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Abstract

Continuous global blackbox optimization is one of the important problems in
today’s science and engineering routine. Although there exist many algorithms,
which are able to solve the problem, all of them is applicable only on relatively
constrained class of optimized functions.

The present tendency is to look for the algorithm, which could solve larger class
of problems - preferably larger, than all other algorithms - and which would work
for all funcions in this class with acceptable power.

I am focusing on not yet well-explored way of the optimization in this work. The
Neural Gas - despite it falls into another algorithm class - looks like to be acceptable
for being used as a global optimizer after some changes thanks to its properties.

After a brief introduction, I present two ways of how the Neural Gas can be used
for optimization, found in the literature.

Next I try to reproduce the authors’ reached results, which they present in their
articles.

In the last part of the work I compare the algorithms with each other to see
which is better and their advantages and disadvantages.

During the work the becomes obvious, that the authors of both articles evidently
did some mistakes during writing them, because not even one of the algorithms works
as it should. This made me often deep in thought about trustfulness of technical
articles.

Nevertheless the Neural Gas showed that can be quite good, compared with
other algorithms, in the future.
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Abstrakt

Spojitá globálńı blackbox optimalizace je jedńım z d̊uležitých problémů v současné
vědě i inženýrské praxi. Přestože již existuje řada algoritmů, které tento problém
dokážou řešit, každý z nich je aplikovatelný pouze na určitou omezenou tř́ıdu opti-
malizovaných funkćı.

Současný trend je hledat takový algoritmus, který by měl tuto tř́ıdu co neǰsirš́ı
- pokud možno širš́ı, než ostatńı - a pracoval na všech funkćıch v této tř́ıdě s
přijatelným výkonem.

V této práci se zaměřuji na dosud málo probádaný zp̊usob optimalizace. Neu-
ronový plyn - ač spadá do jiné kategorie algoritmů - svými vlastnostmi vyb́ıźı k jeho
úpravě a využit́ı jako optimalizátoru.

Po stručném úvodu do problematiky představuji dva možné př́ıstupy, jakými je
možno plyn využ́ıt pro optimalizaci, nalezené v literatuře.

Dále se pokouš́ım reprodukovat dosažené výsledky, které autoři algoritmů ve
svých článćıch uváděj́ı.

V posledńı části stav́ım algoritmy vedle sebe a snaž́ım se poukázat na výhody a
nevýhody každého z nich.

V pr̊uběhu práce se ukáže, že autoři v obou článćıch velmi pravděpodobně udělali
chybu, která zp̊usobuje, že ani jeden z algoritmů nepracuje tak, jak má. Tento fakt
ve mě vzbudil četná zamyšleńı nad d̊uvěryhodnost́ı technických článk̊u.

I přes tato úskaĺı ale Neuronový plyn podle mého názoru může v budoucnu
obsadit dobré mı́sto mezi ostatńımi optimalizátory.
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1 Introduction

Optimization is a mathematical discipline concerning on searching such a set of
given parameters to fulfill given criteria. In my case the goal is to find such ~x
that ~x = arg min~x∈D f (~x) with D constraining the area where to find the solution.
Function f is the function to be optimized and is usually called objective function,
or fitness function in the context of evolutionary algorithms, and is often considered
to be computationaly expensive, hence the fewer times called is the better.

Optimization task defined this way is called global optimization, which means,
that the minimum found is the best one and no one with a lower value can be found
anywhere over the feasible search space D.

With the view of terminology: The solution ~xa is better than ~xb when f ( ~xa) <
f (~xb). Then local optima are the points ~x, better than points from their small
neighborhood.

Existence of such points introduces classifying all fitness functions into two basic
groups:

• Unimodal functions having one local optimum, which is also a global optimum.

• Multimodal functions having at least two local optima.

This work is basicaly concerned with a black-box optimization, where the fitness
function properties, like derivations, count and existence of local and global optima,
are generally unknown. I must mention, that in this work I actually know the count
of local/global optima.

There are some methods, aimed to find local optima. For example Hill climbing
[4].

Other algorithms are stochastic, I can enumerate Simulated Annealing [6] or
population-based like CMA-ES [5], Genetic Algotithms [9], Particle Swarm Opti-
mization [7] and Differential Evolution [8] as representatives.

Main problem of global view methods is prematurely switching to the local view,
omitting yet unexplored locations in the search space and converging to some local
optimum. Authors of new approaches make efforts to keep possibility to find global
optima, while focusing on locations supposing to be a global optimum, but being a
local one for example by many methods trying to keep large population diversity.

Self Organizing Maps with Neighborhood Attraction [10], [3], are one kind
of machine learning methods. They are all tools to capture unknown probability
distribution in an N -dimensional space by adapting to the learning set, consisting
of points of this distribution and also to capture the topology of this distribution
and often even project it onto lower-dimensional space.

The motivation of why to use them in global optimization is their global view of
the whole search space. Even if - in the extreme case - the map models probability
concentrated into one small subspace of the searchspace (this means, that major
part of map nodes cumulated in this small space), there is still nonzero probability
elsewhere due to presence of dispersed minority of map nodes. This fact induces the
NG to be used for modelling ”promisability” - after fitting it in the fitness function
some way, it can answer the question ’Where am I most likely to find the global
optimum ?’ by the response ’Probably here, but there is still chance to find it over
there.’.
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In the chapter 2 I describe what the Neural Gas is and how can be used for a
global optimization. There you can find described the only two algorithms, found
in the literature and compared in a formal way.

