  other  parameters  of  the 
segmented object. These fields will be preserved in the structure and if the object is not 
deleted  and the  results  are  saved,  it  will  be  also saved.  However,  structures  of  newly 
created objects with manually drawn contours in the GUI or of the merged objects will 
contain only the fields specified above. 

7.9 Typical Use of the Program

The following procedure proved to be effective during our work. At first, all the images are 
automatically segmented using the ‘Run for all & save’ function. In case the segmentation 
method fails for any images, we can try another segmentation method either by running the 
segmentation for each file again one by one using the ‘Run’ button or by deleting the 
corresponding database files and then running the segmentation again for all these images 
using the ‘Run for all & save’ button. In the following step, any inadequately segmented 
cells  are  deleted  and  if  there  are  any  over-segmented  cells  they  are  merged  by  first 
selecting them using the ‘Select cells’ function and by applying requested operation. All 
cells that had to be deleted or cells not recognized by the segmentation method at all have 
to  be manually marked using the ‘Mark new cell’ button provided that  they are  to  be 
included in the database. The last step involves selecting all cells using the corresponding 
function and labeling all cells according to the major class of objects in the image. This is 
followed by manually selecting objects of a minor class and assigning a label to them. 
Finally, all changes have to be saved using the ‘Save’ button. It is, however, advised to 
save also the intermediate corrections to keep the possibility of returning to the previously 
saved version by reloading the file from the image file listbox.
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8 Red Blood Cell Database

Using the designed GUI and following the procedure described in section 7.9, we have 
created a database of red blood cells containing both non-infected cells and cells infected 
by malaria parasites. 

8.1 Structure and Properties

The database is not implemented using any of the conventional specialized data structures. 
Instead, it simply consists of a set of original blood smear image files accompanied by 
corresponding mat-files. These mat-files contain information about all segmented objects 
in the image including their labels identifying the class of the object. This information is 
stored in a variable called dbx, which is saved in the file. Variable dbx is a cell array with 
the length equal to the number of segmented objects in the image, where each cell contains 
a structure array with the fields specified in section 7.4. The mat-files have the same name 
(except the extension)  as the original image files and all  the image files and mat-files 
comprising a particular dataset are typically located in a designated directory. 

Matlab MAT-files are compressed binary files which are used for saving Matlab variables 
and can be easily loaded and manipulated by not only any Matlab function or script but 
also by other programs external to Matlab.

The utilized approach has several advantages:

• Simplicity

Red blood cell samples can be easily retrieved even by an unexperienced Matlab 
user.  Even  without  Matlab,  the  cells  can  be  viewed  without  any  specialized 
software as the original image files are integral part of the database

• No information loss

The image samples are not rescaled, re-compressed, or modified in any other way 
from  the  original  version.  All  information  contained  in  the  original  image  is 
preserved.

• Efficiency

The  individual  image  samples  can  often  be  interpreted  only  in  relation  to  the 
original  blood  smear  image.  Therefore,  we  required  that  the  original  image  is 
available as part of the database. In this context, the presented approach is the most 
efficient way of saving both the original image and the individual red blood cell 
images.

• Extendability

A set of fields specified in section 7.4 is required in each cell of the array  dbx 
containing the contour data in order for the segmentation GUI and other scripts to 
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work properly. However, any number of other fields can be added to each structure 
array  containing  any user-defined  additional  information  about  a  particular  red 
blood cell. All these additional fields are preserved without any change when the 
database is edited by the GUI. Moreover, we can append any other variables to be 
saved in the mat-files. These could be the whole transformed original images for 
computational convenience in further processing or any other data. However, these 
additional variables are currently not preserved when any changes to the contour 
data are made by the GUI.

• Flexibility

As the data with the contours of segmented red blood cells are stored separately 
from  the  actual  image  data,  we  can  easily  create  a  database  containing  any 
transformed versions of the original images as long as the image dimensions are not 
changed.  For  instance,  we  can  create  new  images  with  corrected  non-uniform 
illumination and normalized colors and save them under the same names to a new 
folder together with the unmodified mat-files. In the same way, we can create a set 
of  images  consisting,  for  example,  of  gradient-transformed  images,  Fourier-
transformed images, Gaussian or median filtered image, etc.,  if  such images are 
desired. All the transformed versions of the red blood cell samples can be retrieved 
by the same scripts without any change needed and they can even be displayed by 
the  segmentation  GUI  with  the  possibility  to  edit  the  contour  data,  although, 
naturally, the segmentation algorithm may fail on such images.

8.2 Database Content

In total, the database contains 

• 1811 red blood cell samples with

◦ 1694 non-infected red blood cells

◦ 117 cells infected by malaria parasites

The  second  group  contains  mainly  red  blood  cells  infected  by  immature  ring-form 
trophozoites  and  mature  trophozoites  of  Plasmodium  vivax,  Plasmodium  falciparum, 
Plasmodium ovale,  and,  in  lesser extent,  also Plasmodium malariae.  The database also 
contains samples of P. vivax, P. ovale, and P. falciparum micro- and macrogametocytes and 
P. vivax schizonts.

The descriptions of the individual blood smear images are included in the project's archive 
in the directory 'rbcSegm\images\descriptions' (see Appendix B).

Fig.9 shows randomly selected set of both infected and non-infected red blood cell samples 
generated from the data stored in the database. The mask of the cell is calculated from the 
contour data.
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a)

  

  

 

b)

Fig. 9: Non-infected a), and infected b), red blood cell samples from the created database
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9 Feature Extraction

In  order  to  distinguish  between infected  and non-infected  red  blood cells,  we need  to 
extract  features  from  the  image  array  and  compute  new  variables  that  concentrate 
information to separate classes. Such feature set has to consist of features leading to large 
between-class distance and small within-class variance in the feature vector space, i.e. the 
set  of  features  should  discriminate  between  different  classes  as  well  as  possible.  An 
additional  requirement  is  robustness,  so  that  the  results  can  be  reproduced  for  new 
independently collected material. 

Raw images  cannot  be used directly as  features  due to  high variations  in  morphology 
which are coupled with arbitrary rotations and scales and because the raw images contain 
large amount of data, but relatively little information. This is the aim of feature extraction 
to  transform  the  input  data  into  a  reduced  set  of  features  that  extract  the  relevant 
information from the input data.

Following the concept introduced in [5], the feature extraction process can be expressed in 
terms of the definition of the zone of measurement, an image transformation with a non-
scalar result and a measurement on the latter. This is the process generally followed in this 
work. Since we were working with the original images, the pre-processing step was added 
to correct some deficiencies in the input images. Namely, illumination correction, color 
normalization  and  noise  filtering  were  performed  depending  on  the  particular  set  of 
features. The zone of measurement was in our case the whole area of the cell, which was 
defined by the mask obtained as a result of the preceding segmentation, although in some 
cases, this mask was eroded in order to remove the border effects in the transformed image. 
The transformation is used to bring out the aspect of the distribution of the pixel values that 
is of interest and reflects the aim of the feature extraction method. The transformations 
used in this work include a histogram, gradient, Laplacian, median filter, co-occurrence 
matrix and run-length matrix. The transformation results in a non-scalar value, which is 
usually a new image, a matrix or a vector. The transformations may also be combined so 
that,  for example, a histogram of some measurement from a transformed image can be 
created and used for the feature calculation. 

The final measurement on the transformed image delivers the feature value, which is a 
scalar.  Measurements  may  be  a  count,  integration,  or  a  selection  and  since  the 
transformation in  many cases results  in  a  histogram, the distribution expressed by this 
histogram  can  be  characterized  by  a  moment.  Similarly,  2D  moments  may  also  be 
calculated to express the shape of the object or the overall density distribution. Through 
normalization, the measurements can be made robust against several irrelevant variations, 
such  as  position,  scale,  or  rotation  [19],  [20].  It  is  often  the  case,  that  on  one 
transformation, several measurements can be performed and the same type of measurement 
can be carried out for different transformations. Some features that take only the shape of 
the cell into account are calculated from the mask of the object. The binary image may as 
well be seen as a result of a simple transformation, although, in our case, it is the result of 
the preceding segmentation step.
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In some cases, the transformation is not computed using the original pre-processed image, 
but using an image with applied intensity conversion. For example, we sometimes use the 
extinction image [5] instead of the original transmission one. Color images usually have to 
be transformed to gray-scale according to a certain color system, e.g. RGB or HSV. The 
actual  choice depends on the physical  properties  of  the stain  used.  We used the green 
channel  of  the  RGB image  in  the  segmentation  method,  because  the  Giemsa  staining 
solution has a dark purple color. However, also other types of color transformations are 
used in this work and the features extracted are evaluated and compared.

In our case, the task is to distinguish whether or not a red blood cell is infected by malaria 
and, therefore, the selected features must provide information with which it is possible to 
carry out such classification. When extracting features for the subsequent classification, it 
is  advantageous  to  apply  expert,  a  priori  knowledge  to  a  classification  problem  [4]. 
Measures of parasites and infected red blood cell morphology that are commonly used by 
technicians for manual microscopic diagnosis can be utilized. It is desirable to focus on 
these  features,  because  it  is  already known that  they are  able  to  differentiate  between 
infected and not infected red blood cells and between species of malaria. Such features, 
which were suggested in [4], may include, for example, the relative size of the infected red 
blood cells; the relative eccentricity of the infected cells; smoothness of the cell margin; 
the relative color of infected red blood cells; and texture information of infected cells, i.e. 
presence of stippling.

Another  set  of  features  can  be  based  on  image  characteristics  that  have  been  used 
previously in biological cell classifiers [4,5,21]. This set includes various features that are 
for the purpose of this work grouped into shape features, intensity features, and texture 
features. The features of the last group have been found the most useful ones in many 
applications, but at  the same time the most difficult  to define and the most difficult to 
understand intuitively [5]. In contrast to the texture features used by technicians for manual 
microscopic diagnosis,  texture features  used in  image processing and classification are 
often  difficult  or  even impossible  to  comprehend and visualize.  Another  problem with 
textural  features  is  the  missing  relation  of  specific  feature  values  to  appearance  and 
function of cells. 

The  feature  set  was  created  by  combining  different  transformations  and  different 
measurements on these transformed images with respect to a priori knowledge, observable 
differences between infected and non-infected red blood cells and achievements in similar 
studies using the specified feature. 

Individual sets of features are evaluated on a created dataset of red blood cell samples 
using ROC curves for different parameters controlling the feature extraction. Evaluation is 
followed by a discussion on the effects of different preprocessing techniques and possible 
utilization of these features for more specific problems of distinguishing between different 
types of malaria parasites.

The pre-processing of the images is described in section 9.1 and the details on the utilized 
intensity conversions are given in section 9.2. Definitions and implementation details on 
the  selected  features  are  given  in  section  9.3  and the  feature  selection  and evaluation 
process is described in section 9.4.
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9.1 Preprocessing of the Images

Since we are working with the original unprocessed images, certain preprocessing steps are 
necessary to remove differences among individual segmented objects and thus to reduce 
the variance in the extracted features and improve classification performance. Due to the 
character of the corrections, these preprocessing steps are performed on the whole input 
blood  slide  image  before  the  individual  cell  images  are  extracted  from  it  using  the 
information stored in the database. 

Although we could as well save the images of individual segmented red blood cells with 
already applied preprocessing, this approach has several advantages. Firstly, it enables us 
to always have the original image with the unchanged quality at hand. Secondly, we can 
perform different preprocessing steps and evaluate their effect on feature's performance. 
Thirdly, some transformations require no preprocessing because they are invariant to the 
absolute intensity or color. Two methods are applied in the preprocessing stage. The first is 
to  correct  the  non-uniform illumination  and so  to  remove  the  variations  in  brightness 
among the red blood cells from a single blood slide image. This method was implemented 
using the same function which was utilized in the segmentation preprocessing stage and 
which  was  described  in  [1].  The  function  was,  however,  modified  to  work with  RGB 
images instead of gray-scale ones. 

The second method applied in the preprocessing stage was color normalization. This is an 
essential  step  in  order  to  decrease  the  effect  of  different  light  sources  or  sensor 
characteristics and it is especially important if we are extracting any features based on the 
color of the cell pixels. An adapted gray world normalization method based on the diagonal 
model of illumination change described in [21,22] was used. Gray world normalization 
assumes that there is a constant gray value of the image which does not change among 
different  conditions  and  the  diagonal  model  assumes  that  an  image  of  unknown 
illumination  uI can be simply transformed to known illuminant space  k~I by multiplying 
pixel  values  with  a  diagonal  matrix:  )()(
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where bgr ,,Iµ  are the means for channels r, g, and b.

Since  in  our  case  the  background  pixels  are  not  used  for  extraction  of  features,  we 
normalize the color in the whole image using the means f

bgr ,,Iµ  of the foreground computed 
from the segmented red blood cells.

Since red blood cells in many images have ring-like shapes with center intensity and color 
close to the intensity and color of the background, we do not use the masks of already 
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segmented red blood cells saved in the database, but instead perform a new segmentation 
of the image by thresholding the image with automatically estimated threshold to compute 
the  mean  values  of  the  r,  g,  and  b channels  of  the  red  blood  cells  unbiased  by  the 
background pixel values. The mean values 

f
bgr ,,Iµ  are computed as the means of the pixels 

marked by the segmentation process as foreground for the individual channels r, g, and b.

The thresholding of the image using the Otsu’s method is preceded by the conversion of 
the  RGB  image  to  gray-scale  representation  by  eliminating  the  hue  and  saturation 
information  while  retaining  the  luminance  and  by  applying  the  adaptive  histogram 
equalization to enhance the contrast  in  the image,  which is  useful  especially when the 
contrast between non-infected red blood cells and background is low while the contrast 
between infected and non-infected red blood cells is relatively high (see section 6.3).

The  color  normalization  method  is  implemented  in  the  function 
colorNormalization2.m and can be summarized as follows:

1. Convert the original truecolor RGB image I to gray-scale image IG

2. Perform the adaptive histogram equalization on the gray-scale image IG

3. Convert  the  gray-scale  image  IG to  binary  image  IB  by  thresholding  with 
automatically selected threshold

4. Calculate the mean values 
f

bgr ,,Iµ  of the foreground for channels r, g, and b. Pixels 
of foreground are identified as pixels  in  the original  image  I for which  IB = 0: 
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values of the reference image.

5. Transform the whole image I to normalize the color: II fM=2
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  a)

  

  b)

Fig. 10: Color normalization. a) Original images, b) images with normalized colors

9.2 Intensity Conversions

For most of the feature extraction methods, only one intensity value per pixel is assumed, 
i.e. the methods assume a gray-scale image. For some methods, the original RGB image is 
converted to gray-scale by eliminating the hue and saturation information while retaining 
the luminance. For certain features, we evaluated the performance for several channels to 
choose the channel with best discriminating power. In addition to the red, green, and blue 
channels,  we  also  evaluated  the  performance  of  the  feature  for  saturation,  and  value 
channels after transforming the image to the HSV color system. The HSV color system 
describes colors as points in a cylinder whose central axis ranges from black at the bottom 
to  white  at  the  top  with  neutral  colors  between  them.  The  distance  along  the  axis 
corresponds to value, or brightness. The angle corresponds to hue, the perceived color, and 
the distance from the axis corresponds to saturation.

