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Abstract

We present a computer-aided diagnosis (CAD) system to detect small-size
(from 2mm to around 10mm) pulmonary nodules from helical CT scans. A
pulmonary nodule is a small, round (parenchymal nodule) or worm (juxta-
pleural nodule) shaped lesion in the lungs. Both have greater radio-density
than lungs parenchyma, so they appear white on images. Lung nodules
might indicate a lung cancer and their detection in the early stage improves
the survival rate of patients. CT is considered to be the most accurate
imaging modality for nodule detection. However, the large amount of data
per examination makes the interpretation difficult. This leads to omission
of nodules by human radiologist. The presented CAD system is designed
to help lower the number of omissions and to decrease the time needed to
examine the scan by a radiologist. Our system uses two different schemes
to locate juxtapleural nodules and parenchymal nodules respectively. For
juxtapleural nodules, morphological closing and thresholding is used to find
nodule candidates. To locate non-pleural nodule candidates, we use a 3D
blob detector based on multiscale filtration. To define which of the nodule
candidates are in fact nodules, an additional classification step is applied.
Linear and multi-threshold classifiers are used. Ellipsoid model is fitted on
nodules to provide geometrical features. System was tested on 18 cases (4853
slices) with total sensitivity of 96%, with about 12 false positives/slice. The
classification step reduces the number of false positives to 9 per slice without
significantly decreasing sensitivity (89.6%). The algorithm was implemented
in Matlab and tested under Windows and Unix system. For easy control
simple graphic user interface is included.
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Abstrakt

Tato práce se věnuje vývoji programu pro detekci plicńıch nodul̊u. Plicńı
noduly jsou kulovité nebo červovité útvary v plićıch, které jsou na obrázćıch
z CT zobrazeny světleǰśımi odst́ıny oproti plicńımu parenchymu. Detekce
plicńıch nodul̊u je d̊uležitá, protože se může jednat o rakovinná ložiska,
přitom včasná diagnóza zásadně ovlivňuje úspěšnost léčby všech druh̊u zhoubných
onemocněńı. Náš CAD (Computer Aided Diagnostic) systém je navržen tak,
aby sńıžil zat́ıžeńı radiologa při prohĺıžeńı velkého množstv́ı dat, a zároveň
sńıžil počet přehlédnutých nodul̊u. Program detekuje odděleně každý ze dvou
druh̊u nodul̊u. Kulovité (parenchymálńı) pomoćı 3D blobdetektoru (filtračńı
algoritmus pracuj́ıćı ve v́ıce měř́ıtkách) a červovité (juxtapleurálńı) pomoćı
prahováńı a metod matematické morfologie. Ke všem detekovaným objekt̊um
přǐrad́ıme elipsoid popisuj́ıćı jejich tvar a spoč́ıtame jasové statistiky uv-
nitř elipsoidu. Pomoćı takovéhoto popisu klasifikujeme oblasti do dvou tř́ıd,
jako noduly, nebo jako jiné objekty. Pro klasifikaci použ́ıváme jeden lineárńı
a jeden nelineárńı (prahovaćı) klasifikátor. Program jsme testovali na 18
vyšetřeńıch (4853 řezech). Výsledná citlivost samostatných detektor̊u byla
96%, při 12 falešně pozitivńıch detekćıch/řez. Po klasifikaci klesla citlivost na
89,6% a počet falešně pozitivńıch na 9/řez. Program byl vyvinut v Matlabu
a testován na platformě Windows i Unix.
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ANN Artifficial Neural Network
BW Black and White, binary image
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1 Introduction

1.1 Lung Cancer

Lung cancer is one of the leading causes of death in USA [11] and europe.
Surgery, radiation therapy, and chemotherapy are used in the treatment of
lung carcinoma. In spite of that, the five-year survival rate for all stages
combined is only 14%. However, early detection helps significantly—it is
reported [12] that the survival rate for early-stage localized cancer (stage I)
is 49%.

CT is considered to be the most accurate imaging modality available for
early detection and diagnosis of lung cancer. It allows detecting pathological
deposits as small as 1mm in diameter. These deposits are called lung nodules.

However, the large amount of data per examination makes the interpreta-
tion tedious and difficult, leading to a high false-negative rate for detecting
small nodules. Suboptimal acquisition parameters (e.g. pitch) further de-
crease the detection rate. A simulation study demonstrated [1] the overall
detection rate to be only 63% for nodules of 1–7 mm in diameter. As the
size of the nodule decreased, the sensitivity fell to 48% for nodules smaller
than 3mm, and only 1% of nodules smaller than 1.5 mm in diameter were
detected. Retrospective analysis of CT scans often shows undetected nodules
on the initial scans of oncological patients [2].

Image processing and visualization techniques for volumetric CT data
sets may improve the radiologist’s ability to detect small lung nodules. For
example, reconstruction of CT images with narrow interscan spacing [3] and
interpretation of images using cine rather than film-based viewing technique
[4], have been reported to improve small nodule detection.

Computer-assisted tools to improve the detection of small nodules from
chest CT are needed and are being actively developed [6].
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1.2 Nodules

A solitary pulmonary nodule [36] (parenchymal, non-pleural nodule) is a
small, round or egg-shaped lesion in the lungs. Juxtapleural pulmonary
nodule is a small, worm-shaped lesion connected to pleura. (Figure 1.1)

Figure 1.1: Nodule examples: juxtapleural nodule (left), parenchymal nodule
(right).

Nodules are typically asymptomatic, and they are usually noticed by
chance on a chest X-ray that has been done for another reason. They are
usually smaller than 3–4 cm in diameter (no larger than 6 cm) and are always
surrounded by normal, functioning lung tissue. Their intensity in CT scans
is from -300 to 0 HU

Nodules are fairly common abnormalities on chest X-ray images: nearly
one of every 500 chest X-rays shows a newly diagnosed nodules [36]. In the
United States, physicians are challenged each year by more than 150,000 new
cases. Sixty percent of all nodules are benign. In certain geographical areas
where the infectious agents (especially fungi) that cause nodules occure, the
percentage of benign nodules increases remarkably (in some areas as high
as 90% to 95%). Malignant nodules may be primary lung cancer tumors or
metastases from other parts of the body.