In the chapter 3 I write about how my implementation of both algorithms works
and how my results differ from the authors’ results. There are also some considera-
tions about parameter settings.

In the chapter 4 are the algorithms compared to each other and their mutual
drawbacks and advantages are described.

2 Optimization using Neural Gas

2.1 Neural Gas Network

The Neural Gas [3] is a method usually used for vector quantization. This al-
lows modelling of often complicated probability density function, which carries large
amount of information by distributing a number of representative individuals (also
referred as neurons or nodes), which at the cost of some information loss, endeavours
to pick up the most essential outlines of original function.

Why neural? Because it is set of particles, each characterized of its perception
field (the Voronoi polygon). Stimulus, incoming to the network activates the neuron,
in whose region it lies.

Why gas? However neural networks mostly have fixed topology and their connec-
tions do not change over time (analogy with solid substances), neural gas approach
changes its topology dynamicaly as a reaction to input data character - analogy with
gas.1

Why network? Strictly as defined in the original Neural Gas [3], the nodes can
be connected by edges. An edge is created/kept up between two neurons nearest
to the stimulus if it does not exist already. Edges are aged and cease after some
time, if not kept up. At the end of the algorithm, edges connect every two nodes,
whose associated data are similar. Mean edge count by one neuron in particular
space region is specific for this region’s dimensionality.

Neural Gas learning consists of ”stimulating” the net of nodes, initially with
uniform distribution by random signals of an uknown distribution. Each node lo-
cation in the space is described by its so-called weight vector. Weight vectors of all
nodes are originally adapted using these formulas [3]:

~wi,new = ~wi,old + ǫ(t) · e−i/λ(t) · (~v − ~wi,old) (1)

ǫ (t) = αi ·
(

αf

αi

)t/tmax

(2)

λ (t) = λi ·

(

λf

λi

)t/tmax

(3)

With ~v being the input stimulus, i is the node order in ordered node set, while
all Neural Gas nodes are sorted according to their increasing Eucleidean distance

1Once looking on neural gas in action, one has feeling more on viscosious liquid than gas.
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from ~v. For further reading, ǫ(t) is called learning rate, influencing the adaptation
velocity and λ(t) is neighborhood range, influencing the area of attraction.

ǫ(t) and λ(t) depend on time t exponentially. Their value is ǫi, λi in the begin-
ning2 (for time t = 0) and reaches ǫf , λf at the end (for time t = tmax).

ǫi, λi, ǫf , λf , tmax are algorithm parameters.
According to the formula, the net nodes move towards each input ~v, jumping a

step of length lowering with the distance of the node from the stimulus. The point
is to locate all nodes so that each posterior stimulus will have some nodes around
and its distance from nodes will fall and their count close around the stimulus will
grow with growing probability of occuring stimulus on that place.

In the optimal case, after enough signals adapted the net , the nodes will even-
tually estimate the input signal distribution.

Using The Neural Gas for optimization is not common so far. There were
only two articles found in the literature. Both mention neural gas as their basic,
but both are totally different.

One thing we can do is to declare modelled probability function to be the prob-
ability distribution of possible global optimum occurence. Then we ask the neural
gas about where it has the highest neuron concentration and focus here searching
tries to find the best possible solution. This is the approach [1] which Milano used
in his algorithm. Detailed study follows in section 2.2.

Ohter way is to use the neural gas adaptation rule as a kind of crossover operator
in an evolutionary strategy. This is how Huhse [2] uses neural gas attraction rules
in her evolution strategy. Detailed study runs from section 2.3.

2.2 Milano Approach

The algorithm of Milano [1] is actually the classical Neural Gas network, but without
interconnecting neurons by edges (because it is useless for the purpose, they are
totally ignored in the new algorithm) and without time-dependency of learning rate
and neighborhood range, which is originally part of the Neural Gas algorithm (see
section 2.1). These functions of time are replaced by constant learning rate α and
neighborhood range λ.

The algorithm stands as following:

1. Initialization - Lay out the NG particles randomly in the search space. As-
sign the first best parameters - use MNG. MNG is the sampling operator,
which first selects one neuron ~p uniformely randomly, then lets ~ps be the point
choosen using normal random distribution with the mean vector being ~p and
the standard deviation being the shortest eucleidean distance to the nearest
neuron. Evaluate f(~p) at the sampled point, store ~p and f(~p) as ~pbest and fbest.
fbest is the best currently known fitness value (BSF - Best So Far value) and
~pbest is the point in the searchspace, where the BSF was found.

2. Repeat following steps until the final condition F passes. Final condition F
passes when fbest < T where T is objective function threshold value, considered
to be good enough for a given problem. This condition also often contains the
fitness evalution count limitation: passes also if the fitness evalution count
reaches some given number.

2Symbol i indexing ǫ and λ abbreviates the word initial. Do not confuse this abbreviation and
the node indexes.
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(a) Use MNG to sample point ~ps and evaluate f(~ps).

(b) If f(~ps) < fbest then:

i. Let ~p be the new ~pbest and f(~p) be the new fbest.

ii. Perform NG adaptation step ANG, which means to stimulate the net
by almost the standard way using ~p as a stimulus. See following
paragraph.

Milano’s Neural Gas attraction rule ANG means to perform several substeps:

1. Sort all NG particles according to their distance from the stimulus and let i(~p)
be the order of each particle in this sorted set A.