Intensity  values  of  the  original  image  represent  the  transmitted  light.  However,  for 
calculating some features, the pixels values from the extinction image can be more directly 
useful  [5].  Therefore,  a  transformed  extinction  image  is  created  using  the  following 
formula:
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where  IT is  the  original  transmission  image,  c1 is  a  multiplicative  scale  factor,  c2 is  a 
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preliminary white value, and s is the base value of transmission zero (the black shoulder). 
In our case, the following parameters were used:

c1 = –0.59

s = –0.02

c2 = (max(IT) – s) / (1 – s)

a) b)

Fig. 11: Green channel of the original transmission image a) and corresponding extinction 
image b)

9.3 Feature Generation

A set of features is proposed and implemented in this stage of the project. The selection of 
the features for the further evaluation was based on the visual differences between infected 
and  non-infected  red  blood  cells,  the  measures  of  infected  red  blood  cells  that  are 
commonly used by technicians for manual microscopic diagnosis, and the feature selection 
used by other cytological studies. The chosen features can be grouped into three categories: 
shape features, intensity features, and texture features.

9.3.1 Shape Features

These features express the overall size and shape of the cell without taking the density of 
the cell into account, except for the initial segmentation step. In other words, these features 
are  computed  only from the mask of  the object  which was obtained by the  preceding 
segmentation  process  and  the  actual  gray-scale  image  is  not  needed.  Although  the 
applicability of the features based only on the shape of the cell is necessarily limited, they 
can be useful in distinguishing development stages of certain species of plasmodium which 
are characterized by a specific shape of the infected cell and they may also be useful in 
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distinguishing  between  red  blood  cells  and  other  objects,  such  as  white  blood  cells, 
platelets of artifacts. Although the number of classes had to be reduced to only two classes 
– an infected and a non-infected cell – due to the insufficient number of samples, several of 
these features were evaluated both as guidance for possible future studies, which would 
include also classification distinguishing between infected and non-infected red blood cells 
and other objects and classification of parasites according to the development stage and 
species of the plasmodium, and also to  evaluate  whether  these features could possibly 
improve the overall discrimination power when combined with other features. 

The  use  of  shape  features  was  motivated  by  several  observable  differences  in  shape 
between infected and non-infected red blood cells. One of the most frequent differences 
was the size of the cells infected by plasmodium in later stages of development which was 
usually greater relative to the average size of non-infected cells (i.e. also relative to the 
average cell size in the blood slide due to the majority of non-infected cells in the image). 
The shapes of cells infected by plasmodium parasite in later stages of development were 
also often anomalous compared to the relatively regular circular or elliptical shape of non-
infected red cells. The most common deviations include elongation of the infected cell or 
protrusions as a result of the cell rupture. 

a)

     

b)

     

c)

Fig.  12:  Infected  red  blood  cells  with  distinct  shapes.  a) Mature  P.  ovale  trophozoite,  
b) immature P. ovale schizont, c) P. falciparum macrogametocyte

A crescent or sausage-like shape is typical for mature Plasmodium falciparum. The red 
blood  cell  hosting  the  parasite  is  often  distorted  or  not  visible  and  there  is  often  no 
distinctive  texture,  although  the  parasite  is  shown  in  dark  saturated  color.  The  shape 
measurements may, in such cases, become useful supplementary features.

The  margin  of  red  blood  cells  infected  by  plasmodium  parasite  in  later  stages  of 
development is also often crenelated. However, the crenelation is difficult to detect from 
the mask of the object due to the properties of the segmentation method. Generally, any 
distinguishing properties of the infected red blood cell contours are hardly detectable from 
the cell mask image due to the limitations in the segmentation method which, in our case, 
smooths the contour in order to repair incidental shape deficiencies caused by intensity 
variations, noise, and artifacts. However, the contour crenelation is in most infected cells 
negligible and thus this deficiency of the segmentation method is acceptable.

One of the problems associated with shape features is that the shape of a segmented red 
blood  cell  is  partially  dependent  on  the  segmentation  method  used.  In  our  case,  the 
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compound  cells  are  separated  using  watershed  transformation  based  on  distance 
transformation in the binary image, which simply cuts the cluster in the narrowest part. The 
resulting cell shapes are not circular and in case the cells are largely overlapped they may 
become rather half-circle shaped. However, other segmentation methods, or even manual 
segmentation, could separate cell compounds in different way and, therefore, the shape 
features should, at least partially, be seen in relation to the utilized segmentation method.

Since  absolute  measurements,  such  as  orientation,  absolute  coordinates,  and  absolute 
dimension are of no use for us,  we have to choose features which are invariant under 
transaction,  changes  in  scale,  and  also  rotation.  Two  sets  of  features  which  are  in 
accordance  with  these  requirements  have  been  evaluated:  Hu set  of  invariant  moment 
features and a relative shape measurements vector.

9.3.1.1 Hu Set of Invariant Moment Features
Geometric moments describing the extent of the object are useful shape descriptors which 
are  straightforward to define, but unfortunately sensitive to overall size and orientation of 
the object. Invariant moments which are normalized against these factors were proposed by 
Hu [19]. These moments are derived from algebraic combinations of the first three orders 
of  normalized  central  moments  and  are  translation,  scale,  and  rotation  invariant  while 
providing spatial information. The moments are defined as follows:

02201 ηη +=I (15)

( ) ( ) 2
11

2
02202 2ηηη +−=I (16)

( ) ( ) 2
0321

2
12303 33 ηηηη −+−=I (17)

( ) ( ) 2
0321

2
12304 ηηηη +++=I (18)

( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[ ]2

0321
2

123003210321

2
0321

2
1230123012305

33    

33

ηηηηηηηη

ηηηηηηηη

+−++−+

++−++−=I
(19)

( ) ( ) ( )[ ] ( ) ( )0321123011
2

0321
2

123002206 4 ηηηηηηηηηηη ++++−+−=I (20)

( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[ ]2

0321
2

123003211230

2
0321

2
1230123003217

33    

33

ηηηηηηηη

ηηηηηηηη

+−++−−

−+−++−=I
(21)

Moment I7 is skew invariant, which is useful in distinguishing mirror images of otherwise 
identical images. 

ijη  is normalized (ij)th central moment where  2≥+ ji . These moments are invariant to 
both translation and changes in scale which is accomplished by dividing the corresponding 
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central moment by the properly scaled (00)th central moment, using the following formula:
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Central moments for a digital image ( )yxI ,  are defined as follows:
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Since in our case the image ( )yxI ,  is the object's mask, the formula can be rewritten as:
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are x- and y-coordinates of centroid and mij are general 2-d moments defined as:
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Using Eq.26, x  and y  can be rewritten for a binary mask image in form:
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Where A is the area of the object. Hu invariant moment features I1 – I7 are calculated by the 
function fHuMoments.m according to Eq.15-27.

9.3.1.2 Relative Shape Measurements
Relative shape measurements  R is a vector containing five simple shape measurements 
which  are  normalized  using  the  estimated  average  cell  area  computed  during  the 
segmentation and stored for convenience in the image database for each image file (see 
section 6.1). These measurements are independent of position and orientation and after 
normalization they are also approximately independent of size. Let r denotes the estimated 
average cell radius and O is the object's mask. Then the relative shape measurements used 
and evaluated as features in this work are calculated as follows:
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Relative area is computed as sum of the mask pixels (e.g. the area of the mask) divided by 
the area of a circle with radius r.
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The  relative  perimeter  is  computed  as  the  length  of  the  object's  contour  divided  by 
perimeter of a circle with radius r. Since in our case the contour is not a connected line but 
consists only of necessary number of points to reconstruct the mask, its length is calculated 
as sum of distances between adjacent point plus distance between the first and the last 
point as the contour is a closed line. N is the number of contour points.

Major axis of best-fit ellipse 

r
aar = (30)

Minor axis of best-fit ellipse 

r
bbr = (31)

The best-fit ellipse is computed by solving nonlinear least-squares curve fitting problem. 
However, finding a best-fit ellipse with arbitrary position and rotation is an optimization 
problem with many parameters and there is a high probability that the local solution found 
would not represent the desired best-fit ellipse. Moreover, we would have variables in the 
denominator and numerator which can shrink and grow together and we could obtain very 
large or very small coefficients. Therefore, we first find the orientation of the object and 
rotate the object so that its axis of orientation is parallel to the x- or y-axis in the Cartesian 
plane. Furthermore, we estimate the center of the ellipse  ( )yx,  as x- and y-coordinates of 
centroid according to the Eq.27. Then we can simplify the optimization problem of finding 
the best-fit ellipse to the problem of finding the coefficients  a and  b in the equation of 
ellipse:
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The larger of the coefficients is the semimajor axis of the best-fit ellipse, the second is the 
semiminor axis. Thus the major axis { }21,max2 aaa =  and the minor axis { }21,min2 aab = .

The orientation is calculated using the following formula [12].
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where a,  b, and c are the second-order moments (Eq.7-9, section 6.2.2). After computing 
the object's orientation, the object contour points are converted from Cartesian to polar 
coordinate system, where position of each point is specified by  θ , which is the angular 
displacement from the positive x-axis, and ρ , which is the distance from the origin to the 
point in  x-y plane. The calculated angle of orientation is then subtracted from each point 
and after that all the points are converted back to Cartesian coordinate system. 

Largest inscribable circle

( )( )
r

Idistrlic
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Although all  these features  are  closely related  to  the size  of  the  object  relative to  the 
estimated average red blood cell radius, they all describe different aspects of the shape. 
While the area is roughly proportional to the overall size of the object regardless of its 
shape, the perimeter is greater for concave objects, objects with irregular shape or objects 
with crenelated or otherwise non-smooth contour. The major axis of the best-fit ellipse 
roughly corresponds to the largest distance within the object. For convex shapes, the minor 
axis of the best-fit ellipse is similar to the double of the radius of the largest inscribable 
circle and both express the size of the narrowest part  of the object.  These values will, 
however,  differ  for  object  with  irregular  or  concave  shapes,  for  example  for  crescent-
shaped cells.

9.3.2 Intensity Features

Intensity features are based only on the absolute value of the intensity measurements in the 
image. In pure intensity based measurements, the spatial positions of the pixels are not 
taken into account and all the information is thus retained in the histogram of the image. 
By intensity,  we mean the intensity in a gray-scale image from which the histogram is 
obtained. The gray-scale image can be obtained using different channels of the original 
image or  by applying  different  intensity  conversions.  The  color  histogram is  not  used 
directly as a feature, because it is in our case computed from the whole area of the cell 
which  may contain pixels  of  the  cell,  pixels  of  the parasite,  and  even pixels  with  the 
intensity of  the background in the centers  of the cells.  Moreover,  even after  the color 
normalization there is still relatively high variance in color of the parasites due to specific 
properties of the staining solution used in the particular image. 
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Intensity and color are the most palpable visual differences between red blood cells and 
parasites. This difference is a result of the staining procedure during which all the object 
containing DNA, and thus also the plasmodium parasites, are stained in saturated purple 
color. In our case, histograms are computed from the whole area of the cell and thus the 
intensity features may be useful mainly for distinguishing the red blood cells infected by 
parasites  in later  stages  of development  which fill  most  part  of the cell.  The intensity 
features may be advantageous especially when the texture of such a cell is indistinct. 

The  gray-scale  images  are  obtained  from  the  red,  green,  blue,  saturation  and  value 
components  of  the  original  image.  Although  hue  information  may also  be  useful,  the 
measurements we use could not be clearly interpreted due to the periodicity of the hue 
space. The value component represents the case when the actual color is not important. In 
addition  to  the  original  transmission  image,  histograms  are  also  computed  from  the 
extinction image as defined in section 9.2. 

Let  h(v) denotes the frequency of pixel intensity value  v (v  = 1, …,  N) in the object's 

histogram  h  and  ( ) ( )
A
vhvp =  is  the  probability  function  which  is  computed  from the 

histogram by dividing it by the object's area ∑=
v

vhA )( . By calculating moments for the 

distribution in the histogram, the intensity information can be condensed into a few useful 
measures. First four central moments are calculated [23]:
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These are the first four central moments, where the mean gives an estimate of the average 
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intensity level in the region of the cell and the variance is a measure of the dispersion of 
region intensity. Histogram skewness is a measure of histogram symmetry and it shows the 
percentage of the region's pixels that favor intensities on either side of the mean. Kurtosis 
is a measure of the tail of the histogram. A high kurtosis histogram has a sharper peak and 
longer tails, while a low kurtosis histogram has a more rounded peak and shorter thinner 
tail.  The subtraction -3 at the end of the Eq.38 ensures that the kurtosis of a Gaussian 
distribution is normalized to zero. 

Additionally,  the entropy of the histogram distribution, the seventh largest and smallest 
intensity value, the median and mode values of the distribution as well as the gray level of 
the 10th and 90th percentile are also evaluated. The entropy is defined in terms of the 
histogram as follows [23].

Entropy
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The largest and lowest intensity value in the image obtained from the histogram is usually 
strongly  influenced  by noise  and,  therefore,  the  seventh  largest  and  smallest  intensity 
values are used instead. Median describes the intensity value separating the higher half of 
the  histogram  distribution,  mode  is  the  value  that  occurs  the  most  frequently  in  the 
histogram distribution and percentile describes the intensity value below which a certain 
percent of the histogram distribution falls.

The computation of the intensity features is implemented in function fHistogram.m.

9.3.3 Textural Features

Textural features aim to quantify the overall local density variability inside the object of 
interest. In contrast to the shape and intensity features, textural features are more complex, 
more  difficult  to  define  in  a  unique,  robust  and  reproducible  way,  and  they are  more 
difficult  to  understand  intuitively.  Moreover,  it  is  often  difficult  to  visualize  textural 
features and relate specific feature values to appearance of cells. The difficulty to relate the 
textural features to visually perceived changes in parasite structure and appearance is the 
large disadvantage of these features, especially of the co-occurrence and run-length types. 
However, these features also proved to be one of the most useful ones in many cytological 
studies [5].

Depending on the development stage and the species of the parasite with which a red blood 
cell is infected, different types of texture can be observed. Parasites of early development 
stages form rings with distinct speckles of chromatin. Since the rest of the area of the red 
blood cell is usually quite intact, the texture is given mainly by the chromatin speckles and 
possibly by the ring lines which are not always visible (Fig.13a). More distinct texture can 
be observed in red blood cells infected by parasites in later stages of development. Pigment 
granules appear early in the growth phase of the parasite  as the immature ring-shaped 
trophozoite  becomes mature  trophozoite.  Depending on the species,  the texture  in  this 
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phase consists mainly of large amoeboid cytoplasm with large chromatin and fine pigment 
dots called Schüfner's dots (Fig13b). This is typical mainly for the Plasmodium vivax. In 
the case of Plasmodium ovale species, trophozoites have sturdy cytoplasm, large chromatin 
dots and red blood cells are sometimes fimbriated (Fig.12a). In the schizont phase, the 
nucleus begins to divide, the cell is often filled with the merozoites and the texture is given 
by large speckles of chromatin, coalesced pigment, and possibly Schüfner's dots, which 
may also be visible (Fig.13d). Macro- and microgametocytes are characterized by distinct 
scattered pigment (Fig.13e).

a)  b)  c)  d)  e)

Fig. 13: Different textural properties of infected red blood cells (figures are not to scale).  
a) P. falciparum ring-form parasites, b) Ring form P. vivax, c) Mature P. vivax trophozoite,  
d) Immature P. vivax schizont, e) P. vivax microgametocyte

Textural  features  can  be obtained from measurements  on certain  transformation of  the 
original image. In this work, the following transformations are used: gradient,  Laplacian, 
and flat texture, which are all local operator transformations. 