If the lesion is suspected to be benign, serial chest X-rays or CT scans
may be taken on a regular basis for observation of the lesion. If the affected
person is at high risk for lung cancer or if the CT scan appearance of the
lesion suggests it is malignant, surgical removal of the lesion is recommended.

1.3 Tomography

Tomography is a method to obtain a cross-sectional images (transversal
slices) of given object. In Computed Tomography images of objects (pa-
tients) are obtained by X-ray projection [35].

The mathematical basis for tomographic imaging was laid down by Jo-
hann Radon (December 16, 1887 (Litoměřice)–May 25, 1956). By applying
his theorem slices of human body at various angles can be reconstructed.
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Figure 1.2: Parallel beam geometry. Each projection ppr, θq is made up of a
set of line integrals through the object µpx, yq.

In X-ray CT, the line integral represents a logarithm of the total attenu-
ation of the beam of X-rays as it travels in a straight line through the object.
The resulting image is a 2D distribution model of the attenuation coefficient
µpx, yq. That is, we wish to find the image µpx, yq.
1.3.1 Radon Transform

The simplest scanning method is the system of parallel projections, used in
the first scanners. We consider the data to be collected as a series of parallel
rays, defined by an angle θ and shift r, along the line q defined as

x cos θ � y sin θ � r. (1.1)

This is repeated for various angles. Attenuation in tissue occurs exponen-
tially,

I � I0e
� ³

µpx,yqdq

where I and I0 are output resp. input intensity of ray, µpx, yq the attenuation
coefficient at position px, yq along the ray path. The total attenuation of q
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Substance HU

Air -1000
Nodules -150

Fat -180
Water 0
Muscle 40
Bone 1000

Table 1.1: Materials and they radio density in HU

ray at position r, for a projection angle θ, is given by the line integral

ppr, θq � ln I{I0 �
»

q

µpx, yqds. (1.2)

Using equation (1.1), so the equation (1.2) can be rewritten as

ppr, θq �
» 8
�8

» 8
�8

µpx, yqδpx cos θ � y sin θ � rqdxdy.

This transformation is known as the Radon transform [35] (or sinogram)
of the 2D object. The projection theorem tells us that if we have all projec-
tions of the object

ppr, θq where r P R, θ P x0, πq,
we can perfectly reconstruct the original object, µpx, yq. This is called an
inverse Radon transform. It is possible to find an explicit formula for the
inverse Radon transform. However, the inverse Radon transform proves to
be (extremely) unstable with respect to noisy data. In practice, a stabilized
and discretized version of the inverse Radon transform is used, known as the
filtered back projection algorithm. (Other reconstruction methods are used,
for example based on the Fourier transform).

1.3.2 Hounsfield Units

The intensity of the image in medical X-ray imaging is measured in Hounsfield
Units. The scale was established by Sir Godfrey Newbold Hounsfield, one of
the principal engineers and developers of computed tomography.

The radio density of distilled water at standard temperature and pressure
(STP) is defined as zero Hounsfield Units (HU). The radio density of air at
STP is defined as -1000HU. Radio density in HU of air, common tissues and
nodules is shown in Table 1.1.

12



Examination Typical effective dose [mSv]

Chest X-ray 0,02
Head CT 0,75

Abdomen CT 2,7
Chest CT 3,4

Chest, Abdomen and Pelvis CT 4,9
CT Colonography 3–7

Cardiac CT angiogram 5,5–10

Table 1.2: Typical scan doses per examination

1.3.3 CT Machines

CT machines collect X-ray projections in order to Radon transform (Section
1.3.1). From acquired data reconstruction is computed. the results is an
output image showing the distribution of attenuation coefficient µpx, y, zq in
scanned object represented in HU.

Nowadays CT machines use matrix of detectors to be able to acquire sev-
eral slices per rotation (32). The X-ray source and detectors makes circular
movements around patient, patient moves linearly. Composition of those two
movements results in helical movement of source and detectors with respect
to the patient. In some machines two X-ray sources and the detector arrays
are used for increased examination speed and to lower the dose.

Gantry diameter of a typical CT machine is 78cm, scanning range 200cm,
spatial resolution 0.33mm, scanning speed 28mm/sec [33]. Radiation dose
receved in modern machines is shown in Table 1.2. Typical CT-slice is in
Figure 3.3.

13



14



2 Nodule Detection

2.1 Problem specification

Nodule detection is an image processing problem. The task is to find po-
sitions (and shape) of specific pathological structures in the lungs called
nodules. A nodule (Section 1.2) is a small, round lesion in the lungs, or
worm-shaped lesion connected to pleura (the lung boundary) with radio-
density greather than lung parenchyma. In CT images nodules apear white
(Figure 1.1).

Input images (transversal slices) are obtained by tomographic methods
(Section 1.3). From CT slices (standartly 512x512pixels) a 3D image (512x512xN)
can be assembled. Number N of slices depends on the length of scaning area
and on the slice spacing (represented by a parameter called pitch). The spa-
tial resolution in the x and y directions (axes) is typicaly higher than the
resolution in the z axis.
Since our method should be used in medical environment we have tried to
fulfill the following requirements:

1. The lowest possible FNs rate (number of missed nodules).

2. Robustness (with respect ot the noise, image resolution, etc.).

3. Relevancy of output (low number of FPs per slice).

2.2 Previous Work

2.2.1 Detection from 2D Data

Chest radiograms are projection images from conventional X-ray. The dis-
advantage is that on these images ribs, spine and heart may be superposed
ower nodules, on the other hand, the radiologist (or machine) have to inspect
only one image.