2. Adapt ~p of all elements from A using:

~pnew = ~pold + α · hN (i ( ~pold)) · ( ~pbest − ~pold) + ~C ~pold
(4)

where hN(i) = exp (i/λ) is the neighborhood function,

~C ~pold
=
∑

~j∈A,~j 6= ~pold

K
∣

∣

∣

∣

∣

∣ ~pold −~j
∣

∣

∣

∣

∣

∣

2

(

~pold −~j
)

(5)

is the repulsive factor, with purpose to avoid premature convergency.

2.3 Huhse Approach

The algorithm [2] appears as a kind of a genetic algorithm with a special crossover
operator - the neural gas adaptation rule. Only few particles, which are close to
each other, are crossed. I personally think, that in this algorithm the global view of
the neural gas of the the search space fades away. Definitely, there is no neural gas
used as a probability model.

The run is sligthly more complicated, than the one from Milano:

1. Initialization - Lay out the particles randomly in the search space.

2. Repeat following stteps while t < tmax (this is the stopping contidion F):

(a) Choose a particle pp randomly to be a parent particle. There are several
ways, how to perform this step. The following options come to my mind:

• There is one set of particles all the time. After one iteration, the new
individual is inserted into the set immediately and so immediately
participates every next iteration. The random choice means, that this
resulting individual could be the parent even in the next iteration.

• Similar as previous, except that all old individuals must be randomly
choosen and transformed into their children, before anyone from these
children can be choosed to be a parent.

• Similar as previous, except that new children do not influence follow-
ing iterations until all old ones become parents and produce the new
child.

This is how the selection and the whole generation management is done
and it was regrettably not explained well in the article. I decided to
implement the third variant.
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(b) If all neighbors pi of pp are worse than pp (thus f(pi) > f(pp)) perform
mutation M. The mutation creates n0 copies of the parent and updates
their position:

~pnew = ~pold +
1

N
dmin

~N (0, 1) (6)

This means to ”noise” them using normally distributed random numbers
with the mean at parent and the standard deviation 1

N
dmin. N is the

problem dimensionality and dmin is eucleidean distance to the nearest
particle. ~N (0, 1) is a vector of normally distributed random numbers
with mean 0 and deviation 1.

(c) Else perform NG variation ANG (explained in the paragraph below). .

(d) Select survivor using S. The selection operator S computes f(~x) of the
children and chooses the best one. Others and their parent are deleted.

Huhse’s Neural Gas variation rule ANG creates one copy of the parent for each
parent’s neighbor. The individual is considered to be a neighbor, if it is closer to
the parent, than d = 1

n

∑ n
i=1,i6=p |~pp − ~pi| ; this is the mean Eucleidean distance from

parent to all other particles. After that, these just created copies ~pp are attracted
to appropriate neighbors ~pi by the neural gas attraction rules:

1. Neighbors are first sorted according to their distance from the parent and this
makes i (~p) to be their order after this sort.

2. Attract parent copies to the neighbors:

σ(t) = σi · (σf/σi)
(t/tmax) (7)

ǫ(t) = ǫi · (ǫf/ǫi)
(t/tmax) (8)

~pnew = ~pold + ǫ(t) · hσ(t) (i (~p)) · (~pi − ~pold) (9)

where σi, σf , ǫi, ǫf , tmax are algorithm parameters.

2.4 Conceptual Comparsion of Milano and Huhse approach

Although the purpose of both algorithms is the same, each of them has its own
specific principle. The diference between them looks to be very fundamental, so
it evokes, that each will have its own specific behaviour and each could succeed in
different use cases.

2.4.1 Evolutionary/Non-evolutionary

Milano This algorithm is non-evolutionary. It uses self-organizing net self only
for modelling probability of occuring global optima over the search space and has
no parts/sets to be determined as population, parent, children, crossover, etc.

Huhse This algorithm operates with terms of mutation, crossover and selection.
The way it works makes it an evolutionary strategy. Particles do not compose
a self-organizing net. I would call it ”NG approach upside down” with a little
disparagement. In the conventional NG strategy, one point in the search space is
used to adapt many, possibly all NG particles. By contrast, many points here are
used to adapt one point in several ways.
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2.4.2 Particle rating

Milano Fitness of NG particles in this approach is not computed. Particles do
not represent possible solutions.

Huhse The NG particles in the algorithm are rated computing their fitness. Every
particle represents one possible solution.

2.4.3 Optima count

Milano The algorithm is able to find only one global optima. It does not work
with a set of solutions, only one (currently best) solution is stored across adaptation
steps.

Huhse The algorithm works with large set of solutions, hence theoretically has
the ability to find multiple optima.

2.4.4 Neighborhood function

Milano Neighborhood function is nonzero over the whole search space. This
causes all particles to be affected during each adaptation step. The function is also
time-independent, which does not distinguish between adaptation tuning phases,
possibly decreasing quality of found optimum (but according to the current final
condition, we are familiar with any solution better than threshold. We should con-
sider found optima quality while changing final condition). This fact is actually
induced by time-independent (constant) neighborhood range (λ) function.

Huhse The neighborhood function of a given solution is zero for particles far-
ther (in Eucleidean sense) than mean of all particle distances to the given solution.
Neighborhood function is also time-dependent beacuse of time-dependent neighbor-
hood range (λ). This distinguishes between starting phase with high mutual particle
influence and final precise tuning phase.

2.4.5 Adaptation

Milano The algorithm operates with time-independent (constant) learning rate
(α). This could decrease the quality of found optimum. See paragraph about Milano
neighborhood function for details.