One of the problems with local operations is the dependence of their absolute size on scale. 
To  ensure  that  the  transformations  are  obtained  approximately  under  the  same 
magnification  for  all  cells,  each  image  with  a  segmented  red  blood  cell  and  its 
corresponding binary mask image are resized with factor 60 / RA, where RA is the estimated 
average cell radius which represents approximately half of the size of a typical red blood 
cell in an image. An image with a typical non-infected red blood cell with regular shape 
will thus be resized to approximately 120×120 pixels. The value of 60 pixels was chosen as 
a typical cell radius in our data set and for data sets with cells of different typical scale this 
parameter should be changed accordingly.

The transformation  could  be  computed from any of  the  color  channels  of  the original 
transmission or extinction image. Calculating the transformation image for all the possible 
color channels would generate large amount of features with little new information. We 
assume, that all the texture information is contained in the gray-scale extinction image, 
from which all  the following transformations are  computed.  This assumption was later 
justified when we carried out some experiments to compare the performance of certain 
features for transformations computed from different channels of the original transmission 
image and the extinction image. For all channels, the extinction image proved to provide 
better results.
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The measurements on the following transformed images are not calculated from the whole 
area of the cell. In order to remove the border effects in the transformed image, the mask 
was  eroded  with  disk-shaped  structuring  element  with  a  fixed  size  of  with  a  size 
corresponding to the size of the local operator.

9.3.3.1 Gradient Transformation Features

Gradient of a continuous two-dimensional scalar function ( )yxf ,  is defined as the vector 
field whose components are the partial derivatives of f:
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Derivatives are larger at locations of the image where the image function undergoes rapid 
changes. The gradient vector in the particular point in the image points in the direction of 
the greatest rate. The transformation image is obtained from the gradient magnitude which 
is for a continuous images calculated as:
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Since a digital image in discrete in nature, derivatives in Eq.41 must be approximated by 
differences. The differences of the image  I in the vertical and horizontal directions are 
given by

( ) ( ) ( )jiIjiIjiIi ,1,1, −−+=∆ (42)

( ) ( ) ( )1,1,, −−+=∆ jiIjiIjiIj (43)

The differences can be conveniently computed using discrete convolution  G of image  I 
with the convolution mask H, which is defined as:
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where  O is  the local  neighborhood of  pixel  I(i,j)  in  the  input  image whose pixels  are 
weighted by coefficients H. 

In  our  case,  H is  a  matrix  [ ]0.707100.7071 −  for  horizontal  direction  and 
[ ]T0.707100.7071 −  for  vertical  direction.  This  calculation  is  equivalent  to  the 
computation of  differences from Eq.42 and 43,  except  that  the coefficients  have value 
0.7071 instead of 1 which ensures that the maximum of the gradient magnitude is equal 
to 1.

Gradient magnitude image is, however, not computed directly from the extinction image IE. 
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The image IE is first filtered by a Gaussian filter to remove local variations in intensity due 
to noise. The filter is approximated by a 3×3 convolution mask H and the filtered image is 
computed using Eq.44. The following mask H approximating the Gaussian distribution is 
used:
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H

The features calculated from the gradient image can be considered as a quantification of 
the velocity of changes of gray values in the original extinction image. Images containing 
many objects  with well  defined edges  also contain  many pixels  with  higher  values  of 
gradient  magnitude.  This  is  valid,  for  example,  for  images  of  infected  cell  containing 
several ring-shaped trophozoites. In contrast, a non-infected red blood cell with relatively 
uniform intensity within its area will typically produce only low values in the gradient 
magnitude image. 

In principal,  all  the histogram based features computed on the original transmission or 
extinction image in section 9.3.2, could also be computed using the transformed gradient 
image. We have selected and further evaluated only the following ones: mean, variance, 
skewness, and kurtosis (Eq.35-38), histogram minimum and maximum represented by the 
seventh smallest and largest histogram value, and entropy (Eq.39).

The algorithm for computing features from the gradient magnitude image is implemented 
in function fGradientTransform.m and can be summarized as follows:

1. Rescale  both  the  input  extinction  image  IE with  the  cell  sample  and  its 
corresponding mask image IM with factor 60 / RA

2. Filter  the rescaled image  IE by Gaussian filter  using convolution with Gaussian 
convolution kernel HG : IE2 = convolution(IE,HG)

3. Calculate discrete gradients in the vertical and horizontal direction IGi and IGj using 
Eq.42 and 43. Calculate gradient magnitude image IG: 

IG = sqrt(IGi
2 + IGj

2)
4. Erode binary mask image  IM using disk-shaped structuring element  S of  size  RA / 

10: 

IME = erode(IM,S)
5. Calculate histogram measurements from the gradient values distribution within the 

region specified by IME: 

fG-<histogram_measurement> = <histogram_measurement>(IG(p  ∈ IME)) 
RA is the estimated average cell radius
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Fig.  14: Gradient images for a non-infected and an infected red blood cells.  Original  
images are shown on the left. Gradient images on the right were calculated from the green  
channel of the corresponding extinction image. Contrast had to be enhanced and therefore  
the intensity in the gradient image of the infected cell is saturated.

9.3.3.2 Laplacian Transformation Features
Laplace operator is a differential operator which is defined as the sum of the second partial 
derivatives. For a continuous two-dimensional scalar function  ( )yxf , ,  the Laplacian is 
defined as follows.
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Similarly  as  in  case  of  the  gradient,  derivatives  in  Eq.45  must  be  in  digital  images 
approximated  by  differences.  The  discrete  approximation  of  the  Laplace  operator  is 
computed as:

( ) ( ) ( ) ( ) ( ) ( )( )jiIjiIjiIjiIjiIjiI ,41,1,,1,1
4
1,2 −−+++−++=∇ (46)

Laplacian transformation produces large values at locations with large changes of gradient. 
The resulting features may thus be roughly considered as quantification of the velocity of 
changes of the gradient.

The transformation image is again not computed directly from the extinction image IE, but 
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is first filtered by a Gaussian filter with the same convolution matrix as was used for the 
gradient transformation.

The  same  set  of  seven  histogram  measurements  as  in  the  case  of  the  gradient 
transformation were calculated from the transformed image. 

Laplacian transformation features are evaluated for several sizes of the convolution kernel. 
The features reflect the intensity of regular particles fitting into the size of the convolution 
kernel.

The  algorithm  for  computing  features  from  the  Laplacian  transformation  image  is 
implemented in function fLaplacian.m and can be summarized as follows:

1. Rescale  both  the  input  extinction  image  IE with  the  cell  sample  and  its 
corresponding mask image IM with factor 60 / RA

2. Filter  the  input  extinction  image  IE by  Gaussian  filter  using  convolution  with 
Gaussian convolution kernel HG : IE2 = convolution(IE,HG)

3. Calculate discrete Laplacian transformation using Eq.46: 

IL = discreteLaplacian(IE2)
4. Erode binary image mask  IM using disk-shaped structuring element  S of size RA / 

10: 

IME = erode(IM,S)
5. Calculate histogram measurements from the image IL within the region specified by 

IME: 

fL-<histogram_measurement> = <histogram_measurement>(IL(p  ∈ IME)) 
RA is the estimated average cell radius

    

Fig.  15:  Laplacian  transformation  image  computed  from  the  green  channel  of  the  
extinction image (Parameters i,j in Eq.46: i=j=7)
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9.3.3.3 Flat Texture
Flat texture is defined as the difference between the original image and a two-dimensional 
median  filtered  one  [5].  The  median  is  a  non-linear  operation  which  is  often  used  to 
remove noise from images or other signals. It is particularly useful to reduce speckle noise 
and  salt  and  pepper  noise  while  preserving  edges  in  the  image.  Median  filtering  is 
performed using a window consisting of an odd number of samples. In the median filtered 
image,  the  value  of  each  pixel  is  replaced  by  median  of  the  values  in  the  pixel's 
neighborhood which is specified by the window.

Depending on the size of the square median operator window  r, the transformation will 
smooth away particles within the object's region up to an area of half the window area 
(r2/2).  In an infected red blood cell,  such smoothed particles may be,  for example,  the 
Schüfner's dots or the speckles of chromatin. 

Flat texture image IFT is computed directly from the extinction image IE using the following 
formula.

( ) ( ) { }( )rryxIyxIyxI EEFT ..., );,(,, −=++−= ξνξνm e d ia n (47)

where r is the size of the median operator window. 

Flat texture image can be considered as a peel of the original image containing only the 
particles of interest which were smoothed from the original image by the median filtering. 

The features computed from the flat texture image, which include the same set of seven 
histogram measurements introduced in previous sections, are evaluated for different sizes r 
of the median window and their distinguishing powers are compared. The mask of the cell 
specifying the region of measurement is reduced by applying morphological erosion with 
disk-shaped structuring element with radius r/2.

The  algorithm for  computation  features  from the  flat  texture image is  implemented in 
function fFlatTexture.m and is summarized as follows:

1. Rescale  both  the  input  extinction  image  IE with  the  cell  sample  and  its 
corresponding mask image IM with factor 60 / RA

2. Calculate flat texture image IFT from the extinction image IE using Eq.47

3. Erode binary image mask IM using disk-shaped structuring element S of size r / 2: 

IME = erode(IM,S)
4. Calculate histogram measurements from the image IFT within the region specified 

by IME: 

fFT-<histogram_measurement> = <histogram_measurement>(IFT(p  ∈ IME)) 
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9.3.3.4 Co-occurrence Matrix Features
Co-occurrence  matrix  is  a  spatial-dependent  matrix  representation  of  the  image which 
estimates the probability that a pixel I(k,l) has intensity i and a pixel I(m,n) has intensity j 
[7]. Supposing the probability depends only on a certain spatial relation r between a pixel 
with intensity  i  and a pixel with intensity  j, then the information about the relation  r  is 
recorded in the co-occurrence matrix Cr with dimensions corresponding to the number of 
intensity levels in the image. The spatial relation  r  can be represented by displacement 
vector D which is often expressed as distance d and angle θ .

Let  },...,2,1{ XX NL =  denote the horizontal  spatial  domain of the analyzed image with 
resolution  YX NN × ,  },...,2,1{ YY NL =  denote  the  vertical  spatial  domain  and 

},...,2,1{ GNG =  be the set of  NG quantized gray tones. The input image I is represented as 
GLLI XY →×: .  Then  the  co-occurrence  matrix  C  of  dimensions  GG NN ×  for 

displacement vector [ ]21,ddD =  is defined as originally proposed in [24].

( )
( ) ( ) },,,                    

,|)()()),(),,{((#    ,, 21

jnmIilkI
dnldmkLLLLnmlkDjiC XYXY

==
=−=−×××∈=

(48)

where # denotes the number of elements in the set.

The co-occurrence matrix can be seen as an accumulator matrix to which 1 is added at 
C(i,j) if a co-occurrence specified by intensities i and j and the spatial relation given by D 
is found. The co-occurrence matrix defined by Eq.48 is not symmetrical. The symmetrical 
co-occurrence matrix can be obtained by using absolute values in the distance conditions: 

1dmk =−  and 2dnl =− . Then the ordering of values in the pixel pairs is not considered 
and ( ) ( )DijCDjiC ,,   ,, = .

Since  the  texture  in  the  red  blood  cell  image  is  directionally  homogeneous,  we  can 
calculate the co-occurrence matrix using only one displacement vector. However, in order 
to reduce any irrelevant directional dependencies, we also apply the displacement vector 
with  a  rotation  of  °90  and  accumulate  the  results  to  the  co-occurrence  matrix.  The 
following displacement vectors are used: [ ]dD ,0=  which corresponds to angle °= 0θ  and 

[ ]0,dD =  which corresponds to angle °= 90θ . 

The parameters controlling the extraction of the co-occurrence matrix are, in addition to 
the displacement vector D, also the number of quantized gray levels NG, which determines 
the size of the co-occurrence matrix, and the normalization method, which determines how 
the  gray-scale  values  are  scaled  to  the  gray  levels.  The  number  of  gray  levels  can, 
theoretically,  be any number.  However,  for  large numbers  of  levels,  the  co-occurrence 
matrix  may  become  sparse  with  limited  generalization  properties.  The  normalization 
method may be, for example, histogram equalization or linear spread.

The co-occurrence matrix features can be calculated for any of the previously described 
transformed images as well as for the original extinction image. In our case, co-occurrence 
matrix is generated from the extinction image IE and from the flat texture image IFT. The 
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zone of measurement, i.e. the set of pixels used for generating the co-occurrence matrix, is 
in  case  of  the  extinction  image  specified  by  the  mask  image  IM obtained  from  the 
segmentation method, and in case of the flat texture image specified by the eroded mask 
IME used for computation of the flat texture features. The following feature set originally 
proposed in [24] is derived from the co-occurrence matrix.  In the following equations, 
p(i,j) denotes (i,j)th entry in a normalized gray-level co-occurrence matrix, px(i) is ith entry 
in the marginal-probability matrix obtained by summing the rows of p(i,j): 

∑ =
= GN

jx jipip
1

),()(  (49)

and likewise 
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Furthermore, )(kp yx+  and )(kp yx−  are calculated as:
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1.  Angular Second Moment
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2. Contrast
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3. Correlation
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where xµ , yµ , xσ , and yσ  are the means and standard deviations of px and py.

4. Sum of Squares – Variance 
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5. Inverse Difference moment 
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6. Sum Average
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7. Sum Variance 
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8. Sum Entropy
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9. Entropy
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10. Difference Variance
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11. Difference Entropy
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12. Information Measure of Correlation 1
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1
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13. Information Measure of Correlation 2
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where 
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are entropies of )(ipx , )( jpy , and ),( jip  and 
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We evaluate  the  co-occurrence  matrix  features  for  several  lengths  of  the  displacement 
vector  d,  different number of gray levels  NG and different  normalization methods.  The 
details  about the specific values of the parameters controlling the extraction of the co-
occurrence matrix and discussion on the normalization methods is given in section 9.4.9. 
Computation  of  the  co-occurrence  features  is  implemented  in  function 
fCooccurrence.m.  The  co-occurrence  matrix  is  calculated  using  Matlab's  function 
graycomatrix, which is included in the Image Processing Toolbox. To ensure that the 
matrix is computed only using the pixel values within the area of the cell defined by the 
mask image IM, all pixel values in the input image for which  IM = 0 are set to  NaN. The 
function ignores pixel pairs if either of the pixels contains a NaN. 