15



Automatic detection of lung nodules is the most studied problem in com-
puter analysis of chest radiographs and almost all methods rely on a two
step approach—candidate detection and classification [6]. A lot of methods
were developed for the first step, candidate detection: template matching
[14], Hough transform [15], subtraction of median filtered image [16], en-
hancing of nodules by least asymmetric Daubechies wavelet transform and
amplifying intermediate levels before back transformation [17]. The second
step, classification, is based on: circularity of region, threshold classifier [18],
diameter, circularity and irregularity, threshold classifier followed by ANN
[19], template matching with nodule and non-nodule candidates, threshold
clasifier [20].

Comparison between different methods are rare. Sharing databases or
setting up common, freely available databases for complete system evaluation
has not been, as far as we know, given much attention, yet some databases
exists, for example [37]. It contains 247 chest radiographs with 154 nodules.

2.2.2 Detection from 3D Data

3D data from CT machines is considered to be the most accurate imaging
modality [5] available for early detection and diagnosis of lung cancer. It
allows to detect nodules as small as 1mm in diameter. In CT images of the
lungs neither ribs nor heart nor spine decrease diagnostical quality. This
is very useful for machine processing. The disadvantage of CT is the large
amount of data acquired that makes the interpretation for human radiologist
difficult and increases the time of machine processing. Also the price of
machine and higher dose recieved during examination is disadvantage of CT.

There are many projects in CT image processing dealing with nodule de-
tection. They can be divided into two groups of approaches: density-based
and model-based approaches. Density-based detection methods employ tech-
niques such as multiple thresholding [21, 22, 23], region-growing [24], locally
adaptive thresholding in combination with region-growing [25] and fuzzy clus-
tering [26] to identify nodule candidates in the lungs. For the model-based
detection approaches, the relatively compact shape of a small lung nodule
is taken into account while establishing the models to identify nodules in
the lungs. Techniques such as ”N-Quoit filter” [27] template-matching [28],
object-based deformation [29] and the anatomy-based generic model [30] have
been proposed to identify sphere-shaped small nodules in the lungs. Other
attempts include automated detection of lung nodules by analysis of curved
surface morphology [31] and improvement of the nodule detection by sub-
tracting broncho-vascular structures from the lung images [32].

Due to the relatively small size of the existing CT lung nodule databases
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[38] and the various CT imaging acquisition protocols, it is hard to compare
the detection performance among the developed algorithms. Also differences
in specifications of the nodules make the comparison hard. (For example, if
algorithm detects nodules 2–10mm in diameter, than 1mm nodules are not
FNs, but if nodule specification is 1–10mm, they are.)
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3 Algorithm

Figure 3.1: Overall scheme of nodule detection algorithm. Lungs segmenta-
tion is common for juxta-pleural and parenchymal nodules, next steps are
separated. For parenchymal nodule candidates detection, the multi scale
3D blob detector is applied, for detection of juxta-pleural nodule candidates
thresholding and methods of mathematical morphology are used. Finally
each nodule candidate is described by its shape and intensity parameters
and classified.

Figure 3.2: Overall scheme of classifier learning. Training set consists of
descriptors of detected nodule candidates, ellipsoid model fitted on them
and ground truth information.
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Our fully automatic nodule candidate detection algorithm uses thresholding-
based segmentation, blob detector using multiscale LoG filters with post
processing for parenchymal nodule candidates detection, and mathematical
morphology tools for juxtapleural nodule candidates detection. Next step
consists of applying an automatic nodule classification system, based on ge-
ometrical and image features, to the candidates. We have tested a linear
classifier and a classifier based on thresholding.

Nodule candidates detectors are designed to have a good sensitivity and
few false negatives, classifiers have to decrease the number of false positive
results.

3.1 Input Data

The input is a 3D grayscale volume data from one examination of one patient.
Grayscale values are not in HU, but can be converted. We work internally
with machine intensity values. All values of intensity given here will be in
HU. Conversion coeficients from machine intensity levels to HU are different
for each machine.

3.2 Lungs Segmentation

Lungs can be easily separated from other anatomic structures by binary
thresholding (Section 4.1) at -350HU (Figure 3.5a)

m1px, y, zq � Thr
�
fpx, y, zq;�350HU

�
.

On Figure 3.3 you can see lighter tissue (fat and muscle) around the lungs,
on Figure 3.4 is a histogram of the same image.

After thresholding, the background (the outside of the body) is eliminated
by suppressing all components adjacent to image edges by flood-filling. This
gives us a lung mask mpx, y, zq (1 as lungs, 0 background) (Figure 3.5b)

3.3 Nodule Candidates Finding

Both types of nodules, juxtapleural and parenchymal, are high density ob-
jects (in CT images appear as bright). Because of a big difference in shape,
we have decided to perform detection of these two classes independently.

20



Figure 3.3: Original CT slice and tissues localization. Intensity values are
given in HU.

3.3.1 Parenchymal Nodules

Input of a parenchymal nodule detector is a 3D image fpx, y, zq and the
lung mask mpx, y, zq from segmentation. For better results the lung mask is
smoothed (Figure 3.5c) by morphological closing (Section 4.2) with spherical
element 9mm in diameter

epx0, y0, z0q �
#

1 for
apx� x0q2 � py � y0q2 � pz � z0q2 ¤ 4.5mm

0 else.

The values in pixels are different. The smoothed mask is then:

spx, y, zq � mpx, y, zq  epx, y, zq
Image fpx, y, zq is multiplied by the smoothed mask spx, y, zq element by
element

gpx, y, zq � fpx, y, zq � spx, y, zq.
From the segmented lungs image a nodule candidates are detected by a

multiscale 3D blob detector (Section 4.4).

3.3.2 Juxtapleural Nodules

This part of the detector works on each slice separately, because of almost
no regularity of the juxta-pleural nodules in the z-direction.