Huhse The algorithm has time-dependent learning rate (ǫ), also causing run phase
distinction mentioned above. Decreasing learning rate and neighborhood range
makes final phase a local searching.

2.4.6 Premature convergence protection

Milano The algorithm introduces a remedy against too fast convergence so that
it should prevent stuck in local optima. The remedy is imposed via the repulsion
factor ~C ~pold

.
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Huhse Avoidance is accomplished by the used selection scheme. Even if all par-
ticles stuck around local minimum for a time period, best solution from previous
iteration never survives the next one , which should lead to escape the local optima
sooner or later.

3 Implementation and Testing

3.1 Milano

The foremost thing to do is to test algrithm, if it is implemented well and if there
is no mistake in the article.

3.1.1 Experiment Settings

For the Milano, there are originally three sets of algorithm parameters, written in
table 1.

Table 1: Original Milano settings (taken from [1])
Node count learning rate neighborhood range repulsion factor

Set N α ǫ K
Set 1 10 0.2 n/3 0.001
Set 2 20 0.2 n/3 0.001
Set 3 100 0.1 n/3 10−5

The authors tested the algorithm using four common functions - equations 10
(Modified Rosenbrock’s function), 11 (Griewank’s function), 12 (Rastrigin’s func-
tion) in 2-D domain and 13 (Rosenbrock’s function) in 10-D domain.

They declared the threshold of succesful convergence to be 0.001 for function 11,
12 and 13 and 40 for 10.

Their results according to the article are caught in table 2.

Table 2: Original Milano results (taken from [1]) - Average fitness evaluation count
to converge (30 runs) - (not performed - algorithm was not run with this setting)

2-D 2-D 2-D 10-D
Set Modified Rosenbrock’s f. Griewank’s f. Rastrigin’s f. Rosenbrock’s f.

Set 1 1700± 200 180± 50 210± 50 not performed
Set 2 780± 80 150± 40 180± 40 not performed
Set 3 not performed not performed not performed 7500

3.1.2 Results

I tried to reproduce the original results, using the same algorithm and the same
settings. However, my results were almost uncomparably worse (table 3).

In addition, we must realize, that the stopping threshold 40 for Modified Rosen-
brock’s function is too weak criterion, because it settles relatively large area (see the
function description for details), so the value under 40 is easily obtainable by trivial
random search.

Well, I can proclaim, that the algorithm as described does not converge at all. In
my opinion, the reason of this is poor adaptation ctriterion (to remind: adaptation

7



Table 3: Reproduced Milano results - Average fitness evaluation count to converge
(30 runs), evaluation count limited to 50000 for 2-D, to 105 for 10-D - (does not
conv. means, that the fitness BSF value after reaching the evalution count limit is
worse, than requested 0.001)

2-D 2-D 2-D 10-D
Set Modified Rosenbrock’s f. Griewank’s f. Rastrigin’s f. Rosenbrock’s f.

Set 1 3340 does not conv. does not conv. not performed
Set 2 2630 does not conv. does not conv. not performed
Set 3 not performed not performed not performed does not conv.

occurs only if some new best fitness value is found). This is severe condition, which
causes the underlying neural gas to adapt only occasionaly, as seen in table 4,
which shows constantly low number of adaptations (compare with number of fitness
evaluations).

Table 4: Reproduced Milano results - Average;minimal;maximal neural gas adapta-
tion count (10000 runs for 2-D, 1000 runs for 10-D), fitness evaluation count limited
to 50000 for 2-D, to 105 for 10-D

2-D 2-D 2-D 10-D
Set Modified Rosenbrock’s f. Griewank’s f. Rastrigin’s f. Rosenbrock’s f.

Set 1 11; 6; 18 12; 6; 20 11; 5; 17 not performed
Set 2 13; 3; 21 13; 7; 23 12; 6; 20 not performed
Set 3 not performed not performed not performed 68; 48; 86

This signifies, that I was not able to reproduce the authors’ results at all. The
convergency curves are shown on figures 1(a), 1(b), 2(a) and 2(b).

I introduced a workaround - new adaptation rule to raise the number of adap-
tations per fitness evaluations. This helps a lot and makes the algorithm reach the
given criteria. But I still did not attain the power specified in the article. This
workaround has also one big drawback - it introduces new algorithm constants to
be tuned.

There are actually three versions of the workaround taken into account:

• Adapt whenever f (~x) < fbest + Fthr with Fthr being a new parameter. There
were several experiments performed with this and I rejected the rule, because
the threshold Fthr is not adaptive with respect to the fitness function surface
shape and neural gas nodes positions on it. I was not able to find some
”universal” Fthr.

• Adapt whenever f (~x) is better than last P fitness trials. This means, that
last P fitness trials are saved in an FIFO of length P and every new fitness
value is compared to all of them. If the new fitness value was allways better
during this comparison, use the point where it was sampled for adaptation.

• Adapt whenever f (~x) is better than P best fitness trials from last Q best fit-
ness trials. This means to put fitness values into FIWO3 of Q elements, sorted

3FIWO stands for First In Worse Out. This is a kind of a data structure similar to FIFO

except that - during taking out procedure - instead the item, which is on the head of the queue,
the worse one is removed.
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Figure 1: Median BSF values dependency on fitness evalution counts of ”Milano”
algorithm [1] - original adaptation rule
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Figure 2: Median BSF values dependency on fitness evalution counts of ”Milano”
algorithm [1] - original adaptation rule
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from best to worst, the worst item is removed, current fitness is compared to
the P th value and if the current fitness value is better, the point where was
sampled is used for adaptation.