Function fCooccurrence.m can be summarized as follows:

1. Rescale both the input extinction image with normalized intensity levels IE and the 
corresponding mask image IM with factor 60 / RA 

2. Set values of pixels in IE that are not included in the mask IM to NaN: 

IE(p ∉  IM) = NaN
3. For a given length of the displacement vector  d and number of gray levels  NG, 
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calculate sum of the two symmetric co-occurrence matrices for image  IE and for 
transposed image T

EI

MCO = graycomatrix(IE) + graycomatrix( T
EI )

4. From normalize  matrix  ∑ ∑= =

=
G GCO N

i

N

j CO

CO
M

jiM
Mp

1 1
),(  calculate  features  given  by 

Eq.53 – 65 

9.3.3.5 Run-length Matrix
Run-length  statistics  is  capable  of  capturing  the  coarseness  of  a  texture  in  specified 
direction. A run is defined as a string of consecutive pixels which have the same gray-level 
intensity along a specific linear orientation [25]. In a coarse texture, relatively long gray-
level runs with significantly different intensities can be observed more often while a fine 
textures tend to contain primarily short runs with similar gray-level intensities.

For a given image, a run-length matrix  P is defined as a matrix in which each element 
P(i,j)  represents the number of  runs with pixels  of gray-level intensity equal to  i and 
length of run equal to j along a specific orientation. The dimension of the matrix is M by N, 
where  M is  the  number  of  gray  levels  in  the  quantized  image  and  N is  the  possible 
maximum run length. An orientation is defined using a displacement vector  D(x,y). For 
typical orientations  °0 ,  °45 ,  °90 , and  °135 , the following representations of  D can be 
used: (1,0), (1,1), (0,1), (–1,1).

Since  the  texture  in  the  red  blood  cell  image  is  directionally  homogeneous,  we  can 
calculate the run-length matrix using only one displacement vector. However, similarly as 
in  the case of the co-occurrence matrix,  we also apply the displacement vector with a 
rotation of °90  and accumulate the results to the run-length matrix in order to reduce any 
irrelevant directional dependencies. 

The parameters controlling the generation of run-length matrix are the displacement vector 
D specifying the direction in which the runs are calculated, the number of quantized gray 
levels NG, which determines the width of the matrix, the maximum considered run length 
NR, which determines the height of the matrix, and the normalization method.

The run-length matrix is generated from the the area of the extinction image IE specified by 
the mask image IM and from the region in the flat texture image IFT specified by the eroded 
mask IME used for computation of the flat texture features. Eleven features proposed in [26] 
are  calculated  from  the  generated  run-length  matrices  and  evaluated.  The  feature 
generating measurements on the run-length matrix are defined as follows.
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1. Short Run Emphasis (SRE):
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2. Long Run Emphasis (LRE):
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3. Gray-Level Nonuniformity (GLN):
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4. Run Length Nonuniformity (RLN)
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5. Run Percentage (RP)
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6. Low Gray-Level Run Emphasis (LGRE)
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7. High Gray-Level Run Emphasis (HGRE)
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8. Short Run Low Gray-Level Emphasis (SRLGE)
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9. Short Run High Gray-Level Emphasis (SRHGE)
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10. Long Run Low Gray-Level Emphasis (LRLGE)
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11. Long Run High Gray-Level Emphasis (LRHGE)
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In the equations above, nr is the total number of runs and np is the number of pixels in the 
image.

We compute the run-length matrix features for several different numbers of gray levels NG 

and different normalization methods. The details about the parameters used are given in 
section  9.4.10.  Computation  of  the  run-length  features  is  implemented  in  function 
fRunLength.m, which can be summarized as follows.

1. Rescale both the input extinction image with normalized intensity levels IE and the 
corresponding mask image IM with factor 60 / RA 

2. Scale image to NG gray levels

3. Calculate run-length matrices for image IE and for transposed image T
EI

RLE1 = rle(IE)
RLE2 = rle( T

EI )

4. Let [M,N1] be the size of the matrix RLE1 and [M,N2] be the size of the matrix RLE2.

Accumulate results from matrices RLE1 and RLE2 into a new matrix RLE with size 
[M,min(max(N1,N2),NR], where  NR is a given parameter specifying the maximum 
run length.

5. Calculate features according to Eq.71 – 81 
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The computation of the run-length matrix is  implemented in the function  rlm.m.  The 
algorithm can be described as follows.

FUNCTION rlm(input_image, mask, number_of_levels)

SET input_image to 0 at positions where mask = 0
CREATE new zero array run_length_matrix of size 

(number of columns in input_image, number_of_levels)

FOR each row img_row in input_image
ind = indices of intensity changes in img_row
lengths = differences between adjacent elements of ind
values = img_row at positions (ind)
ind_mask = indices of values where values > 0
values_mask = values at positions (ind_mask)
lengths_mask = lengths at positions (ind_mask)
FOR each pair in (values_mask, lengths_mask)

INCREMENT  run_length_matrix at  positions  (values_mask, 
lengths_mask)
END

END

RETURN run_length_matrix

9.4 Feature Selection

Features  proposed  in  the  previous  section  are  generated  using  different  transformation 
parameters and further evaluated in order to select the ones with best discrimination power. 
The generated features are evaluated in two aspects. First, the discriminating capabilities 
are analyzed individually for each feature using the receiver operating characteristic (ROC) 
curve and the area under the ROC curve (AUC). The combinations of best performing 
features are then evaluated using criterion based on scatter matrices in order to propose 
feature vectors with higher discrimination power.

9.4.1 The Receiver Operating Characteristic Curve

Fig.16a illustrates an example of two overlapping probability density functions describing 
the distribution of feature values for two classes, which are in our case an infected and 
non-infected red blood cell. For the sake of generalization, let us call the infected red blood 
cell as positive (p) class and the non-infected red blood cell as negative (n) class, which 
fully conforms to  the actual  meaning of  the classes.  By choosing  a  threshold,  we can 
decide class n for values on the left of the threshold and class p for the values on the right. 
This decision is associated with an error probability,  FPR, of reaching a wrong decision 
concerning the class p. This probability is called as false positive rate. The probability of a 
correct  decision is  TPR  = 1 –  FNR,  called as  true positive rate.  Similarly,  FNR  (false 
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negative rate) is the probability of a wrong decision concerning class  n and  TNR =  1 – 
FPR (true negative rate) is the probability of a correct decision concerning class  n. By 
moving the threshold over the whole range of possible positions, we obtain different values 
of FPR and FNR. The ROC curve is defined as a plot of TPR as the y coordinate versus 
FPR as the x coordinate [18,27]. If the two distributions have complete overlap, then for 
any position of the threshold: TPR = 1 – FPR. Such a case corresponds to the straight line 
in Fig.16b. The feature producing such ROC curve has no discrimination capability. As the 
two distributions move apart, the corresponding curve departs form the straight line and the 
less the overlap of the classes, the larger the area between the curve and straight line. Two 
completely separated  class  distributions  would  result  in  TPR  = 1  for  all  the  threshold 
positions, i.e. for the whole interval [0,1] of FPR. Such ROC curve would be produced by 
a feature with ideal discriminating capability. Thus the area under the ROC curve (AUC) is 
a measure of the class discrimination capability of the specific feature. The simplest way to 
calculate this area is to use trapezoidal integration using the following formula [28], in 
which α  represents the FPR and β  represents the FNR (i.e. β−1  = TPR).

( )( ) ( )( )∑ 
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i
i αβαβ 1

2
11AUC (82)

where,

( ) ( ) ( )1111 −−−−=−∆ ii βββ (83)

1−−=∆ ii ααα (84)

The ROC curve is constructed by sweeping the threshold and computing percentages of 
wrong and correct classifications for the particular feature, i.e. the false positive rate and 
the  true  positive  rate.  If  a  simple  binary  classifier  were  to  be  devised  based  on  the 
particular feature by choosing a threshold value, this value would correspond to one point 
on the ROC curve. If two classifiers with different thresholds were to be compared, the 
better classifier is the one producing smaller number of false positives and at the same time 
greater number of true positives, i.e. the better classifier is represented by a point to the 
north and to the west relative to the point of the worse classifier. 

Computation of ROC curve points and the corresponding AUC is implemented in function 
roccurve.m. Function plotroccurve.m is used to plot the calculated curves.
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a)  b)

Fig. 16: Probability density functions for positive and negative class a). ROC curve b).

9.4.2 Feature Evaluation m-scripts

The features are evaluated in groups according to the transformation from which they are 
calculated. To calculate the features using all input samples and visualize the results, the 
following Matlab scripts have been written.

evalHu.m – evaluates Hu's set of invariant image moments

evalShape.m – evaluates the relative shape measurements

evalHist.m – evaluates the intensity features based on image histogram

evalGrad.m – evaluates gradient transformation features

evalLaplacian.m – evaluates Laplacian transformation features

evalFlatTexture.m – evaluates flat texture features

evalCooccurrence.m – evaluates co-occurrence matrix features

evalRunLength.m – evaluates run-length features

These Matlab m-files are not functions and so they have no input or output arguments. 
They are intended for evaluation and visualization of the results and they are to be edited to 
deliver specific output, if required. Each of these scripts is programmed to carry out the 
following actions.
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1. Specifying the directory containing input image files with corresponding .mat files 
with the  information about the segmented cell contours which together form the 
input  red  blood  cell  database.  The  directory  is,  by  default,  set  to 
'..\..\rbcSegm\images\highres3', but the script also includes a code 
to  open standard dialog box for  selecting  a  directory.  This  code  can be  simply 
commented out, if required.

2. A list of all image files in the directory is retrieved.

3. A waitbar  figure  is  initialized.  The  waitbar  shows  a  progress  bar  and  exact 
percentage of input red blood cell  samples already processed. It  also contains a 
cancel button which enables interruption of the feature calculation process at any 
time. 

4. The input red blood cell samples are processed within two loops. The first loop 
successively loads all image files listed in the previously retrieved file list.  The 
structure array containing the segmented red blood cell  contours'  information is 
loaded for each image file from the corresponding mat-file. If the mat-file does not 
exist the program continues with the next iteration of the loop and loads the next 
image file from the list. If the database file exists, specific preprocessing steps and 
image  transformations  are  carried  out.  This  includes  actions  that  have  to  be 
performed  on  the  whole  original  image,  such  as  non-uniform  illumination 
correction or color normalization.

5. The nested second loop iterates through all red blood cell samples in the particular 
image.  According  to  the  information  in  the  loaded  database  structure  array,  an 
image containing only a single red blood cell sample is generated together with a 
mask image specifying the zone of measurement. The mask image is computed as 
the  area  specified  by  the  segmented  red  blood  cell  contour.  Within  this  loop, 
features are calculated for the particular image transformation using a set of input 
parameters  or  using  various  versions  of  the  input  image,  on  which  the 
transformation is calculated. The results are stored in one multidimensional array. 
As a rule, the first dimension corresponds to the individual red blood cell samples 
and its length equals to the total number of available samples in all input images. 
Additionally,  one-dimensional  array  called  targets is  created  containing  the 
information about the class of the sample. Its length is equal to the total number of 
red blood cell samples and it contains zeros on positions corresponding to the non-
infected red blood cells (the negative class) and ones on positions corresponding to 
the red blood cells infected by malaria (the positive class).

6. Since the process of feature calculation for different input parameters may be time 
consuming, both the multidimensional array with feature values and the targets 
array are stored in a mat-file with the same name as is the name of the script (e.g. 
evalHu.mat). The variable can be loaded at any time so that any evaluation of 
the results, such as plotting the ROC curves, can be easily carried out later. 

7. The computed features are evaluated by calculating the ROC curve and the area 
under  the curve (AUC) for each feature.  ROC curves  and estimated probability 
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density  functions  are  plotted  for  selected  features  depending  on  the  particular 
feature set.

The  ROC  curve  together  with  AUC  are  calculated  using  the  roccurve.m 
function, which is described in section 9.4.1. The ROC curves are plotted using 
plotroccurve.m function, which generates multiple plots in different colors in 
a square axes region together with a diagonal line between points [0,0] and [1,1]. 
Title and legend can also be specified.

The estimated probability density functions of the feature values for infected and 
non-infected  red blood cells  are  plotted using function  plotFeature.m.  The 
probability  density  functions  can  be  estimated  using  a  normalized  histogram. 
However, in order to obtain a smooth curve, the density estimate is computed using 
Matlab function  ksdensity, which uses normal kernel function to smooth the 
resulting curve.

By selecting another directory, altering the current red blood cell database or adding new 
segmented images to the database, the performance of the features can be easily evaluated 
for new sets of red blood cells using these scripts. Moreover, a new data set can be easily 
created using the segmentation GUI containing only non-infected red blood cells and red 
blood  cells  infected  by  malaria  parasite  of  specific  species  or  in  a  given  stage  of 
development. The scripts may then be used without any change to evaluate the features on 
a particular subset of malaria parasites, as shown in the next section. However, the scripts 
are intended only for evaluation of the features on two classes.

9.4.3 Hu Set of Invariant Moment Features

Since these features are calculated only from the mask of the red blood cell, no image 
preprocessing  or  image  transformations  are  needed.  In  fact,  even  loading  the  original 
image file is not required. The script for evaluation the invariant moment features is stored 
in evalHu.m file. The feature values are stored in a two-dimensional N×F array I, where 
N is the total number of samples and F=7 is the number of calculated features for each red 
blood cell sample image. Array I together with the variable targets indicating the class 
of the red blood cell are saved in evalHu.mat file.

The estimated probability density functions, which are depicted in Fig.17, indicate that the 
discriminating  power  of  the  features  evaluated  for  the  set  containing  red  blood  cells 
infected  with all  kinds  of  malaria  parasite  will  be  very low.  This  was  partly expected 
because most of the infected red blood cells in the data set contain parasites in early stages 
of  development  and these  cells  show no significant  difference  in  shape from the non-
infected cells. The ROC curves for all seven Hu's invariant moments are shown in Fig.18 
and the AUCs calculated from the corresponding ROC curves are in Tab.5. The highest 
AUC was acquired for the third Hu's moment, the difference between the values of the 
individual moments is, however, insignificant and the performance of all the feature can be 
concluded as poor.
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H1 H2 H3 H4 H5 H6 H7

AUC 0.5284 0.5285 0.5500 0.5232  0.5053 0.5102 0.5224

Tab. 5: Area under the ROC curve for Hu set of invariant moment features

In order to find out whether these features could possibly be useful for a certain subset of 
infected  red  blood  cells,  a  new  data  set  was  created  using  the  developed  GUI  tool. 
Specifically,  this data set contains only red blood cells  infected by mature plasmodium 
falciparum parasites which have characteristic crescent-like shape. The new dataset was 
created by copying all image and mat-files forming the current database to a new directory 
called  'highres3-falciparum'.  The  contours  of  the  segmented  red  blood  cells  in  the 
individual images were then edited by the segmentation GUI tool and all infected red blood 
cells that were not infected by mature plasmodium falciparum parasite were deleted from 
the  database.  Any  other  subset  containing  only  cells  infected  by  a  specified  type  of 
plasmodium parasites  can  be  created  in  the  same  way.  The  array  with  the  calculated 
invariant  moment  features  and  the  target  array  is  saved  for  later  use  in  evalHu-
falciparum.mat file. The estimated probability density functions are shown in Fig.21, 
the corresponding ROC curves for the first four Hu moments are displayed in Fig.19 and 
the  calculated  AUCs  are  in  Tab.6.  The  main  problem  associated  with  the  data  set 
containing  only  Falciparum  parasites  in  the  positive  class  was  the  small  number  of 
available samples in the positive class.  This prevents us from drawing any statistically 
significant  conclusions.  However,  the  very  high  values  of  AUCs  (AUCHu1 =  0.9998, 
AUCHu2 = 0.9999)  and very good separation of classes for the first two Hu's moments 
indicate  that  these  features  could  indeed be useful  in  certain  specific  cases.  The  main 
reason why the performance of the invariant moment features was inferior when all types 
of parasites were included in the data set, was caused by the fact that most of the infected 
red blood cells in the data set were not significantly distinguishable from the rest of the 
cells based only on their shapes and the number of samples with specific shape, such as the 
P. falciparum infected cells, was very low. 