The detector operates on the smoothed mask spx, y, zq and the original
image fpx, y, zq thresholded at -600HU (Section ??)

tpx, y, zq � Thr
�
fpx, y, zq;�600HU

�
.
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Figure 3.4: Histogram of the image in Figure 3.3 and the segmentation
threshold (red).

This threshold level is different from segmentation threshold because now we
need a lot of information from lung edge, and in time of segmentation we
needed lung mask without holes.

High density nodules appear as zero-valued (black) irregularities on the
lung edges (Figure 3.6a) after thresholding, so subtraction of the thresholded
image tpx, y, zq and the smoothed mask spx, y, zq shows them well

j0px, y, zq � spx, y, zq � tpx, y, zq.
In the next step objects not located on lung boundary are eliminated from
j0px, y, zq by the following procedure.

Lungs boundary is generated from the smoothed mask by morphological
eroding and subtracting

bpx, y, zq � spx, y, zq � �
spx, y, zq a e1px, y, zq�,

where e1 is disc element of 2.5mm in diameter (Figure 3.6b). The mask
j0px, y, zq is then multiplied element by element by boundary mask bpx, y, zq

jpx, y, zq � gpx, y, zq � bpx, y, zq.
22



Figure 3.5: Progress of lung mask generation: (a) thresholding, (b) flood
filling, (c) smoothing.

Finally, large objects (greater than 29mm2) in each slice are eliminated
because of small expected dimensions of juxtapleural nodules (Figure 3.6c).

Figure 3.6: Juxtapleural nodule detection: (a) mask j0px, y, zq, (b) lung edge
bpx, y, zq (c) small object on an edge.

3.3.3 Summary

As early testing (Section 6.3) shows, our detectors work well. Sensitivity
of detectors is about 96%. FPs rate about 12 FPs per slice. In the next
Section we show how to get better results (decrease number of FPs) by using
classifiers.

3.4 Nodule Candidates Clasification

Output from detectors are two sets of pixels P from parenchymal and J from
juxtapleural. Each pixel of those sets is probable center of a nodule. Both
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sets are processed by classifiers described below.

3.4.1 Problem Description

Classification divides candidates points from parenchymal (p � ppx, py, pzq P
P ) and juxta-pleural (j � pjx, jy, jzq P J) detectors to two classes: nodule and
non-nodule. Ideally, the classifier should correctly detect all true nodules, and
also correctly reject all non-nodules. This leads to a decrease of the number
of FP results with constant number of TPs.

Our classifiers are trying to separate classes one from each other (linear
classifier base on FLD), or cut of candidates with a far values of description
(multi-threshold classifier).

3.4.2 The Geometrical Model

Points from detectors (Sections 3.3.1 and 3.3.2) are described by their centers
p and j. For successful classification, more descriptor features than only a
center are needed. We will classify each nodule candidate according to its
shape. To describe nodules we choose an ellipsoid model

E � !
fpx, y, zq :

px� x0q2
a2

� py � y0q2
b2

� pz � z0q2
c2

¤ 1;x � px0, y0, z0q P X
)
.

further rotated by angles ϕ and ϑ around coordinate axes.
Parameters of the ellipsoid model E are a, b, c, ϕ, ϑ, and we will consider

them as a vector s � pa, b, c, ϕ, ϑq. The center px0, y0, z0q of the ellipsoid E
is optimized independently (see Section 3.4.3).

3.4.3 Model Fitting

Exact Center Specification

First we find the center px0, y0, z0q of the future ellipsoid. We need to
do it, because the nodule candidate center pxc, yc, zcq obtained either from
parenchymal or juxtapleural nodule candidates detectors is not accurate
enough.

We proceed it as follows: We take a cube neighborhood

c1pxc, yc, zcq � tpx, y, zq : x� xc � y � yc � z � zc ¤ 7mmu
of each x P X and threshold it at -720HU (Figure 3.7b)

opx, y, zq � Thr

�
fpx, y, zq;�750HU

�
, px, y, zq P c1.
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Nearest object in the sense of Euclidean distance (pixel of value 1) to x in
opx, y, zq is found. All other objects (not connected to the nearest one) are
eliminated from opx, y, zq. Center of the single object now present in opx, y, zq
is localized by repeatable morphological erosion by 3D structural element
created as 6-neighbourhood of center pixel, until the object disappears.

We take the improved center x from last nonempty eroding step, as its
center of mass. Number of erosions is a first estimation (r) of the radius of
the elipsoid. (Figure 3.7c).

Figure 3.7: 2D example of a center specification process. Red cross—old
center, green cross—improved center. (a) Neighbourhood of old center, also
improved center displayed. (b) Thresholded neighbourhood and the object
nearest to the old center (light red). (c) Neighbourhood after erosion. New
center is marked by a green cross. The radius estimation r � 3.

Intensity Threshold Finding

Once the center x is known, we will find a threshold T . We define a new
cubical neighbourhood

c2px0, y0, z0q � tpx, y, zq : x� x0 � y � y0 � z � z0 ¤ r � 6pixelsu
x and cut it along coordinate axes (Figure 3.8 top) as follows

fxpxq � fpx, 0, 0q
fypyq � fp0, y, 0q
fzpzq � fp0, 0, zq

and find the position of the maximum and minimum derivatives along each
cut.
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gfxpxq � dfpxq
dx

gfypyq � dfpyq
dy

gfzpzq � dfpzq
dz

(Figure 3.8 bottom). The threshold T is computed as the mean intensity of
voxels at the positions of the maximum derivatives.

T � Ix� � Ix� � Iy� � Iy� � Iz� � Iz�
6

.

Figure 3.8: Intensity profiles fx, fy, fz of nodule along coordinate axes (top)
and correspondent derivatives (bottom)
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Ellipsoid Parameters Fitting

The parameters s � pa, b, c, ϕ, ϑq of the ellipsoid are found by maximization
of a criterion

Jpsq � ¸
px,y,zqPE

fpx, y, zq � T . (3.1)

By maximizing J we are looking for ellipsoid which contains as many pixels
as possible with intensity greater than T , and every pixel with intensity less
than T in ellipsoid is penalized. The iterative method is used (Section 4.5).
Initial guess is

a, b, c � r � 3
ϕ � 0
ϑ � 0.