I concentrated to the third case.
For the 2-D testing functions I made effort to preserve the original parameters,

but there were some changes in repulsion factor. Increasing the repulsion factor was
must due to getting stuck in local optima. The factor was set to 0.01 instead of
0.001 for all functions except Rastrigin’s function optimized by 10 particles. There
are obviously two new parameters added. These can be seen in table 5.

Table 5: Parameters for the new Milano adaptation rule
P Q
10 120

For the 10-D testing function, however, the original parameters do not work, so
that I looked for some working candidates. The best I found for the 10-D Rosen-
brock’s function are written in table 6, but it was also necessary to increase maximum
evalutions count to 2× 105. Next thing I discovered is, that for unimodal functions
is good, when the deviation size in sampling operator (see section 2.2) is divided
by 2 (deviation halving). For the Rastrigin’s function in 2-D the algorithm with 20
particles does not converge.

Table 6: Milano settings - best found for 10-D Rosenbrock - (nh. - neighborhood;
lr. - learning)
Node count lr. rate nh. range repulsion factor fitness order queue length

N α ǫ K P Q
150 0.9 N/5 10−7 5 25

Although the convergence was finally reached for all functions, fitness evaluation
count is higher than they accomplished in the article.

Table 7: Original results reproduction for the ”Milano” algorithm - original adap-
tation rule - statistics for fitness BSF values after end of run

Function Settings min p0.25 med p0.75 max
2-D Modified Rosenbrock Set 1 34.0493 34.0785 34.1413 34.4626 37.0912

2-D Griewank Set 1 2.7× 10−5 0.0051 0.0179 0.0377 0.1606
2-D Rastrigin Set 1 8.3× 10−4 0.0133 0.0208 0.0797 0.1910

2-D Modified Rosenbrock Set 2 34.0438 34.1068 34.1384 34.3620 34.7353
2-D Griewank Set 2 8.9× 10−5 0.0013 0.0087 0.0216 0.1694
2-D Rastrigin Set 2 0.0010 0.0058 0.0111 0.0524 0.5308

2-D Generalized Rosenbrock Set 3 0.6505 1.6782 2.3353 3.3727 5.9009
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algorithm [1] - new adaptation rule

13



Table 8: Original results reproduction for the ”Milano” algorithm - new adaptation
rule - statistics for fitness BSF values after end of run

Function Settings min p0.25 med p0.75 max
2-D Mod. Ros. Set 1 - new 34.2950 35.3660 36.4015 38.3448 39.8888
2-D Griewank Set 1 - new 1.0× 10−4 4.7× 10−4 6.3× 10−4 8.3× 10−4 0.0314
2-D Rastrigin Set 1 - new 3.9× 10−5 5.4× 10−4 8.6× 10−4 0.0018 0.0052

2-D Mod. Ros. Set 2 - new 34.1129 35.4498 37.4613 38.6536 39.7126
2-D Griewank Set 2 - new 4.0× 10−5 1.6× 10−4 4.5× 10−4 6.9× 10−4 9.5× 10−4

2-D Rastrigin Set 2 - new 8.1× 10−4 0.0049 0.0111 0.0190 0.0685
2-D Gen. Ros. Set 3 - new 8.0× 10−4 9.1× 10−4 9.8× 10−4 0.0013 3.9871

3.2 Huhse

As for Milano, I tried to run the algorithm as it is described, using the authors’
parameter settings first.

3.2.1 Experiment Settings

The authors use two settings. These are took down in table 9.

Table 9: Original Huhse settings (N - particle count; nO - mutation offspring count;
tmax - stopping time; σi - initial neighborhood range; σf - final neighborhood range;
ǫi - initial learning rate; ǫf - final learning rate)

Set N nO tmax σi σf ǫi ǫf

Set 1 10 4 30000 5 0.05 0.02 0.01
Set 2 10 4 30000 5 0.05 0.0075 0.00375

They tested the algorithm using 17 standard testing functions. Some of them are
quite complicated to implement, and so I used only a subset of them. In addition, the
ommited functions are mostly more difficult, than those implemented, for example
the Rosenbrock’s function is difficult to optimize by the same way as the Fletcher
and Powell’s function, but F. and P. is harder due to its large nearly constant table,
which slopes down to the global optimum very slowly, on the other hand Shekel’s
functions are highly multimodal, so I suppose that the algorithm will not work for
Shekel if it fails for Rastrigin and so on. The functions used are brought out in table
10.

Table 10: Test functions used for Huhse benchmarking and average number of fitness
evalutions to convergency for better parameter settings (taken from [2])

Function Settings Fitness evaluations
Sphere model Set 1 30010

Generalized Rosenbrock’s function unavailable does not conv.
Schweffel’s double sum Set 1 157210

Ackley’s function Set 1 72010
Griewank function Set 1 44454

Paralel axes hyperellipsoid unavailable does not conv.
Sum of different powers unavailable does not conv.