H1 H2 H3 H4 H5 H6 H7

AUC 0.9998 0.9999 0.9969 0.9982 0.8740 0.8743 0.4952

Tab.  6: Area under the ROC curve for Hu set  of invariant moment features calculated  
using non-infected red blood cells and red blood cells  infected by mature Plasmodium  
Falciparum parasites
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9.4.4 Relative Shape Measurement Features

The second group of features that are based only on the actual mask of the segmented red 
blood cells are relative shape measurements. The five calculated measurements include 
relative area of the cell, relative perimeter, relative lengths of the major and minor axes of 
the best-fit ellipse and the relative radius of the largest inscribable circle. The performance 
of this group of features is evaluated in the script evalShape.m and the generated two-
dimensional array S is saved in file  evalShape.mat. The first dimension of the array 
corresponds to the individual red blood cell samples and the second array of length five 
corresponds to the individual features. 

Similarly as in the case of the invariant moments, the shape features are calculated only 
from the mask of the segmented red blood cell and, therefore, no image preprocessing or 
image transformations are necessary. 

The estimated probability density functions for the shape feature values are depicted in 
Fig.22, the corresponding ROC curves are shown in Fig.20 and the calculated AUCs are in 
Tab.7. The results reflect the types of infected red blood cell shapes in the data set. As 
stated in the previous section, most of the infected red blood cells in the database contain 
parasites  in  early stage  of  development  and such cells  differ  insignificantly from non-
infected  cells.  Relatively  smaller  number  of  infected  cells  are  enlarged  or  elongated 
compared to non-infected cells whose size is represented by the estimated red blood cell 
radius  against  which  the  individual  shape  measurements  are  normalized.  Only a  small 
number  of  infected  red  blood  cells  have  specific  shape  such  as  the  cells  infected  by 
Plasmodium Falciparum or  some  cells  which  are  nearly  ruptured  due  to  the  growing 
parasite. For this reason, the performance of the features calculated only from the mask 
image is necessarily limited. Compared to the invariant moment features, which are scale 
invariant, shape measurements can detect changes in size. This might explain the slightly 
better performance of these features compared to the invariant moments. 

Area Perimeter Major axis of 
best-fit 
ellipse

Minor axis of 
best-fit 
ellipse

Largest 
inscribable 
circle

AUC 0.6162 0.6382 0.6462 0.6023 0.5861

Tab. 7: AUCs for relative shape measurement features

As can be seen from Fig.22, the probability density functions for the positive and negative 
class show extensive overlap for all calculated features. Moreover, the functions exhibit 
similar behavior for all the features, which is in accordance with what we would expect 
considering  the  distribution  of  the  shapes  in  our  data  set.  Although  the  individual 
measurements describe different aspects of the object's shape, they are all approximately 
proportional to the size of the object for highly regular shapes, such as circles are. The 
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distributions show that all the measurement values for the negative class are approximately 
normally distributed around one for the area, perimeter and largest inscribable circle and 
around two for the best fit ellipse (this is because the lengths of the minor and major axes 
of the best-fit ellipse are normalized by the average cell radius and not the diameter). The 
mean radius of the largest inscribable circle is slightly less then one because any difference 
of the shape from a circle will result in smaller inscribed circle. This happens, for instance, 
when  a  cell  is  partially  cut  as  a  result  of  separating  it  from  a  compound  during 
segmentation. The distributions of the shape measurement values for the infected red blood 
cells  are  similar,  but  shows  a  longer  right  tail  in  all  cases.  This  tail  represents 
measurements on the enlarged or elongated infected red cells.

The largest value of AUC was obtained for the length of the best-fit ellipse's major axis 
while the measurement of the largest inscribable circle radius resulted in the smallest value 
of AUC. The differences between the values obtained for the individual measurements are, 
however, not significant and, generally, the discrimination power of all these features was 
rather inferior. 

Similarly as in the case of the invariant moment features, the shape measurements could be 
evaluated on a certain subset of the infected red blood cells; this evaluation is, however, 
not performed in this work. Possibly, they could be found useful for detecting of red blood 
cells infected by plasmodium parasites in a certain (later) stage of development. However, 
the low values of AUC and the similarity of the individual estimated density functions 
suggest that, for a general case of distinguishing between infected and non-infected red 
blood cells, the usability of these features can be considered as low.

Generally,  the advantage of the shape measurements  is  easy and fast  computation and 
rather straightforward interpretation of the calculated feature values. The disadvantage is 
certain  dependence  of  the  shape  on  the  preceding  segmentation  method which  can  be 
observed mainly in cells separated from compounds and in cells with rugged or crenelated 
contours. For our problem of infected and non-infected red blood cell classification, the 
general disadvantage of features based only on the mask of the segmented cell is the low 
amount of information that is captured solely in the shape of the object.

9.4.5 Histogram Features

This  set  of  intensity  features  is  based  only on  the  absolute  values  of  pixel  intensities 
without  taking the spatial  positions  of  the  pixels  into  account.  All  the  information  for 
computation of these features is thus retained in the histogram of the image.

Since these features are based only on the absolute intensity values, it is crucial to ensure 
that the same objects are represented with the same intensities within the whole area of an 
image as well as in all input images. Therefore, two preprocessing steps are first performed 
in each original image – correction of non-uniform illumination and color normalization. 
Additionally, each input image shows different contrast. In some images, red blood cells 
are shown in pale colors and parasites in dark colors while in other images, the difference 
in intensity between red blood cells and parasites is much less pronounced. Ideally, for 
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each image a contrast correction function should be evaluated in order to normalize the 
contrast across all the input images. However, in practice this is not a trivial task because 
images contain different types and numbers of parasites and their required intensity may be 
unknown. Differences in contrast are, therefore, not corrected and must be accepted as the 
inevitable variance in input parameters. In real-life applications, the contrast in the image 
could be controlled in the input device so that the contrast normalization would not be 
required. In addition to the transmission image, the extinction image is also computed from 
the  preprocessed  original  image  and  the  histogram  features  are  calculated  from  both 
images.  The  zone  of  measurement  specifying  pixels  from  which  the  histogram 
measurements are calculated is the whole area of the cell, which is specified by its mask.

A vector of eleven intensity measurements is calculated from the histogram of each R, G, 
and B channels  of  the  original  and  extinction  images  and also  from the  the  S and V 
channels  of  the  images  transformed  to  the  HSV  color  space.  Calculating  statistical 
measurements  from the  histogram of  the  hue  channel  makes  no  sense  because  of  the 
periodicity of the hue space. Evaluation of the histogram-based features is implemented in 
the  script  evalHist.m and  the  three-dimensional  array  H containing  the  calculated 
features is saved for later use in file  evalHist.mat. The first dimension of this array 
corresponds to the individual red blood cell samples and the second dimension corresponds 
to  the  channels  RO,  GO,  BO,  SO,  VO,  RE,  GE,  BE,  SE,  and  VE,  where  O  denotes  the 
preprocessed original image and E denotes the extinction image. The third dimension of 
the  array corresponds to  the eleven calculated features.  The  evaluated features  include 
mean, variance, skewness, kurtosis, the seventh minimum, the seventh maximum, median, 
mode, 10th percentile, 90th percentile, and entropy.

RO GO BO SO VO RE GE BE SE VE

Mean 0.6696 0.8172 0.6369 0.6595 0.7741 0.7743 0.8372 0.7043 0.5019 0.8241

Variance 0.8909 0.9379 0.8522 0.9594 0.8757 0.9378 0.9740 0.8950 0.4881 0.9732

Skewness 0.9140 0.8917 0.9531 0.7992 0.8993 0.9486 0.9560 0.9752 0.5139 0.9419

Kurtosis 0.7925 0.7879 0.8255 0.7920 0.8033 0.8749 0.8485 0.9033 0.5846 0.8459

Min. 0.9712 0.9962 0.9593 0.4965 0.9908 0.6926 0.6136 0.6956 0.5335 0.6176

Max. 0.5272 0.5567 0.5517 0.9315 0.5718 0.9721 0.9959 0.9570 0.5197 0.9954

Median 0.6367 0.7773 0.6080 0.5966 0.7428 0.7188 0.7808 0.6615 0.5021 0.7690

Mode 0.6841 0.7628 0.6322 0.6327 0.7188 0.6836 0.7304 0.6499 0.5240 0.7397

10th percentile 0.7280 0.8347 0.6644 0.4172 0.7924 0.6688 0.7489 0.6323 0.4962 0.7226

90th percentile 0.5837 0.7308 0.5947 0.6761 0.7069 0.7948 0.8337 0.7281 0.5010 0.8245

Entropy 0.8170 0.8532 0.7347 0.8279 0.8004 0.8462 0.8704 0.7528 0.4857 0.8615

Tab. 8: Area under the ROC curve for histogram-based features

The calculated AUCs for all feature values are shown in Tab.8. The field with the best 
result (highest AUC) for each feature is highlighted in yellow color. It can be seen from the 
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table that most of the best results were obtained for the green channel of the extinction 
image,  followed by the green channel  of  the original  transmission image and the blue 
channel of the extinction image.  If the individual features are ordered according to the 
highest achieved value of AUC from the highest to the lowest value, we will obtain:

Minimum, maximum, skewness, variance, kurtosis, entropy, mean, 10th percentile, 
90th percentile, median, and mode.

The first two measures, minimum and maximum, are complementary, because minimum in 
the green channel of the transmission image corresponds to the maximum in the green 
channel of the extinction image. This holds true also for the red, blue and value channels 
and it is the result of the transformation to the extinction image. Indeed, the AUC value for 
the histogram minimum in the the green channel of the transmission image is almost the 
same as the AUC value for the histogram maximum in the green channel of the extinction 
image.  Equally large  value  of  AUC was also achieved for  the  maximum in  the  value 
channel of the extinction image followed by the minimum in the value channel of the 
transmission image.  These are the only four measurements whose AUC is  greater than 
0.99. Due to the high mutual correlation between the individual channels, it is no surprise 
that high values of AUC were also achieved for the minimum in the R, B, and V channels 
of the transmission image and for the maximum in the the same channels of the extinction 
image.

Other measurements with large AUC values are the variance of the green channel and the 
skewness of the blue channel in the extinction image. The performance of all the other 
measurements is significantly lower. 

The  ROC curves  for  all  measurements  are  depicted  in  Fig.25, 26, 27,  and  28  and the 
estimated probability density functions for all measurements in the green channel of the 
extinction image are shown in Fig.23 and 24. The ROC curves demonstrate that, generally, 
the most useful set  of measurements calculated from the gray-scale histograms include 
variance, skewness, kurtosis, and minimum or maximum, followed by entropy. The other 
measurements including mean, median and percentiles did not prove to deliver acceptable 
results  and should not  be used.  The ROC curves  also show that  measurements  on the 
saturation channel do not deliver, in most cases, acceptable results. The only exception was 
the histogram maximum of the saturation channel in the transmission image. Even in this 
case, however, the ROC curve is rather asymmetrical, which is the result of the bimodal 
character of the underlying distribution functions for both classes. It is not surprising that 
the best results were achieved with the measurements calculated on the green channels of 
both images. This is due to the fact that parasites are typically shown in dark saturated 
purple color and, therefore, in the green channel the highest contrast between pixels of 
parasites and pixels of red blood cells, which are usually shown in lighter red colors, is 
achieved. It is, however, important to remark that these result are dependent on the channel 
constants  used  during  the  color  normalization  process.  If  color  normalization  is  not 
performed or is not well controlled, it is more appropriate to use the value channel of the 
extinction image. The values of AUCs for most of the features were almost as high for this 
channel  as  for  the green channel  of  the  extinction  image and,  on average,  the second 
highest, although this channel did not deliver the best results for any of the measurements.
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The evaluation of histogram-based features has shown that the best discrimination power 
can be, according the the AUC measure, provided by the histogram maximum in the green 
channel of the extinction image, or alternatively the maximum in the value channel of the 
extinction image or the minimum of the green in the original image. Although the images 
in  our  data  set  exhibit  relatively  high  amount  of  noise  which  can  affect  the  detected 
maximum and minimum intensity values in the image, choosing the seventh maximum and 
minimum value in the histogram proved to provide good results. More experiments could 
be carried out to evaluate whether another value could possibly deliver better results.

GE GE(median-filtered) GE(eroded mask)

Variance 0.9740 0.9692 0.9733
Skewness 0.9560 0.9442 0.9623
Kurtosis 0.8485 0.8393 0.8529
Minimum 0.6136 0.7063 0.6574
Maximum 0.9959 0.9968 0.9967
Entropy 0.8704 0.8502 0.8725

Tab.  9: Comparison of the AUC values for selected histogram measurements calculated  
from the green channel of three versions of the extinction image: GE – green channel of the 
extinction  image  without  any  further  processing;  GE(median-filtered) –  green  channel  after  
applying median filter; GE(eroded mask) – green channel without any processing, but with the 
zone of measurement specified by an eroded mask

We were also interested whether the results would improve in case the noise in the green 
channel of the extinction image was suppressed by applying a median filter and in case the 
zone of measurement was reduced by eroding the cell mask. The reduction of the area of 
the image from which the histogram is obtained was motivated by the fact that the cell 
margin may contain brighter or darker pixels or that the mask may be inaccurate and thus 
the specified area may contain pixels of the background. The mask was eroded using disk-
shaped structuring element with radius RA / 8, where RA is the estimated average radius of 
the cells in the image. The computed AUCs for these two additional scenarios are shown in 
Tab.9 together with the AUCs calculated from the original green channel of the extinction 
image for easy comparison. Only variance, skewness, kurtosis, minimum, maximum and 
entropy  were  evaluated.  The  results  show  that  after  applying  the  median  filter,  the 
performance of all measurements deteriorates slightly, except for the histogram minimum 
and maximum. On the other hand, after removing pixels from the marginal regions of the 
cell,  the  performance  improves  slightly for  all  measurements  except  the  variance.  The 
highest  AUC  achieved  increased  from  0.9959  to  0.9968.  This  experiment  shows  that 
median filtering may remove some information useful for discrimination between classes 
while  reduction  of  the  measurement  area  may  slightly  improve  the  performance  by 
selecting cell pixels with higher relevance to class differentiation. 
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In general, the advantage of the histogram-based features is the easy and fast computation. 
Compared to the textural features, intensity features can also be more easily interpreted and 
linked to the observable image properties. The disadvantage of these features is that they 
are based on the absolute intensity values of the pixels and, therefore, shading correction, 
color and possibly also contrast normalization are of great importance.