Examples of fitted ellipsoids are in Figure 7.1.

3.4.4 Classifiers

Two classifiers were tested. First, a simple multi-threshold clasifier. Second,
a linear classifier based on Fisher linear discriminant. (See Section 4.6 for
details.) For both classifiers the same eight input shape descriptors of each
nodule are used [41]:

effective radius d1 � 3
?

abc
discircularity d2 � max pa, b, cq � ref

elongation d3 � max pa,b,cq
min pa,b,cq

mean intensity d4 � °
px,y,zqPE fpxq{number of pixels P E

intensity sum d5 � °
px,y,zqPE fpxq

number of pixels d6 � number of pixels P E
variance of intensity d7 � var

�tfpx, y, zq : px, y, zq P Eu�
threshold d8 � the intensity threshold T

Output of both classifiers is one of two classes: ’nodule’, or ’not nodule’ for
each input vector d � pd1, d2 . . . d8q. Input data for classifiers learning are
acquired by ellipsoid fitting procedure, see Section 3.4.3. Classifiers and their
learning is described in Section 4.6.
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4 Methods

4.1 Thresholding

Binary thresholding [9] is the transformation of grayscale image f to bi-
nary(BW) image g as follows

gpx, y, zq � Thr
�
fpx, y, zq; T� � #

0 forfpi, jq ¥ T

1 forfpi, jq < T.

4.2 BW Morphology

In binary morphology [9] we have a point set X and a structure element A,
represented by coordinates of white image pixels (in BW image we have only
black or white pixels).

The morphological dilatation of X by the structural element A is an union
of shifted point sets

Y � X ` A � ¤
a�A

Xa.

Dilatation is used to expand the object X in a way controlled by the structure
element A.

The morphological erosion of X by the structural element A is an inter-
section of all translations of the image X by the vector �a P A. Erosion is
used to reduce object in a way controlled by the structure element A.

Y � X a A � ¤
a�A

X�a.

The morphological opening of X by the structural element A is

Y � X � A � pX a Aq ` A.

Opening enlarges ’holes’ in the objects in a way controlled by the structure
element A.
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The morphological closing of X by the structural element A is

Y � X  A � pX ` Aq a A.

Closing fills ’holes’ in objects in a way controlled by the structure element
A.

4.3 3D Image Filtering

3D filtration of image f by a 3D filter h is a discrete convolution [9]

api, j, kq � h � f �
m̧,n,o

hpi�m, j � n, k � oqfpm,n, oq.
If the filter h is separable, i.e.

hpm, n, oq � hmpmq � hnpnq � hopoq
the convolution can be separated to three 1D operations

api, j, kq � hm �m
�
hn �n �ho �o fpm,n, oq�	

which accelerates significantly the filtration process.

4.3.1 Laplacian of Gaussian

LoG [7] is convolutional kernel (filter) l created from Gaussian kernel

gpx, y, z, σq � 1

2πσ
e�x2�y2�z2

2σ ,

by applying a Laplacian operator

lpx, y, z, σq � ∇2gpx, y, z, σq.
Separability of the LoG filter is used to accelerate scale filtering.

4.4 Scale Space

Scale space [7] theory is a framework for multi-scale image representation.
It is a formal theory for handling image structures at different scales and
how a scale parameter σ can be associated with each level in the scale-space
representation.
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In this text scale space is represented by four 3D scale images—input
image fpx, y, zq filtered by LoG filters with diameter dk=5.5, 8, 10, and
12.5mm. These diameters cover all the range of typical dimensions of nodules.
The relationship between diameter dk and variance σk of each filter [39] is

σ2
k �

�
dk � 1

3


2

.

Parameter σk (or dk) of each LoG filter is associated with one scale (Figu-
re 4.1).

Figure 4.1: One slice in scale space (a) σ � 1.5, (b) σ � 2.3, (c) σ � 3.8.
Small nodule is best localized in image (a) large nodule in image (c).

4.4.1 3D Blob Detector

Blob detector [7] is a filtration algorithm which is used for detection of sphe-
rical object in images. One of the first, and also the most common blob
detector is based on the LoG filter. Input image is filtered by a 3D LoG
filter.

After creating the scale space (Section 4.4)

skpx, y, zq � fpx, y, zq � lσk
px, y, zq, k � 1 . . . 4,

local maximas in each scale image skpx, y, zq, are found. It means creating
of local maxima maps mkpx, y, zq. Pixels with value greater than all pixels
in they 26-neighborhood n26px, y, zq are set to 1. Every other pixel is set to
0.

mkpx, y, zq �
#

1 if skpx, y, zq � max
�
n26px, y, zq�

0 else.
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Local maxima is than traced from m1px, y, zq to m4px, y, zq by morpho-
logical dilatating and multiplication. For example, map m1px, y, zq is di-
latated (Section 4.2) by a structure element

epx, y, zq �
#
px, y, zq; x2 � y2 ¤

#
5.4mm; z � 0

1.2mm; |z|<1
^ |z| ¤ 1

+
and multiplied element-wise with map m2px, y, zq

mx1px, y, zq � �
m1px, y, zq ` epx, y, zq� �m2px, y, zq.

I other words, if some maxima from m2px, y, zq is in the epx, y, zq-neighbourhood
of points from m1px, y, zq, is retained to the next step, every other maxima
is thrown away.

Next steps are analogous to a first one:

mxkpx, y, zq � �
mxk�1px, y, zq ` epx, y, zq� �mkpx, y, zq

As result, in mx4px, y, zq we have stable maximas, which do not significantly
change position between scales. These points are interpreted as potential
parenchymal nodule centers.