All functions were of dimensionality 20. The next fact I suppose is that if the
optimization is unsucessfulin 10-D, it will not work neither for higher dimensions.
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3.2.2 Results

Running the series of tests did not fare well for the algorithm. Huhse sets the con-
vergency threshold to be 10−10. For 20-D there was actually almost no successful run
on any function, neither little bit worse, nor still acceptable (I determined the value
0.001 from the Milano’s article as ”acceptable”). You can find convergency curves on
the following pages (figures 5(a), 5(b), 6(a), 6(b), 7(a), 7(b), 8(a)). The approach
is quite good for unimodal functions, but totally fails while used on multimodal
problems.

Table 11: Original results reproduction for the ”Huhse” algorithm - statistics for
fitness BSF values after end of run (SDS - Schwefel’s Double Sum; SDP - Sum
Of Different Powers; Hyp. - Hyperellipsoid; Ros. - Rosenbrock’s function) - All
functions are defined in the Appendix

Function Settings min p0.25 med p0.75 max
20D Sphere Set 1 3.0× 10−5 5.6× 10−4 0.0032 0.0685 0.1852

10D SDS Set 1 3.8× 10−7 8.3× 10−6 7.0× 10−5 3.8× 10−4 0.0092
20D Hyp. Set 1 7.4× 10−6 2.1× 10−4 0.0014 0.0033 0.0913
20D SDP Set 1 2.7× 10−4 5.7× 10−4 7.5× 10−4 0.0012 0.0026
10D Ros. Set 1 0.8485 1.3413 2.1129 3.0634 6.6296

2D Ackley Set 1 0.0027 0.0145 0.0256 0.0410 0.0752
2D Griewank Set 1 0.0023 0.0072 0.0096 0.0165 0.0330

20D Sphere Set 2 4.3× 10−4 9.8× 10−4 0.0027 0.0088 0.0563
10D SDS Set 2 5.1486× 10−4 0.0011 0.0015 0.0032 0.0595
20D Hyp. Set 2 8.2× 10−5 3.7× 10−4 0.0032 0.0069 0.0299
20D SDP Set 2 1.5× 10−4 6.6× 10−4 7.8× 10−4 9.5× 10−4 0.0019
10D Ros. Set 2 0.8250 1.4233 7.9292 2.2256 9.1228

2D Ackley Set 2 0.0048 0.0231 0.0344 0.0652 0.1177
2D Griewank Set 2 0.0015 0.0074 0.0095 0.0125 0.0539

3.3 Summary of Implementation Results

Milano Although the authors of both articles promised rather good performance
on both unimodal and multimodal functions, none of the algorithms reached almost
even comparable results. As said above, Milano maybe mistaken while specifying
the adaptation condition. The metod looks hopeful, but there is still a need for ex-
ploration about when to adapt. Adding parameter time dependency should further
make the better performance. There was an attempt to contact the authors, but
they did not answered.

Huhse There are some not very precise formulations, which obviously caused me
to understand things a different way than they were written. Especially the pop-
ulation management and selection is not well described, and there are some more
minor unanswered questions. The authors were contacted too, but their response
was that it was actual some years ago and the implementation details and source
codes are gone now.
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(a) Original results reproduction: 20D Sphere function optimization (Huhse) - both settings -
median from 30 runs
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(b) Original results reproduction: 10D Schwefel’s Double Sum function optimization (Huhse) - both
settings - median from 30 runs

Figure 5: Median BSF values dependency on fitness evalution counts of ”Huhse”
algorithm [2]
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(a) Original results reproduction: 20D Paralel Axes Hyperellipsoid function optimization (Huhse)
- both settings - median from 30 runs
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Figure 6: Median BSF values dependency on fitness evalution counts of ”Huhse”
algorithm [2]

17



0 2 4 6 8 10 12 14 16

x 10
4

10
1

10
2

10
3

Number of fitness evalutions

F
it
n

e
s
s
 v

a
lu

e

Set 1

Set 2

(a) Original results reproduction: 10D Rosenbrock’s function optimization (Huhse) - both settings
- median from 30 runs

0 2 4 6 8 10 12

x 10
4

10
−2

10
−1

10
0

Number of fitness evalutions

F
it
n

e
s
s
 v

a
lu

e

Set 1

Set 2

(b) Original results reproduction: 2D Ackley’s function optimization (Huhse) - both settings -
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Figure 7: Median BSF values dependency on fitness evalution counts of ”Huhse”
algorithm [2]
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Figure 8: Median BSF values dependency on fitness evalution counts of ”Huhse”
algorithm [2]
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4 Experimental Comparison

The primary purpose of this section should have been to compare the robustness and
performance of both algorithms. If they had work as described, there would have
been comparison of the algorithms for more functions of various dimensionalities
both uni- and multimodal.

As the algorithms do not perform as promised in the articles, I concentrated to
use only 8 functions used in the articles, where the power of the algorithms is rather
comparable.

4.1 Experiment settings

4.1.1 Milano

There was a lot of time and effort spent on finding some working and universal set
of parameters. During this time I considered, that the Milano algorithm is quite
sensitive to even small changes of parameters. For example increasing P by one can
cause the algorithm to be unable to converge.

There were also found basicaly two ways, how to set up the Milano approach:

• Learning rate α lower than approx. 0.45 and neighborhood range ǫ somewhere
around n/3 - rather useless for multimodal functions, while this neighborhood
range causes too fast contraction. This can be tried to be outweighted by
increasing the repulsion factor K, but the contraction is often needed in the
final iterations to concentrate trials utmost close to the optimum.