9.4.6 Gradient Transformation Features

Since gradient is not dependent on the absolute value of the overall pixel intensity within 
the cell area, the correction of non-uniform illumination is not required. The gray-scale 
extinction image,  from which the gradient features are calculated, is obtained from the 
green  channel  of  the  original  image.  The  measurements  calculated  from  the  gradient 
transformation image include mean, variance, skewness, kurtosis, the seventh maximum 
and minimum in the histogram and the entropy of the histogram. Evaluation of the gradient 
transformation features is implemented in the script evalGrad.m and the generated two-
dimensional array G containing the calculated feature values is saved in the mat file with 
the same name. 

The gradient transformation was computed using the default parameters as described in 
section 9.3.3.1, i.e. the image is first filtered by a Gaussian filter with 3×3 convolution 
mask and the gradient transformation is computed using convolution mask of length 3.

The  calculated  AUCs  (see  Tab.10)  indicate  that  the  best  distinguishing  power  can  be 
obtained  by calculating  the  variance  of  the  gradient  image  histogram.  Relatively high 
values  of  AUC  were  also  obtained  for  the  seventh  largest  and  smallest  value  in  the 
histogram. It can be seen from the corresponding ROC curves (see Fig.29) that although 
the calculated AUC value for the histogram entropy is not significantly smaller than the 
value for histogram minimum, the ROC curve for the entropy is much flatter compared to 
the ROC curve of the histogram minimum so that its points are located further from the 
point [0,1]. For this reason, the real performance of a classifier with such feature can be 
expected to be even lower.

Mean Variance Skewness Kurtosis Minimum Maximu
m

Entropy

AUC 0.9029 0.9943 0.9112 0.8781 0.9665 0.9866 0.9450

Tab. 10: AUCs for gradient transformation features using the default size of the Gaussian  
filter HG=[3,3] and length of the gradient convolution kernel lG=3
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HG=[3,3], lG=3 HG=[3,3], lG=5 HG=[7,7], lG=3 HG=[7,7], lG=5
Extinction image 0.9943 0.9971 0.9943 0.9971
Median filtered ext. 
im.

0.9973 0.9977 0.9973 0.9977

Tab.  11:  AUCs for  variance  of  the  gradient  image,  where  HG denotes  the  size  of  the  
Gaussian filter and lG denotes the length of the convolution kernel used for computation of  
the image gradient

Additional experiments were carried out to evaluate how the performance depends on the 
change  of  certain  transformation  parameters.  Specifically,  we  calculated  AUC  of  the 
variance of the gradient image histogram in these cases:

• The extinction image is first filtered by a median filter with 3×3 window before the 
gradient transformation is calculated

• The image is filtered by Gaussian filter with convolution matrix 7×7 instead of the 
default size 3×3

• The gradient is calculated using convolution mask with length 5 instead of default 
length  3  (H =  [ ]5.00005.0  for  horizontal  direction  and 
[ ]T5.00005.0  for vertical direction)

Median filter is a non-linear filter that is known to be capable of reducing noise while 
preserving edges in the image. Although it proved to decrease the discriminating power of 
some  histogram-based  measures  on  the  original  extinction  image,  it  could  possibly 
improve the results in this case, because the gradient image is rather highly sensitive to 
noise. Gaussian filtering is a standard operation performed to reduce noise in the image 
before the gradient is computed. It smooths noise and also the edges in the images reducing 
random high variations in gradient. The evaluation of a different length of the convolution 
kernel used for calculation of the gradient was motivated by the fact that the width of the 
parasite edges in the resized red blood cell image could be greater than three pixels and 
thus possibly better detected by this convolution kernel. The resulting AUCs are shown in 
Tab.11.  It  demonstrates  that  median  filtering  may,  indeed,  slightly  improve  the 
performance of  the histogram variance feature,  as  well  as increasing the length of the 
convolution kernel for calculation of the gradient. On the other hand, changing the size of 
the Gaussian filter resulted in no change in the corresponding ROC curve for this particular 
measurement.

In  conclusion,  we have  shown that  variance of  the  pixel  values  in  the gradient  image 
obtained from the green channel of the extinction image can be useful in distinguishing 
between infected and non-infected red blood cells. Median filter may improve the results if 
the images contain significant amount of noise and the convolution mask for calculating 
the gradient can be adjusted to reflect the real size of the image and to deliver the optimal 
results.
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9.4.7 Laplacian Transformation Features

Similarly  as  in  the  case  of  gradient  transformation  features,  Laplace  operator  is 
independent of the overall intensity level within the cell area and, therefore, the correction 
of the non-uniform illumination in the input image is not strictly required. However, better 
results were observed when the correction was applied. This is in contrast with gradient 
transformation features  where only insignificant  changes were observed when the non-
uniform illumination correction was performed. Although both these transformations are 
based  on  intensity  changes  in  the  image,  in  this  case  the  measurements  on  the 
transformation image are evaluated for greater sizes of the convolution mask which covers 
an area of the cell large enough to be affected by the shading correction, while the gradient 
was calculated only locally for the size of the convolution mask smaller than five pixels. 
We also observed that the performance of the evaluated features was generally higher when 
the extinction image was first filtered by the median filter.  The only exception was the 
kurtosis  measurement  on the histogram of the transformed image which showed lower 
performance after the median filter was applied. This measurement, however, did not prove 
to  deliver  results  superior  to  the  other  measurements  even  for  non-filtered  extinction 
image. For these reasons, both non-uniform illumination correction and median filtering is 
applied  on  the  extinction  image  from  which  the  Laplacian  transformation  image  is 
computed for all features. The extinction image is obtained from the green channel of the 
original transmission image.

The Laplacian transformation features are evaluated in the script  evalLaplacian.m 
and a four-dimensional array L containing the values of the calculated features is saved for 
later use in the mat-file with the same name. The first dimension in this array corresponds 
to the individual red blood cell samples and the second dimension of length 2 corresponds 
to the non-filtered and filtered extinction image from which the Laplacian transformation is 
computed.  The features  are  evaluated for different  values of the parameter  r  in  Eq.46, 
which  controls  the  size  h of  the  convolution  matrix  (h  =  2r +  1).  Feature  values  are 
calculated for the following parameters of r = {1,3,5,7,9,15} using seven measurements on 
the histogram of the transformed image, which include mean, variance, skewness, kurtosis, 
minimum and maximum represented by the seventh smallest and largest histogram values, 
and entropy. The last two dimensions of the array  L correspond to the parameters  r and 
individual listed measurements. 

The values of calculated AUCs are shown in Tab.12. It can be seen from the results that the 
only useful measurements include the variance and the maximum. The highest value were 
for both of these measurements achieved for  r = 7. Indeed, also the values of AUC for 
other measurement indicate that most information useful for distinguishing non-infected 
and infected red blood cells is contained in the Laplacian transformation image obtained 
for the value of the parameter r between 7 and 9. It has to be emphasized that the value of 
this parameter is only relevant in relation to the red blood cell size. In our case, all red 
blood cell images are resized by the factor of RA / 60, where RA is the estimated radius of a 
typical  non-infected  red  blood  cell  in  the  image.  In  this  context,  the  value  of  r  = 7 
represents  objects  within  a  red  red  blood  with  the  size  of  approximately  RA / 4.  After 
examination  of  the  input  images,  we can  see  that  there  are  indeed many objects  with 
approximately this size. These objects are the speckles of chromatin in the ring-shaped 
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parasites. The estimated probability density functions for the variance and maximum of the 
Laplacian transformation image histogram are shown in Fig.30 for r = 7 and ROC curves 
for these measurements and r = {1,3,5,7,9,15} are shown in Fig.31.

r=1 r=3 r=5 r=7 r=9 r=15

Mean 0.5910 0.6143 0.5875 0.6842 0.7273 0.7432
Variance 0.7736 0.9139 0.9648 0.9787 0.9761 0.9599
Skewness 0.8488 0.9320 0.9007 0.9180 0.9069 0.9266
Kurtosis 0.4032 0.7494 0.8155 0.8642 0.8967 0.9539
Minimum 0.6617 0.3937 0.3323 0.2928 0.2420 0.1730
Maximum 0.7453 0.9175 0.9800 0.9886 0.9871 0.9812
Entropy 0.8198 0.8525 0.9177 0.9436 0.9445 0.9129

Tab. 12: AUC for Laplacian transformation features for different values of the Laplacian 
window size parameter r

The AUC values of Laplacian transformation features indicate that these features are not 
capable of distinguishing between classes as well as some other evaluated features. We 
have  shown  that  the  performance  of  the  features  is  strongly  dependent  on  the  size 
parameter h  (h = 2r + 1) of the Laplacian convolution kernel. The results have shown that 
the response of these features is highest for the size of the convolution kernel h = 15, which 
corresponds to the approximate real size RA / 4, where RA is the estimated radius of a typical 
red blood cell  in the input  image.  Since the Laplacian features reflect  the intensity of 
regular particles fitting into the size of the convolution kernel,  the results indicate that 
these features could be sensitive the young ring-form trophozoites, which are characterized 
by a distinct  speckle of chromatin of approximately this  size and that the AUC values 
might be higher if the positive class consisted only of the subset of these types of parasites. 
However, additional experiments would have to be performed to support this surmise. 

9.4.8 Flat Texture Features

Flat texture transformation is calculated from the green channel of the extinction image 
with corrected shading. The same set of histogram measurements were calculated from the 
transformed image, including mean, variance, skewness, kurtosis, minimum and maximum 
represented by the seventh smallest and largest histogram values, and entropy. All these 
features were evaluated for a set of nine different sizes  r of the square median operator 
window. Depending on the window size, the median transformation will smooth away all 
objects within the red blood cell up to the area of half the window area  r2 / 2. The flat 
texture then represents the difference between the original extinction image and the two-
dimensional median filtered one. The measurements were calculated for the following set 
of sizes r = {3, 6, 9, 12, 15, 18, 25, 35, 45}. 
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The  evaluation  of  flat  texture  features  is  implemented  in  the  script 
evalFlatTexture.m and,  similarly  as  for  other  evaluated  features,  all  calculated 
feature values are saved in a mat-file with the same name together with vector named 
targets indicating the object's class, so that the result can be easily visualized at any 
time. The variable containing all the feature values is a three-dimensional array called FT. 
The dimensions of the array correspond to the individual samples, different values of the 
size parameter r, and histogram measurements, respectively. 

The  values  of  calculated  AUCs  are  shown  in  Tab.13.  Compared  to  the  Laplacian 
transformation features, which were also evaluated for different values of the window size 
parameter, the dependence of the performance of the individual features on the size of the 
median  operator  window  is  much  less  pronounced  for  the  flat  texture  features.  This 
indicates  that  the size  parameter  is  of  lesser  importance in  this  case.  Moreover,  lesser 
differences  can  be  observed  between  the  individual  features  compared  to  other  image 
transformations. 

In general, best performance can be observed for the variance followed by the maximum 
and the mean and for the sizes r of the median window between 15 and 25 pixels. Median 
filter with window size of 18 pixels, for which the highest value of AUC was observed, 
would  smooth  away  all  circular  objects  with  diameter  approximately  up  to  RA / 4, 
supposing there are no other objects in their proximity.  It is interesting to see that this 
finding  is  consistent  with  the  results  observed  during  the  evaluation  of  the  Laplacian 
transformation features. 

r=3 r=6 r=9 r=12 r=15 r=18 r=25

Mean 0.9110 0.9750 0.9836 0.9839 0.9845 0.9900 0.9915
Variance 0.7649 0.9098 0.9390 0.9827 0.9919 0.9944 0.9917
Skewness 0.9145 0.9092 0.9186 0.9096 0.9025 0.9013 0.8928
Kurtosis 0.8545 0.8708 0.8778 0.8649 0.8578 0.8477 0.8461
Minimum 0.7729 0.9158 0.9487 0.9503 0.9497 0.9449 0.9451
Maximu
m

0.8542 0.9579 0.9680 0.9835 0.9883 0.9917 0.9900

Entropy 0.6883 0.8135 0.8608 0.9107 0.9400 0.9558 0.9740

Tab. 13: AUC for flat texture features for different values of the median operator window 
size r

The estimated probability density functions for all measurements are compared in  Fig.32 
for the median window size r = 18 and corresponding ROC curves for the same size of the 
median operator window are shown in Fig.33.

The flat texture features proved to provide comparably good ability to distinguish between 
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infected and non-infected red blood cells  as the histogram features computed from the 
original extinction image or as the gradient transformation features. The best performance 
was achieved for the size of the median operator window corresponding approximately to 
the 10 / 3 of the typical non-infected red blood cell radius. Compared to the Laplacian 
transformation  features,  the  results  are  less  dependent  on  the  exact  value  of  the  size 
parameter,  which  is  in  accordance  with  the  principal  differences  of  the  underlying 
transformation methods. 

9.4.9 Co-occurrence Features

Co-occurrence matrix is calculated from the green channel of the extinction image with the 
corrected  non-uniform illumination,  similarly  as  for  most  of  the  other  texture  features 
evaluated in this work. Furthermore, co-occurrence matrix is also computed from a flat 
texture  image,  which  is  obtained  from the  preprocessed  extinction  image.  Parameters 
controlling the extraction of the co-occurrence matrix are the length of the displacement 
vector d and the number of gray-level values NG determining the size of the co-occurrence 
matrix. Moreover, the normalization method determining how the intensity values in the 
input  image  are  scaled  to  the  specified  number  of  gray  levels  NG has  to  be  defined. 
Commonly used methods include histogram equalization or linear spread function [29]. 
Intensity normalization is very important, because after reducing the number of intensity 
levels in the image, we could lose valuable texture information if all levels NG are not used, 
for example, due to low contrast in the image. In our case, we can either treat each red 
blood cell sample individually regardless of the global intensity distribution in the input 
image or normalize the intensities for all red blood cells in the original extinction image. 
Alternatively,  we could also normalize intensities  for each image individually but  with 
respect to the maximum and minimum intensity values in the input image, which is in case 
of the linear spread equal to the first method. Both approaches has shown to have certain 
drawbacks. The fundamental problem is that, especially in images containing red blood 
cells infected by malaria parasites in later stages of development filling the whole area of 
the cell, there is often large contrast between intensities of infected and non-infected red 
blood cells. If the intensities are scaled linearly according to the minimum and maximum 
intensity value in the image and, subsequently, the number of gray levels is reduced to NG, 
we can lose important textural information in the infected red blood cell. This will happen 
if  the textural  information is  concealed in limited range of intensities,  which is  not an 
exceptional case. On the other hand, if each sample is treated individually, linear spread of 
the intensities between the maximum and minimum intensity values in the sample image 
will result in extensive amplification of noise in non-infected red blood cells due to low 
contrast in the image. However, the textural information in the infected red blood cells will 
be preserved.