4.5 Iterative Maximization Method

Our maximization (iterative coordinate ascent) method consists of steps and
iterations. In each step, only one of five parameters s � pa, b, c, ϕ, ϑq is
changed and a new value of the criterion is J computed (3.1). If the value
of J increases, the step is finished, the parameter is fixed, and the next step
starts. Each five steps (for five parameters) we call an iteration.

We define for convenience:

spa, b, c, ϕ, ϑq � spsi1
1 , si2

2 , . . . , si5
5 q

and from (3.1)
J i � Jpsiq,

where in resp. i is 0 or 1, old value, or optimized value of n-th parameter,
resp. J.

In the n-th step of each iteration the value of the n-th parameter s0
n is

decreased by s0
n{2k where k � 1

s1
n � s0

n � s0
n

2k
.
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If the value of J decreases,
J1 ¤ J0

new value of parameter

s1
n � s0

n � s0
n

2k
.

is tested. If J1 ¤ J0, the value of k is increased (k � 2) and so on until J
increases, or k � 4. Then n� 1-th step of the iteration starts.

If value of J does not change during the iteration, the maximization
process ends.

We chose this method, because of problems with methods standartly im-
plemented in Matlab.

4.6 Classification

Classifier [9] is a device with n inputs and one output. Inputs are represented
by input vector x � px1, . . . , xiq. An R-class classifier will generate one of R
class symbols ω1 . . . ωR as an output. We are using a 2-class classifier with
output y P t’nodule’,’not nodule’u.

The function dpxq � y is called a decision rule. Class of decision rule
is given by classifier design, parameters by learning process. The input to
the learning process is a set T �  px1, y1q, . . . , pxl, ylq( of binary labeled
yi P t1, 2u training vectors xi P Rn. Let Iy � ti : yi � yu, y P t1, 2u be sets of
indices of training vectors belonging to the first y � 1 and the second y � 2
class. Each decision rule can be described by R discrimination functions. If
all R discrimination function are linear, classifier is called linear.

4.6.1 Fisher Linear Discriminant

Classifier based on FLD [34] uses one linear discrimination function

gpxq � b� q1xn � . . . , qnxn,

if the value of discrimination function is positive, input vector is classified
into first class, if it is negative into second class. This classifier parameters
are set to maximize the class separability. The class separability in a direction
q P Rn is defined as

F pqq � xq � SBqy
xq � SQqy , (4.1)

where SB is the between-class scatter matrix

SB � pµ1 � µ2qpµ1 � µ2qT , µy � 1|Iy|
°

iPIy
xi, y P t1, 2u,

33



and SQ is the within class scatter matrix defined as

SQ � S1 � S2, Sy � °
iPYy

pxi � µyqpxi � µyqT , y P t1, 2u.
In the case of the FLD, the parameter vector q of the linear discriminant
function gpxq � xq � xy � b is determined to maximize the class separability
criterion (4.1)

q � arg max
q1

F pq1q, (4.2)

which is equivalent to the generalized eigen value problem [8]

SBq � λSQq.

The problem (4.2) can be solved by the matrix inversion

q � SQ
�1pµ1 � µ2q.

The bias b of the linear rule must be determined based on another principle,
by solving equality

xq � µ1y � b � ��xq � µ2y � b
�
,

since we consider the same distance of b from each class.

4.6.2 Multiple Thresholding

A very simple nonlinear classifier is based on multiple thresholding. The
decision rule uses 2n thresholds where n is number of descriptors.

If all elements of input vector are between corresponding thresholds, vec-
tor is classified as ’nodule’, if not, as ’not nodule’

y �
#

’nodule’ @k P t1, . . . 8u; lk ¤ xk ¤ hk

’not nodule’ else,

where lk, hk are low and high thresholds.
Learning consists of searching the biggest and the smallest value of each

parameter in Py � txi : yi � 1u from the training set.
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5 Implementation

The algorithm was implemented in the Matlab. It is divided into functions
and controlled by a single GUI.

5.1 Requirements

The software was developed in Matlab 6.5. under Windows system. Besides
standard functions of Matlab and Matlab Image Processing Toolbox, we use
also Statistical Pattern Recognition Toolbox [34]. For the ability to running
on a Unix system some parts of the code had to be changed. Now the
program runs on both systems, but further problems are possible on the
Unix platform.

Because of large amount of data processed, we recommend computers
with at least 4GB of RAM. Speed of the processor is not crucial.

Simple GUI available to control the functions of the program, also Matlab
shell can be used. We recommend to control the program from the GUI.

5.2 Archive Contents

Part of this work is data archive which contains whole program, small data
set with ground truth, two learned classifiers (FLD and multi-threshold),
electronic version of this text and three miscellaneous scripts.
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List of contents:
noduledet.pdf This text in pdf format.
noduledet.ps This text in post script format.
readme.txt Archive description.
Code/ Directory containing whole Matlab program.
Code/countquad3.m Evaluates maximized criterion J .
Code/lapofgau.m Creates LoG filters.
Code/maskquad3.m Creates BW mask of ellipsoid.
Code/nodcllearn.m Learns classifiers.
Code/nodclparam.m Computes shape description of nodules.
Code/nodfitting.m Fits ellipsoids on to nodule.
Code/nodgui.m Control GUI.
Code/noduledet.m Detect nodule candidates
Code/Misc/clasif.m Classifies precomputed data.
Code/Misc/fastlearn.m Learns classifies from precomputed data.
Code/Misc/noduledetcode.m Precomputes data.
Data/ Directory containing testing data.
Data/Drawings/ Directory containing ground truth information.
Data/Exams/ Directory containing examinations.
Data/LearnedClass/FLDall.mat FLD based classifiers learned from all suitable exams.
Data/LearnedClass/FLDall.mat Multi-threshold classifiers learned from all suitable exams.

5.3 Control GUI

GUI is started by typing nodgui in Matlab command window.
The interface is separated to two parts by a radiobuton. The first part

contains everything about detection, the second about classifier learning. Af-
ter setting the directories and files start the process by pushing the ”Detect”
or ”Learn” buttons respectively.