• Learning rate α equal or higher than 0.9 and neighborhood range ǫ set approx.
in the interval (n/25, n/5) - Nodes close to the stimulus are strongly attracted,
but this strength quickly decreases with distance. Quite good for multimodal
functions, because of this quick decreasing, which leaves far nodes almost
unaffected, so even if there are many stimuli from one point, the far nodes
preserve a global view of the search space.

I actually found some setting, which makes the algorithm able to optimize 10-D
Ackley, but this was tuned only for this function and did not work for others. So
after all I finally experimented with setting, working for used multimodal functions
only in 2-D (quite easy to find working setting for this dimensionality), because the
Huhse approach was unable to successfuly optimize even 2-D multimodal functions
so that there would be nothing to compare to.

For unimodal functions I used a setting found for 10-D Rosenbrock (table 6,
including sampling deviation halving (described in section 3.1.2 on page 11), which
showed itself to be applicable to the rest of unimodal functions.

For multimodal functions I used the original settings (table 1) with the new
adaptation rule with queue settings as written in table 5.

4.1.2 Huhse

For each tried setting, this approach highly suffers from getting stuck in local optima,
although the author claim, that the used selection scheme should help to avoid that.
You can find a snapshot in figure 4.2 of particle being stucked while optimizing
2-D Ackley function, using setting 1 (see table 9). Remember that this setting uses
10 particles, but the picture appears as only with six particles. This is one of the
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Figure 9: Snapshot of particle positions after 300000 fitness function evalutions -
”Huhse” algorithm optimizing 2-D Ackley function

biggests drawbacks of the algorithm identified. There are 10 paticles, but some of
them are sticked together as seen on the picture near [−5,−15.5]. This fact loweres
the population diversity. More particles did not help, it only caused more of them
to stick together.

There is actually a setting, making this method rather good for unimodal func-
tions. It is presented in table 12. The diversity of population may be point of
discussion, because this setting uses only 3 particles.

Table 12: Huhse settings, good for unimodal functions (N - particle count; nO -
mutation offspring count; tmax - stopping time; σi - initial neighborhood range; σf -
final neighborhood range; ǫi - initial learning rate; ǫf - final learning rate)

Set N nO tmax σi σf ǫi ǫf

Set U 3 10 60000 3 2 0.7 0.6

So, for unimodal functions I used this setting or Set 1 from table 9. For multi-
modal functions I used Set 1 from table 9.

4.2 Both algorithms

Considering the behaviour of the algorithms, I decided to implement fitness value
limit 0.001 in most cases for both. It is the original limitation of the Milano algorithm
and it is true, that the algorithm is hardly able to reach better results for all tested
functions. I only swiched this criterion off for Huhse on some unimodal functions,
where I considered it to behave quite well.

4.3 Comparison results

According to the articles, the Huhse approach should be better than Milano. But
because both algorithms do not work as expected, the power of each is arguable.
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The first obvious fact is, that the Huhse algorithm is better for unimodal func-
tions and totally fails when used on multimodal functions.

The Milano algorithm is quite good for unimodal as well as for multimodal
functions, but the convergence limit 0.001 is too loose for practical applications.

You can find the algorithms compared by their convergence curves on the fig-
ures 10(a), 10(b), 11(a), 11(b), 12(a), 12(b), 13(a), 13(b). Charts are zoomed the
way, that there is only the interresting part of the behaviour visible. All runs had
maximum fitness evalution count restricted to 3×105, excepting 10-D Rosenbrock’s
function for Milano, where this count was 2× 105.

Numeric form of the results can also be found in the table 13.

Table 13: Statistical comparison of the ”Miano” and ”Huhse” approach optimizing
some well known test functions (SDS - Schwefel’s double sum; SDP - Sum of different
powers; Hyp. - Hyperellipsoid; Ros. - Rosenbrock) - (M - Milano; H - Huhse; R
- setting for 10-D Rosenbrock (table 6); U - Setting for unimodal functions (table
12))

Function Settings min p0.25 med p0.75 max

10D Hyp.
M-Set R 0.0013 0.0023 0.0030 0.0037 0.0051
H-Set U 0.0010 0.0011 0.0012 0.0015 110.2555

10D Ros.
M-Set R 7.8× 10−4 0.0010 0.0013 0.0015 3.9880
H-Set U 0.0010 0.0010 0.0011 3.9885 623.3862

10D SDS
M-Set R 3.1× 10−4 7.6× 10−4 8.9× 10−4 0.0010 0.0013
H-Set 1 3.8× 10−7 8.3× 10−6 7.0× 10−5 3.8× 10−4 0.0092

10D Sphere
M-Set R 2.5× 10−4 8.1× 10−4 9.0× 10−4 9.7× 10−4 0.0011
H-Set 1 2.0× 10−12 3.1× 10−10 6.9× 10−9 1.5× 10−6 5.8×−5

20D SDP
M-Set R 2.7× 10−4 5.7× 10−4 7.5× 10−4 0.0012 0.0026
H-Set U 0.0010 0.0011 0.0014 0.0018 7.6× 109

2D Ackley
M-Set 1 6.0× 10−5 5.1× 10−4 6.6× 10−4 9.1× 10−4 9.8× 10−4

H-Set 1 0.0027 0.0145 0.0258 0.0410 0.0752

2D Griewank
M-Set 1 1.0× 10−4 8.7× 10−4 9.1× 10−4 9.7× 10−4 0.0010
H-Set 1 0.0023 0.0072 0.0096 0.0165 0.0330