Histogram equalization  can  be used instead of  the  linear  spread function  to  normalize 
intensities  in  the  input  images.  This  technique  aims  to  create  an  image  with  equally 
distributed  intensity  levels  over  the  whole  intensity  scale  and  enhances  contrast  for 
intensity values close to histogram maxima, and decreases contrast near minima. When 
histogram equalization is applied on the whole input image, contrast among the parasite 
pixels is reduced because these pixels correspond to histogram minima. Thus, the textural 
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information  within  the  infected  red  blood  cells  is  often  smoothed  away even  without 
reducing the number of gray levels. If histogram equalization is applied on the individual 
red blood cell samples, contrast is extensively enhanced in non-infected red blood cells 
producing artificially-looking texture, which is typically more pronounced than in case of 
the linear spread. 

All  of  the  thirteen  measurements  given  by  Eq.53-65 were calculated  for  two different 
numbers  of  gray-levels  NG = {8, 16},  for  ten different  values  of  the  distance  parameter 
d = {1, 2, 3, 4, 5, 6, 8, 10, 12, 15},  and  for  six  different  images / normalization  methods. 
The performance of the feature was evaluated using the following images.

• IM1: Extinction image with linearly spread intensity values between Imin and  Imax, 
where Imin and Imax are the minimum and maximum intensity values in the particular 
red blood cell sample

• IM2: Extinction image with linearly spread intensity values between IGmin and IGmax, 
where IGmin and IGmax are the minimum and maximum intensity values in the whole 
original extinction image.

• IM3:  Median filtered extinction image with size of the median operator window 
[3,3]. Intensities are automatically linearly scaled according to the minimum and 
maximum intensity values Imin and Imax in the particular red blood cell sample

• IM4: Extinction image with histogram equalization applied on individual red blood 
cell samples

• IM5:  Extinction  image  with  applied  contrast-limited  adaptive  histogram 
equalization on the whole original extinction image.

• IM6: Flat texture image calculated using median operator window of size  r = 25. 
Normalization is controlled automatically in each red blood cell sample according 
to the minimum and maximum intensity values in the image.

Median filtered image was included to evaluate the results after reducing the noise in the 
image.  The  fourth  image  is  calculated  as  an  alternative  to  the  standard  histogram 
equalization technique. Contrast-limited adaptive histogram equalization allows us to set a 
contrast enhancement limit to prevent over-saturation in homogeneous areas within non-
infected red blood cells. Moreover, this method operates on small regions rather than the 
entire image and thus this method is a compromise between processing the whole image 
and the individual sample images. This technique is  implemented by a Matlab function 
adapthisteq and  the  following  parameters  were  used:  ClipLimit =  0.05  and 
NumTiles = [20 20].

The co-occurrence matrix features are evaluated in the script  evalCooccurrence.m. 
The values of the thirteen calculated features for all red blood cell sample images and for 
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all  combinations  of  input  parameters  and  images  are  stored  in  the  mat-file 
evalCooccurrence.mat in a variable called  C. This variable is a five-dimensional 
array  whose  dimensions  correspond  to  the  individual  image  samples,  individual 
normalized images, distance vectors, calculated features f1, …, f13, and different sizes of the 
co-occurrence matrix, respectively.

The values  of  calculated AUCs indicate  that  the  ability of  these feature  to  distinguish 
between infected and non-infected red blood cells is smaller compared to most of the other 
evaluated features. The highest achieved value of AUC was 0.9831. The reason for lower 
performance could be seen in the fact that the co-occurrence matrix describes distribution 
of co-occurring values at a given offset and, therefore, is better suited for description of 
highly regular textures. Although some infected red blood cells exhibit relatively regular 
texture properties, such infected cells are represented only by a relatively small number of 
samples  in  our  dataset.  Major  part  of  the  infected red blood cell  dataset  comprises  of 
parasites in early stages of development, which exhibit little  regularity in texture. Such 
infected red cells might also be hard to distinguish from the non-infected cells due to the 
amplified noise in the non-infected red blood cells. If the dataset contained more samples, 
more experiments could be performed to show whether the co-occurrence features could 
possibly distinguish between different types of parasites. 

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 max

IM1 0.8104
d = 1

0.9468
d = 1

0.8504
d = 8

0.9527
d = 1

0.9400
d = 1

0.9527
d = 1

0.9446
d = 1

0.7792
d = 1

0.8103
d = 1

0.9473
d = 1

0.9459
d = 1

0.8472
d = 1

0.6858
d = 15

0.9527

IM2 0.7257
d = 15

0.8949
d = 10

0.8539
d = 15

0.8528
d = 15

0.7912
d = 10

0.8528
d = 15

0.8813
d = 3

0.7824
d = 15

0.7910
d = 15

0.8995
d = 10

0.8347
d = 15

0.3078
d = 1

0.8256
d = 2

0.8995

IM3 0.7752
d = 2

0.8994
d = 1

0.8645
d = 12

0.9643
d = 1

0.8616
d = 1

0.9643
d = 1

0.9587
d = 1

0.7601
d = 1

0.7717
d = 1

0.9019
d = 1

0.8808
d = 1

0.7614
d = 1

0.7380
d = 12

0.9643

IM4 0.7653
d = 15

0.8302
d = 15

0.7876
d = 1

0.8240
d = 15

0.7133
d = 15

0.8240
d = 15

0.8238
d = 15

0.7601
d = 3

0.7851
d = 12

0.8308
d = 15

0.8349
d = 15

0.7137
d = 1

0.7244
d = 1

0.8349

IM5 0.7952
d = 12

0.9167
d = 12

0.8393
d = 2

0.8162
d = 15

0.8574
d = 12

0.8162
d = 15

0.8288
d = 15

0.8343
d = 6

0.8460
d = 10

0.9188
d = 12

0.8902
d = 12

0.1978
d = 1

0.8308
d = 1

0.9188

IM6 0.3582
d = 1

0.4269
d = 2

0.3066
d = 15

0.3362
d = 1

0.4336
d = 2

0.3362
d = 1

0.3268
d = 1

0.7960
d = 1

0.8449
d = 1

0.4261
d = 2

0.9264
d = 3

0.4721
d = 4

0.9664
d = 4

0.9664

max 0.8104 0.9468 0.8645 0.9643 0.9400 0.9643 0.9587 0.8343 0.8460 0.9473 0.9459 0.8472 0.9664 0.9664

Tab.  14:  Maximum AUC values  for  co-occurrence  matrix  of  size  NG = 8  obtained  for  
individual images IM1, …, IM6 and features f1, …, f13. Corresponding lengths dm of the  
displacement vector, for which this maximum was observed, are shown below the AUC 
value.
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f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 max

IM1 0.8640
d = 1

0.9531
d = 1

0.8569
d = 15

0.9531
d = 1

0.9444
d = 1

0.9531
d = 1

0.9444
d = 1

0.7858
d = 1

0.8528
d = 1

0.9531
d = 1

0.9491
d = 1

0.8623
d = 1

0.6621
d = 15

0.9531

IM2 0.8091
d = 15

0.9828
d = 8

0.8537
d = 1

0.8155
d = 15

0.8831
d = 12

0.8155
d = 15

0.8389
d = 1

0.8805
d = 15

0.8881
d = 15

0.9831
d = 8

0.9478
d = 12

0.7733
d = 1

0.8924
d = 1

0.9831

IM3 0.8124
d = 2

0.9218
d = 1

0.8672
d = 15

0.9648
d = 1

0.8611
d = 1

0.9648
d = 1

0.9589
d = 1

0.7809
d = 1

0.7977
d = 1

0.9226
d = 1

0.8805
d = 1

0.8052
d = 1

0.7323
d = 12

0.9648

IM4 0.7866
d = 2

0.8392
d = 15

0.6447
d = 1

0.8261
d = 15

0.7411
d = 2

0.8261
d = 15

0.8272
d = 1

0.6706
d = 3

0.7773
d = 1

0.8392
d = 15

0.8308
d = 15

0.7295
d = 1

0.7125
d = 1

0.8392

IM5 0.8308
d = 15

0.9400
d = 12

0.8275
d = 2

0.7851
d = 15

0.8611
d = 12

0.7851
d = 15

0.7966
d = 15

0.8691
d = 15

0.8790
d = 15

0.9403
d = 12

0.9084
d = 15

0.1050
d = 11

0.8861
d = 1

0.9403

IM6 0.3881
d = 1

0.4254
d = 2

0.3197
d = 15

0.3360
d = 1

0.4395
d = 1

0.3360
d = 1

0.3243
d = 1

0.7687
d = 1

0.8765
d = 1

0.4251
d = 2

0.9278
d = 2

0.4785
d = 4

0.9723
d = 4

0.9723

max 0.8640 0.9828 0.8672 0.9648 0.9444 0.9648 0.9589 0.8805 0.8881 0.9831 0.9491 0.8623 0.9723 0.9831

Tab.  15: Maximum AUC values  for co-occurrence matrix of  size NG = 16 obtained for  
individual images IM1, …, IM6 and features f1, …, f13. Corresponding lengths dm of the  
displacement vector, for which this maximum was observed, are shown below the AUC 
value.

In  summary,  better  results  were  generally  achieved  for  features  calculated  from  co-
occurrence  matrix  with  NG = 16.  The  maximum  AUC  calculated  for  NG = 8  was 

9664.0)max(AUC 8 ==GN  compared to  9831.0)max(AUC 16 ==GN . Although the results for 
the two numbers of gray levels were usually not significantly different, for example in the 
histogram equalized image IM4, noticeably better results were observed in feature  f3 for 
NG = 8. Rather inconsistent results were observed in the image IM2 where some features 
showed significantly better result for  NG = 16 while the others showed better results for 
NG = 8 for all values of the distance parameter d.

Maximum AUC values for individual images IM1, …, IM6 and features f1, …, f13, and the 
corresponding  lengths  dm of  the  displacement  vector, for  which  this  maximum  was 
observed, are displayed in Tab.14 for NG = 8 and in Tab.15 for NG = 16. Dependency of the 
feature performance on the displacement parameter d was usually consistent and the values 
of AUC are gradually decreasing for d > dm and d < dm. The results shown in Tab.14 and 15 
confirm predicted strong dependence on the combination of the number of gray levels and 
the method of scaling the gray-scale intensities into the reduced number of gray levels NG. 
This makes these features even less useful because if a classification method is devised 
based on these features, the performance of the classifier may deteriorate with the change 
of some characteristics, such as contrast or noise, in the input image data set. In general, 
the worst results were observed for the histogram equalized image IM4, which is consistent 
with our prediction. However, the contrast-limited histogram equalization technique (IM5) 
also did not prove superior to the other normalization methods. Judging by the maximum 
values of AUC, flat texture image also delivered good results compared to other images 
used. This, however, holds true only for few of the measurements. By contrast, most of the 
other features calculated from the flat texture image produced results with extremely small 
AUCs.  Although the  highest  values  of  AUCs were observed for  the image IM2 when 
sixteen gray levels were used, the results were not at all that good when eight gray levels 
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were used. The reason for this behavior may be seen in the limited range of intensities in 
which the textural details are concealed. When small number of gray levels is used, these 
details may be smoothed away as discussed earlier in this section.

9.4.10 Run-length features

Run-length features given by Eq.71-81  are calculated for four different numbers of gray 
levels  NG = {8, 16, 32, 64}  and  for  the  same  set  of  images  IM1-IM6  with  normalized 
intensities that were used for calculation of co-occurrence matrices. The extinction image 
is obtained from the green channel of the original transmission image with correction of 
non-uniform illumination.  The same problems regarding the intensity normalization we 
encountered in the previous section also apply in the case of run-length features.

Run-length features are evaluated in the script evalRunLength.m. A four-dimensional 
array  RL containing  the  results  of  the  calculation  is  stored  in  a  mat-file 
evalRunLength.mat. The dimensions of this array correspond to the individual red 
blood cell samples, six images with normalized intensities, eleven run-length features, and 
four numbers of different gray levels, respectively. 

The maximum AUC values for individual images IM1-IM6 and numbers of gray levels NG 

are shown in Tab.16.  In general, the best results were obtained for the first three images 
IM1-IM3.  The  performance  of  the  run-length  features  derived  from  the  images  with 
equalized  histogram is  quite  low and the  AUCs for  the  features  derived  from the  flat 
texture image are extremely small. Regarding the number of gray levels, the best results 
depend on the particular measurement and normalization method. In general, for images 
IM1 and IM3, the differences between the AUCs for the individual numbers of gray levels 
were relatively low for  many measurements,  while  for  IM2 the results  were  generally 
better for higher numbers of gray levels. It also has to be remarked that the highest AUC 
obtained for the image IM2 and NG = 64 was rather an exception. For the overwhelming 
majority of the calculated features, the AUC was not greater than 0.98. This again indicates 
that the performance of the run-length features, similarly as for the co-occurrence matrix 
features,  is  strongly  dependent  on  the  combination  of  the  normalization  method  and 
number of gray levels used. This makes these features rather problematic to use due to the 
low generalization properties as noted in the previous section.

Comparing the individual measurements, better results were generally obtained for features 
LGRE (f6), HGRE (f7), SRLGE (f8), SRHGE (f9), and LRLGE (f10), although the results are 
again dependent on the particular image, from which the run-length matrix is generated, 
and the number of gray levels used. 
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NG = 8 NG = 16 NG = 32 NG = 64

IM1 0.9759 (f6) 0.9762 (f8) 0.9758 (f6) 0.9761 (f6)
IM2 0.9449 (f7) 0.9775 (f7) 0.9870 (f9) 0.9921 (f9)
IM3 0.9796 (f6) 0.9797 (f6) 0.9797 (f6) 0.9799 (f8)
IM4 0.7774 (f7) 0.8323 (f9) 0.7923 (f9) 0.6921 (f11)
IM5 0.8312 (f7) 0.8535 (f9) 0.8331 (f7) 0.8326 (f7)
IM6 0.4708 (f5) 0.4516 (f5) 0.4092 (f5) 0.4067 (f5)

Tab. 16: Maximum AUC values of run-length features for individual images IM1-IM6 and  
numbers  of  gray levels  NG.  Corresponding measurement,  for  which  the  maximum was  
observed, is shown in the parentheses.
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10 Conclusions

In this work, we present a method for segmentation of red blood cells in microscopic blood 
smear images and describe a designed graphical user interface for using the segmentation 
method. The main purpose of the GUI is to execute the segmentation method, manually 
correct its results, label the samples and save the information about individual segmented 
cells. Using this GUI, we have created a database of labeled red blood cells containing 
non-infected cells and cells infected by malaria parasites. A set of features is proposed to 
be extracted from the area of a red blood cell in order to detect malaria. The performance 
of these features is evaluated on the created red blood cell database using ROC curves.

The segmentation method presents a relatively simple solution of separating red blood cells 
from the background and isolating overlapping or occluded cell. The method is based on 
processing  of  a  binary  image  obtained  by  thresholding  and  utilizes  the  watershed 
transformation for separating cell compounds. This approach was chosen as more elaborate 
techniques tested in our previous work did not perform optimally due to relatively high 
variations in qualitative characteristics of the input images. The method produced good 
results on all input images with only occasional over-segmented cells, which were easily 
merged in the GUI tool.

The designed GUI provides all tools necessary for correcting the contours of segmented 
cells, labeling of samples, manipulating with files, and saving the results. During our work, 
it proved to be a very useful and practical tool. It has been designed with respect to easy 
extendability. It enables a user to register new segmentation methods and new labels and as 
it is developed in Matlab, virtually any part of the GUI can easily be modified to conform 
to the user's requirements. For frequent work, certain improvements could be made in the 
GUI, for example implementation of some semi-automatic methods for the correction of 
cell contours, a set of hot keys, the use of mouse wheel for zooming, etc. However, some 
of these improvements are also limited by the programing environment.