5.3.1 Detection Part of the Dialog

The expected content of the input fields shown in Figure 5.1 is as follows:

CT set: directory where examination is located, see Figure 5.3. In the direc-
tory the examination can be divided to three or five subdirectories. The
first one (in alphabetical order) contains frontal images of the patient
(usually 2). Second and third subdirectories contain the examination.
If fourth and fifth subdirectories are also present, they contain the same
examination acquired with greater pitch parameter.

Output: directory to which the results are saved. The name of the output
’.mat’ file consists of the last five letters of the CT set name.
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Figure 5.1: Upper part of the GUI used for nodule detection.

Classifier: file contains classifier parameters. It is created by the learning
part.

Classification: turns on/off fitting and classification process. If not set, no
classifier will be applied and all nodule candidates are reported. The
process is much faster, but not so precise (many of FPs) and there is no
information about nodule shape. It is useful for example if no classifier
is available.

Output images: turns on/off saving ’.jpg’ images besides ’.mat’ file to the
same directory.

Example of the directory structure is in Figure 5.3.

5.3.2 Learning Part of the Dialog

The expected content of input fields shown in Figure 5.2 is as follows:

Training set: directory with one or more ’.mat’ files containing information
about detected nodules. Name of files have to correspond to examina-
tion subdirectory names. This directory may not contain anything else.

CT sets: directory containing all available exams in separate subdirectories.

Drawings: contains subdirectories with Scan View drawings (ground truth)
as described in Section 5.5.
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Figure 5.2: Lower part of the GUI used for classifier learning.

Classifier: output file with classifiers parameters.

See the example of the directory structure in Figure 5.3.

5.4 Matlab Command Line Interface

5.4.1 Detection

Nodule detection function

noduledetpCTset, Output, rs, Classifier, Classification, rs, rs, rs, OutputImagesq
The expected content of the parameters is the same as described in Sec-
tion 5.3.1, with the following Matlab types:

CTset, Output, Classifier—char array,

Classification, OutputImages—logical.

Function has the same effect as when the ”DETECT” button is ressed.

5.4.2 Learning

For classifier learning function

nodulecllearnpTrainingSet, CTsets, Drawings, Classifierq
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Figure 5.3: Example of directory structure expected by the program.

The expected content of the parameters is the same as described in Sec-
tion 5.3.2, all input parameters are char arrays.

Function has the same effect as when the ”LEARN” button is pressed.

5.5 Ground Truth Information Reading

Ground truth information about nodules was created in Scan View, program
by RNDr. Jan Krásenský (jkras@lf1.cuni.cz). Scan View allows to add draw-
ings of many kinds into each slice of exam. For this work only circle drawings
were used, because of easy machine reading of simple shapes. If some ex-
aminer used more precise selecting of nodules, his drawings were manually
changed to circles.

5.5.1 Drawings Format

To allow Scan View link drawings and examinations together, directory name
of drawings and exams must be the same. If there are no drawings present,
directory is created automatically.
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Scan View also creates a single file for each slice containing one or more
drawings with the same name as the slice. Those files combines ASCII and
binary values to describe drawings on slice.

Reading of files is not very easy because of neither official nor unofficial
documentation to file format exists. Table 5.1 shows some structures used in
this work, gained during oral consultations with Scan View author.

Starting Byte Length [Bytes] Description

1 2 Drawing header ASCII, ’ZJ’ for circles
452 4 500000x coordinate of center [pixels]
456 4 500000y coordinate of center [pixels]

Table 5.1: Structures used from Scan View drawings files. (Field meanings
might be different in non circle drawings. Structure repeats periodically after
2880Bytes.)
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6 Experiments

6.1 Test Data

Our test data consist of 18 CT volume scans (18 patients, 4853 slices) for
which ground truth nodule information was available. In total, there were
222 known nodules, 74 juxtapleural and 148 parenchymal. All data was
acquired on Somatom AR Star CT machine (Siemens). Resolution of images
was 1.6pixels per mm.

Our ground truth information are nodules signed by expert by circles
in program Scan View. Information readed from Scan View drawing files
(Section 5.5) was interpreted as set of centers of mass of each nodule in
each slice. This information is differently processed for parenchymal and
juxtapleural nodules, because of low regularity of juxta-pleural nodules. For
parenchymal nodules, center of mass of the ground truth nodule is computed
from nodule circle cenders in all slices containing the nodule. For juxta-
pleural nodules we leave centers in all slices, because juxta-pleural nodules
are detected slice-wise.

6.2 Evaluation Criteria for Detector Perfor-

mance

Our detector (see Sections 3.3.1 and 3.3.2) and classifiers (Section 3.4) pro-
vide for each detected nodule the coordinates of its center x � px, y, zq. If the
distance between the detected point x � px, y, zq and closest ground truth
point g � px, y, zq is smaller than 3mm

|x� g| ¤ 3mm,

nodule is considered as correctly detected and counted as a true positive
result (TP). Every other detected point is considered as false positive (FP).
If there is no point detected in a 3mm neighbourhood of the ground truth, the
point is considered as false negative (FN). We also define true negative results
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(TN) as FP points detected by nodule candidates detectors and classified to
class ’not nodule’ by a classifier.
We have calculated the following statistics:

FPs/slice: the average number of FPs per slice

Sensitivity: Number of detected nodules to total number of nodules present

sensitivity � TPs

TPs+FPs

Specificity: Number of TNs to total number of not detected nodules

specificity � TNs

FPs+TNs

6.3 Nodule Candidates Detection

We have evaluated the performance of parenchymal and juxtapleural nodule
candidates detectors, i.e. only the detection part was tested.

Detectors work properly, each with sensitivity about 96%. The number
of FPs is 12 FPs/slice, 6 from juxta-pleural, 6 from parenchymal detector.
This justifies our decision to employ a further classification step to decrease
the number of FPs. Results of nodule candidates detector testing are in
Tables 6.1 and 6.2.