2D Rastrigin
M-Set 1 2.6× 10−6 2.8× 10−4 5.7× 10−4 8.3× 10−4 0.9950
H-Set 1 2.3× 10−5 0.0151 0.9954 1.0073 2.0112
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(b) Comparison of the algorithms optimizing 10-D Rosenbrock’s function

Figure 10: Comparison of ”Milano” and ”Huhse” algorithms for 10-D Hyperellipsoid
and 10-D Rosenbrock’s function - Median of BSF fitness values - 30 runs
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(a) Comparison of the algorithms optimizing 10-D Schwefel’s double sum function
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(b) Comparison of the algorithms optimizing 10-D Sphere function

Figure 11: Comparison of ”Milano” and ”Huhse” algorithms for 10-D Schwefel’s
double sum function and 10-D Sphere - Median of BSF fitness values - 30 runs
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(a) Comparison of the algorithms optimizing 20-D Sum of different powers function
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(b) Comparison of the algorithms optimizing 2-D Ackley’s function

Figure 12: Comparison of ”Milano” and ”Huhse” algorithms for 20-D Sum of dif-
ferent powers function and 2-D Ackley’s function - Median of BSF fitness values -
30 runs
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(a) Comparison of the algorithms optimizing 2-D Griewank’s function
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(b) Comparison of the algorithms optimizing 2-D Rastrigin’s function

Figure 13: Comparison of ”Milano” and ”Huhse” algorithms for 2-D Griewank’s
function and 2-D Rastrigin’s function - Median of BSF fitness values - 30 runs
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5 Summary and Conclusions

There are two algorithms using the Neural Gas by the particular way, found in the
literature. I tried to understand them the best I could and consequently implemented
them to see how they work.

Both algorithms were run on functions and with settings the authors described,
but did not fulfill the expectations and their results were far from results presented
in the articles, even with adjusted parameters/adaptation rule.

The algorithms were then compared to see, how they perform on various uni-
modal/multimodal functions.

The idea of using the Neural Gas self for the continuous optimization is quite
nice and theoreticaly correct, but if it should be comparably powerful as other well-
established optimization algorithms, there is still a lot of work to do. Even if the
algorithms would be described with more clarity.

For Milano, the first step for making it better could be establishing time depen-
dency, as originate from the Neural Gas algorithm self and adjusting the adaptation
rule.

For Huhse, there should be performed some research respecting that the algo-
rithm often gets stuck in local optima and make clear how the selection and the
generation management actually works.

27



6 Appendix

6.1 Used testing functions

6.1.1 Functions used by Milano

• 2-D Modified Rosenbrock function optimization:

f (x, y) = 74 + 100(y − x2)2 + (1− x)2 − 400 exp
(

− (x+1)2+(y+1)2

0.1

)

(x, y) ∈ (−2, 2)× (−2, 2)
(10)

The article says, that the global optimum is at (−1,−1) (calculated as 78) but
there is value certainly lower. Consider point (−0.9,−0.95) with value approx.
34.4 .

• 2-D Griewank’s function:

f (x, y) = 1 + 0.005 (x2 + y2)− cos (x) cos (2−0.5y)
(x, y) ∈ (−100, 100)× (−100, 100)

(11)

• 2-D Rastrigin’s function:

f (x, y) = 20 + (x2 − 10 cos (2πx)) + (y2 − 10 cos (2πy))
(x, y) ∈ (−5.12, 5.12)× (−5.12, 5.12)

(12)

• 10-D Rosenbrock’s function:

f (~x) =
9
∑

i=1

(

100 (xi+1 − x2
i )

2
+ (1 + xi)

2
)

xi ∈ (−2, 2)
i = 1, . . . , 10

(13)

6.1.2 Some functions used by Huhse

• Sphere model

f (~x) =
N
∑

i=1
x2

i

xi ∈ (−5.12, 5.12)
(14)

- but I used bigger definition area (−50, 50)

• Generalized Rosenbrock’s function - see function 13 with its sum working over
all i from 1 to N − 1 .

• Schweffel’s double sum function

f (~x) =
n
∑

i=1

(

N
∑

j=1
x2

j

)

xi ∈ (−5.12, 5.12)
(15)

• Ackley’s function

f (~x) = −a · exp

(

−b ·

√

1
N

N
∑

i=1
x2

i

)

− exp

(

1
N

N
∑

i=1
cos (c · xi)

)

+ a + exp (1)

xi ∈ (−5.12, 5.12)
(16)
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• Generalized Rastrigin’s function

f (~x) = 10n +
N
∑

i=1
(x2

i − 10 cos (2πxi))

xi ∈ (−5.12, 5.12)
(17)

• Generalized Griewank’s function

f (~x) = 1
4000

N
∑

i=1
x2

i −
N
∏

i=1
cos xi√

i
+ 1

xi ∈ (−100, 100)
(18)

- but more often described as with definition limits (−600, 600)

• Hyperellipsoid, paralel to axes

f (~x) =
N
∑

i=1
i · x2

i

xi ∈ (−5.12, 5.12)
(19)

• Sum of different powers

f (~x) =
N
∑

i=1
|xi|

i+1

xi ∈ (−5.12, 5.12)
(20)

6.2 Used software

All charts were created using the MATLAB R2008b software.
The algorithms were implemented in the Java programming language using the

NetBeans 6.5 IDE.
The document self was typed in TeXnicCenter and rendered by MiKTeX.

6.3 Contents of attached CD

The whole document is on the CD in the PDF format. There is also the NetBeans
6.5 project folder with my implementation of algorithms.
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