The created database of red blood cells is implemented in an easily accessible way so that 
it  could be readily used in other projects.  It contains 1694 non-infected red blood cell 
samples  and  117 samples  infected  by different  species  of  malaria  parasites  in  various 
stages  of  development.  This  is  an  acceptable  number  to  evaluate  performance  of  the 
proposed features on the problem of distinguishing between infected and non-infected cells 
but not for separating more classes, for example different species of Plasmodium parasites. 
In this case, we were limited by a relatively small number of available blood smear images. 
The designed GUI, however, allows one to very easily add new samples.

There are many possible classification scenarios in the problem of malaria diagnosis. In 
this work, we focused mainly on general evaluation of the features and we tested their 
discrimination power on the problem of distinguishing between infected and non-infected 
red blood cells. The detection of infected cells is the primary task and usually has to be 
carried out before any further analysis can be performed. In our case, any further analysis 
of the infected samples was also limited by the relatively small number of infected red 
blood cells samples. The results have shown that very good discrimination between the two 
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classes can be obtained using histogram features, especially the maximum (minimum in 
case of the transmission image) represented, in our case, by the seventh largest (smallest) 
histogram value, gradient transformation features, and flat texture features. The features 
based only on the shape of the cell did not prove to be very useful for the general problem 
of distinguishing between infected and non-infected cells. However, we have shown, that 
they  could  possibly  be  used  in  some  special  cases,  for  example  to  detect  mature 
Plasmodium falciparum gametocytes, which have characteristic crescent-like shape. The 
co-occurrence matrix features and run-length features have provided rather inconsistent 
results.  Although they are clearly capable to distinguish the classes to some extent, the 
results  strongly depend on the intensity normalization method and the number of gray 
levels  used.  The intensity normalization itself  proved to  provide relatively inconsistent 
results, mainly for non-infected red blood cells, and might constitute the major problem. 
For the observed issues,  using these features without combining them with some other 
features is not suggested as long as a more reliable normalization method for this particular 
case is proposed. They could possibly be used for further analysis of infected cells as these 
cells have more distinct texture and, in this case, intensity normalization provided more 
consistent  results.  This  would,  however,  require  further  tests  using  larger  database  of 
infected red blood cell samples.
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Appendix A – Probability Density Functions and ROC Curves
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Fig. 17: Estimated probability density functions for Hu set of invariant features
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Fig. 18: ROC curves for Hu set of invariant moment features
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Fig.  19: ROC curves for Hu set of invariant moment features H1 – H4 calculated using 
non-infected  red  blood  cells  and  red  blood  cells  infected  by  mature  Plasmodium 
Falciparum parasites
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Fig.  21: Estimated probability density functions for Hu set of invariant features for non-
infected red blood cells and red blood cells infected by mature Plasmodium falciparum 
parasites
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Fig.  22:  Estimated  probability  density  functions  for  the  relative  shape  measurement  
features
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Fig.  23: Estimated probability density functions for histogram-based features calculated 
from  the  green  channel  of  the  extinction  image  (mean,  variance,  skewness,  kurtosis,  
minimum, maximum)
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Fig.  24: Estimated probability density functions for histogram-based features calculated 
from  the  green  channel  of  the  extinction  image  (median,  mode,  10th percentile,  90th 

percentile, entropy)
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Fig.  25:  ROC  curves  for  the  histogram-based  features  calculated  from  the  original  
transmission image (mean, variance, skewness, kurtosis, minimum, maximum)
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Fig.  26:  ROC  curves  for  the  histogram-based  features  calculated  from  the  original  
transmission image (median, mode, 10th percentile, 90th percentile, entropy)
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Fig. 27: ROC curves for the histogram-based features calculated from the extinction image  
(mean, variance, skewness, kurtosis, minimum, maximum)
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Fig. 28: ROC curves for the histogram-based features calculated from the extinction image  
(median, mode, 10th percentile, 90th percentile, entropy)
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Fig. 29: ROC curves for gradient transformation features
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Fig. 30: Estimated probability density functions for Laplacian transformation features and  
measurements variance and maximum for r = 7
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Fig. 31: ROC curves for Laplacian transformation features – measurements variance and 
maximum for r = {1,3,5,7,9,15}
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Fig. 32: Estimated probability density functions for flat texture features for the size of the  
median operator window r = 18
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Fig.  33: ROC curves for flat texture features for the size of the median operator window 
r = 18
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Appendix B – List of Project Files

This appendix briefly describes Matlab functions, scripts, and other files distributed as an 
integral part of this work. The main functions and scripts are set in bold. The rest of the 
functions are usually supplementary or utility functions, but some of them may be found 
useful in various other tasks

All Matlab functions and scripts were created solely by the author of this thesis. Blood 
smear images and their textual descriptions were obtained from the  Public Health Image 
Library of  the  Centers  for  Disease  Control  and  Prevention  [35].  All  functions  contain 
Matlab style help describing the syntax and use of the function. Each function and script 
has been thoroughly commented to describe and clarify the implemented method and make 
the code easily readable and understandable. 

featuresExtract/
Project files for the feature evaluation part of the project.

eval/
Feature performance evaluation scripts.

evalCooccurrence.m
Script for evaluation of the co-occurrence features.

evalCooccurrence.mat
Data file with all calculated co-occurrence features.

evalFlatTexture.m
Script for evaluation of the flat texture features.

evalFlatTexture.mat
Data file with all calculated flat texture features.

evalGrad.m
Script for evaluation of the gradient transformation features.

evalGrad.mat
Data file with all calculated gradient transformation features.

evalHist.m
Script for evaluation of the histogram features.

evalHist.mat
Data file with all calculated histogram features.

evalHu.m
Script for evaluation of the Hu invariant moment features.

evalHu.mat
Data file with all calculated Hu invariant moment features.

evalHu-falciparum.mat
Data file with all calculated Hu invariant moment features for a data subset including only 
non-infected red blood cells and cells infected by Plasmodium falciparum parasites.

evalLaplacian.m
Script for evaluation of the Laplacian transformation features.

evalLaplacian.mat
Data file with all calculated Laplacian transformation features.

evalRunLength.m
Script for evaluation of the run-length features.

evalRunLength.mat
Data file with all calculated run-length features.

evalShape.m
Script for evaluation of the relative shape measurements features.
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evalShape.mat
Data file with all calculated relative shape measurements features.

plotFeature.m
Function for plotting estimated probability density functions of the calculated features.

plotroccurve.m
Function for plotting ROC curves.

roccurve.m
Calculates ROC curve points and AUC values.

lib/
bestFitEllipse.m

Best-fit ellipse.
bestFitEllipseOpt.m

Calculates coefficients of the best-fit ellipse by solving non-linear data-fitting problem.
btnCancelWaitbar_callback.m

Callback function for the cancel button of the waitbar figure.
centralMoment.m

Central image moment.
colorNormalization2.m

Color normalization.
contourLength.m

Length of a contour.
correctNonuniformIllumination.m

Non-uniform illumination correction for gray-scale images.
correctNonuniformIllumination3.m

Non-uniform illumination correction for RGB images.
erodeMask.m

Erosion of the binary mask.
extinctionImage.m

Extinction image transformation.
fCooccurrence.m

Co-occurrence matrix features.
fFlatTexture.m

Flat texture transformation features.
fGradientTransform.m

Gradient transformation features.
fHistogram.m

Histogram features.
fHuMoments.m

Hu invariant moment features.
filenames.m

Retrieves all names of given file type from a give directory.
fLaplacian.m

Laplacian transformation features.
flatTexture.m

Flat texture features
fRelativeShapeMeasurements.m

Relative shape measurement features.
fRunLength.m

Run-length features
getMask.m

Computes the mask image from given contour points.
getMatFilename.m

Generates name of the mat-file for a given image filename.
invariantMoments.m

Calculates intensity wighted invariant image moments.
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orientation.m
Orientation of an object.

rawMoment.m
General (raw) image moment.

rlm.m
Run-length matrix.

rlm12.m
Accumulated run-length matrices for horizontal and vertical directions.

scaleImage.m
Scales a gray-scale image to a specified number of gray levels.

SICM.m
Scale invariant central image moment.

rbcSegm/
Project files for the red blood cell segmentation method and segmentation GUI.

algorithms/
Red blood cell segmentation 

RBCsegmentation.m
Red blood cell segmentation method and wrapper functions.

RBCsegmentation1.m
A wrapper for RBCsegmentation function called by segmentation GUI. Calls the 
segmentation method with default parameters.

RBCsegmentation2.m
A wrapper for RBCsegmentation function that calls the segmentation method with 
parameters: 'useGetCenters2',true.

RBCsegmentation3.m
A wrapper for RBCsegmentation function that calls the segmentation method with 
parameters: 'useAdapthisteq',true.

gui/
Red blood cell segmentation GUI.

filenames.m
Retrieves all names of given file type from a give directory.

getAlgorithms.m
List of registered segmentation algorithms.

getContourColor.m
List of contour line styles and color for individual classes.

getDescriptions.m
List of class labels.

getMatFilename.m
Generates name of the mat-file for a given image filename.

loadImage.m
Loads an image from a file and displays it within the axes object.

moveImage.m
Moves an image inside the axes object in the specified direction.

RBCsegm.fig
Red blood cell segmentation GUI (figure file)

RBCsegm.m
Red blood cell segmentation GUI (main function to be run)

redraw.m
Redraws image and red cells contours within the axes object.

runAlgorithm.m
Executes selected segmetation algorithm.

images/
Original blood smear images and created database files.

descriptions/
Textual descriptions of the original blood smear images.
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2710.txt; 2720.txt; 3471.txt; 4110.txt; 4884.txt; 4905.txt; 
4906.txt; 4918.txt; 4944.txt; 4975.txt; 5053.txt; 5057.txt; 
5138.txt; 5140.txt; 5817.txt; 5820.txt; 5825.txt; 5830.txt; 
5839.txt; 5842.txt; 5843.txt; 5844.txt; 5846.txt; 5848.txt; 
5851.txt; 5855.txt; 5858.txt; 5860.txt; 5861.txt; 5863.txt; 
5882.txt; 5883.txt; 5927.txt; 5929.txt; 5930.txt; 5931.txt; 
5933.txt; 5935.txt; 5939.txt; 5941.txt; 5946.txt; 5963.txt

highres3/
Main dataset consisting of original images and corresponding mat-files with information a
bout each segmented red blood cell

2710.mat; 2710.tiff; 2720.mat; 2720.tiff; 3471.mat; 3471.tiff; 
4110.mat; 4110.tiff; 4884.mat; 4884.tiff; 4905.mat; 4905.tif; 
4906.mat; 4906.tif; 4918.mat; 4918.tif; 4944.mat; 4944.tiff; 
4975.mat; 4975.tiff; 5053.mat; 5053.tiff; 5057.mat; 5057.tiff; 
5138.mat; 5138.tiff; 5140.mat; 5140.tiff; 5817.mat; 5817.tiff; 
5820.mat; 5820.tiff; 5825.mat; 5825.tiff; 5830.mat; 5830.tiff; 
5839.mat; 5839.tiff; 5842.mat; 5842.tiff; 5843.mat; 5843.tiff; 
5844.mat; 5844.tiff; 5846.mat; 5846.tiff; 5848.mat; 5848.tiff; 
5851.mat; 5851.tiff; 5855.mat; 5855.tiff; 5858.mat; 5858.tiff; 
5860.mat; 5860.tiff; 5861.mat; 5861.tiff; 5863.mat; 5863.tiff; 
5882.mat; 5882.tiff; 5883.mat; 5883.tiff; 5927.mat; 5927.tiff; 
5929.mat; 5929.tif; 5930.mat; 5930.tif; 5931.mat; 5931.tif; 
5933.mat; 5933.tif; 5935.mat; 5935.tif; 5939.mat; 5939.tif; 
5941.mat; 5941.tif; 5946.mat; 5946.tif; 5963.mat; 5963.tif

highres3-falciparum/
Dataset containing only mature Plasmodium falciparum parasites in the infected cell class.

2710.mat; 2710.tiff; 2720.mat; 2720.tiff; 3471.mat; 3471.tiff; 
4110.mat; 4110.tiff; 4884.mat; 4884.tiff; 4905.mat; 4905.tif; 
4906.mat; 4906.tif; 4918.mat; 4918.tif; 4944.mat; 4944.tiff; 
4975.mat; 4975.tiff; 5053.mat; 5053.tiff; 5057.mat; 5057.tiff; 
5138.mat; 5138.tiff; 5140.mat; 5140.tiff; 5817.mat; 5817.tiff; 
5820.mat; 5820.tiff; 5825.mat; 5825.tiff; 5830.mat; 5830.tiff; 
5839.mat; 5839.tiff; 5842.mat; 5842.tiff; 5843.mat; 5843.tiff; 
5844.mat; 5844.tiff; 5846.mat; 5846.tiff; 5848.mat; 5848.tiff; 
5851.mat; 5851.tiff; 5855.mat; 5855.tiff; 5858.mat; 5858.tiff; 
5860.mat; 5860.tiff; 5861.mat; 5861.tiff; 5863.mat; 5863.tiff; 
5882.mat; 5882.tiff; 5883.mat; 5883.tiff; 5927.mat; 5927.tiff; 
5929.mat; 5929.tif; 5930.mat; 5930.tif; 5931.mat; 5931.tif; 
5933.mat; 5933.tif; 5935.mat; 5935.tif; 5939.mat; 5939.tif; 
5941.mat; 5941.tif; 5946.mat; 5946.tif; 5963.mat; 5963.tif

lib/
correctNonuniformIllumination.m

Correction of non-uniform illumination in a gray-scale image.
drawcircle.m

Draws a single circle with given parameters into an image.
drawCircles.m

Draws circles with given centers and radii into an image.
elongation.m

Calculates elongation of an object.
fillHoles.m

Fill holes in the centers of red cells.
findMaxima3d.m

Finds a given number of maxima in a 3-D accumulator matrix so that there is at least 
minimum specified distance between each two maxima.

getCenters.m
Estimated center locations of red blood cells and average red blood cell radius.
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getCenters2.m
Estimated center locations of red blood cells and average red blood cell radius. Modified 
version of the function that looks for second largest maxima if the radius found is too small.

getSingleCells.m
Calculates contours of single cells.

getSingleCellsFromWatershed.m
Calculates contours of single cells obtained by watershed segmentation.

maxDist.m
Calculates maximum distance 

mginput.m
Graphical input from mouse or cursor.

polygonFromContour.m
Creates an image with a polygon inside a specified contour. 

separateCells.m
Separates single cells from cell compounds.

watershedDist.m
Watershed segmentation technique based on distance transformation of the binary image.

utilities/
countRBCsamples.m

Counts red blood cell samples in a given database.
displaySamples.m

Displays individual red blood cells samples from a given database.
saveCellRadiusToDbFile.m

Appends information about estimated average cell radius to the database mat-file.
diploma_thesis-Vit_Springl.pdf

This report in pdf format.
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