6.4 Classification Performance

For each examination both classifiers were learned. Detected and fitted no-
dules from other examinations were used for learning i.e. we used leave-one
out method. Exams number 6 and 17 were treated apart, because the ground
truth information was available in different format and would require manu-
aly redrawing of about 900 circles. After learning, detected and fitted nodule
candidates were classified. The results from each examination separately are
shown in Table 6.3. Confusion matrices for FLD based and multi-threshold
classifiers are in Tables 6.4 and 6.5. Estimation of ROC for our algorithm
is in Figure 6.1. Difference between statistic for juxtapleural and parenchy-
mal nodules is shown in Table 6.8 for nodule candidates detection only, in
Table 6.9 for multi-threshold classifier applied on detected nodule candi-
dates and in Table 6.10 for FLD classifier applied on detected nodule candi-
dates.Visualization of some results are in Figures 7.1–7.13. Table 6.6 shows
comparison to other works.
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Time consumption of one examination processing is about six hours. If
nodule candidates are not fitted and classified, time to process examination
decreases to one and half hour.

Table 6.1: Experimental results of nodule candidate detection

TP= 213 FN= 9
FP= 58359 TN= —

Table 6.2: Confusion matrix of nodule candidate detection
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Table 6.3: Experimental results of nodule candidates classification

TP= 165 FN= 57
FP= 12704 TN= 45655

Table 6.4: Confusion matrix of FLD classifier.

TP= 199 FN= 23
FP= 43652 TN= 17707

Table 6.5: Confusion matrix of multi-threshold classifier.
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Figure 6.1: Estimation of ROC for our algorithm.

Sensitivity [%] FPs/slice Testing data
Zhang [10] 85.6 0.04 real nodules >2mm
Zhao [5] 84.2 5 nodule model 2—7mm

Armato [40] 71 0.5 real nodules
Our detectors 95 12 real nodules >1.5mm
Our thr. class. 89.6 9 real nodules >1.5mm
Our FLD class. 74.3 2.6 real nodules >1.5mm

Table 6.6: Comparison of statistics among several works.

Sensitivity [%] Specificity [%] FP/slice
Detection 95.9 — 12.0
FLD class. 74.3 78.2 2.6
Thr. class. 89.6 25.2 9.0

Table 6.7: Experimental results of algorithm

Sensitivity [%] Specificity [%] FP/slice
Juxta-pleural n. 95.9 — 5.7
Parenchymal n. 95.9 — 6.3

Table 6.8: Difference between detection of juxta-pleural and parenchymal
nodule candidates.
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Sensitivity [%] Specificity [%] FP/slice
Juxta-pleural n. 86.5 25.0 4.3
Parenchymal n. 91.2 25.3 7.7

Table 6.9: Difference between classification of juxta-pleural and parenchymal
nodule candidates by multi-threshold classifier.

Sensitivity [%] Specificity [%] FP/slice
Juxta-pleural n. 66.2 75.0 1.4
Parenchymal n. 78.4 81.5 1.2

Table 6.10: Difference between classification of juxta-pleural and parenchy-
mal nodule candidates by FLD based classifier.
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7 Conclusions

To find reliable method for nodule detection is an important problem in
medicine. By starting a screening program based on this method, survival
rate should be improved because of early detection of lung cancer.

We have developed an automatic method for the nodule detection. We
are using two steps for ROI detection and lowering number of FPs among
the detected nodule candidates. Also some volumetric information about
nodules can be obtained from our method. The method was validated on
data with 222 real nodules.

Our system performance can be adjusted between total sensitivity 95.9%
with 12FPs/slice (when no classifier used) and total sensitivity 74.3% (when
FLD based classifier applied). See Table 6.7.

There are some nodule-like object in testing data detected by algorithm
and not included in ground truth information. These are probably nodules
missed by human. (see Figure 7.10)

Our system was developed with Faculty Hospital, Motol, Prague and in
future should be used there.

7.1 Future Work

Acceleration. System can be hardly accelerated by new fitting algorithm.

New descriptors. Classification can be improved by new shape descriptors
of nodule.

Sensitivity control. User can choose not only from three types of classification
(none, FLD, multi-threshold), but set working point anywhere on ROC.
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Image Appendix

Figure 7.1: Examples of ellipsoids fitted on the nodule.

49



Figure 7.2: Input slice (left) and only non-pleural nodule candidates detected
(right) white FPs, red TPs.

Figure 7.3: Nodules from Figure 7.2 after classifying by FLD based classifier
(left) and multi-threshold classifier (right).
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Figure 7.4: Input slice (left) and only non-pleural nodule candidates detected
(right) white FPs, red TP.

Figure 7.5: Nodules from Figure 7.4 after classifying by FLD based classifier
(left) and multi-threshold classifier (right).
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Figure 7.6: Input slice (left) and only non-pleural nodule candidates detected
(right) white FPs, red TP.

Figure 7.7: Nodule from Figure 7.6 after classifying by FLD based classifier
(left) and multi-threshold classifier (right).
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Figure 7.8: Example of output image. Multi-threshold classifier used for
classification. Color added manually. TP (red), FPs (white)

53



Figure 7.9: Example of output image. Multi-threshold classifier used for
classification. Color added manually. TP (red), FPs (white)
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Figure 7.10: Example of output image. Multi-threshold classifier used for
classification. Colors added manually. Object marked by green color is pro-
bably juxta-pleural nodule missed by human and detected by algorithm. TP
(red), FPs (white)
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Figure 7.11: Example of output image. FLD based classifier used for
classification. Colors and FN added manually. TP (red), FPs (white), FN
(blue)
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Figure 7.12: Example of output image. FLD based classifier used for
classification. Colors added manually. TP (red), FPs (white)
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Figure 7.13: Example of output image. FLD based classifier used for
classification. Colors added manually. TP (red), FPs (white)
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