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Abstrakt 
 

Cílem této bakalářské práce je popsat a zhodnotit kaskádový evoluční algoritmus, 
speciální topologii paralelního evolučního algoritmu, která by měla zabraňovat 
předčasné konvergenci populace lépe než doposud běžně používané. Tento algoritmus 
byl navrhnut a naimplementován, experimentálně nakonfigurován a poté byly 
provedeny testy na několika statických a dynamických problémech. Výsledky byly 
nakonec porovnány s jednou z klasických topologií paralelního evolučního algoritmu. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

Abstract 
 

The aim of this thesis is to propose and review Cascade Evolutionary Algorithm, 
special case of Parallel Evolutionary Algorithms, which should prevent the premature 
convergence of population better than the currently used topologies. This algorithm 
was designed, implemented and experimentally configured, after that some tests on 
various static and dynamic problems were made. The results were compared with one 
of the common Parallel Evolutionary Algorithm topologies.  
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Chapter 1   

Introduction 

The aim of this bachelor thesis is to describe the function of Cascade Evolutionary 
Algorithm (CEA), special topology of Parallel Genetic Algorithms. This custom 
topology should prevent the premature convergence of population better than the 
currently used ones. The main feature of this algorithm is sequencing the islands in a 
linear topology, where the first island generates random solutions and the last island is 
meant to be an output of the topology. In this thesis the Cascade Genetic Algorithm 
(CGA) will be implemented, configured and tested on subset of common reference 
tasks. The results will be compared with similary configured common island gnetic 
algorithm topology. As I will explain in the following chapter, the Genetic Algorithm 
(GA) is special case of Evolutionary Algorithms (EA). For simplicity, the 
functionality of the CEA will be presented using experiments performed on CGA. 

At the beginning I will describe the basic terminology and principles of Evolutionary 
Computation (EC) used in this work. After that I will try to explain purpose, 
principles and advantages of spatially distributed evolution. At the end of chapter I 
will mention some commonly used island topologies. 

The following chapter will contain the complete description of the Cascade Genetic 
Algorithm. Here I will describe the purpose of this new approach and the principle of 
function. This algorithm partially uses custom evolution models, so the 
implementation and the principle of these models are also described here. At the end 
of chapter the expected behaviour of this topology will be presented. 

The chapter 4 describes the performed experiments used for comparison of 
algorithms. At the beginning there are mentioned the main tasks commonly used for 
testing of Genetic Algorithms. Then the complete description of tested algorithms and 
their configuration follows. The Cascade Genetic Algorithm is here experimentally 
set up and compared to the similar configuration of common Parallel Genetic 
Algorithm topology. For this comparison are used some of the common static and 
dynamic tasks. The best solutions found by the algorithms are presented in tables and 
charts.  

At the end of this thesis I will summarize the results of performed experiments. By 
comparing the expectations with the results I will decide whether they were correct or 
not. I will recapitulate the behaviour and features of this algorithm and mention some 
potential advantages of this new approach against the comonly used ones. 
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Chapter 2   

Theory 

2.1. Evolutionary Computation 

The Evolutionary Computation is relatively new part of artificial intelligence; 
concretely it belongs into nature inspired computation. This method of computing is 
inspired by Darwin’s theories about a natural selection and evolution, where (in some 
way) those good individuals survive and transfer their qualities into offspring, by this 
way the entire species are becoming stronger in the environment. The same principle 
can be relatively easily and effectively used in computer technology. We can do this 
by coding one entire solution of our problem as an individual. And what do we need 
to know about each individual in the nature? We need to know his properties, and 
how strong he is. The properties are usually coded in individual’s genome, so the 
genome will represent the solution of our problem. The second thing we need to know 
will be represented by fitness - some function value defining how strong the 
individual is, i.e. how good is the solution that he represents.  

As well as Darwin’s natural selection, the Evolutionary Computation is stochastic and 
very robust approach to solve given tasks. The main difference from classical 
approaches is that the evolution is not operating with just one solution, but with entire 
population of solutions (individuals). From this property we can expect that this 
method can’t be as fast as the classical ones and we need more memory too. But the 
EC has many advantages. The main advantage is that it is very robust and able to find 
the solutions mainly unreachable by the conventional methods. And the principle of 
EC is relatively simple but very effective. 

The power of Evolutionary Computation is described by the following sentence very 
well: J. Holland: ”It’s best used in areas where you don’t really have a good idea what 
the solution might be. And it often surprises you with what you come up with.” [3], 
[4]. 
 

2.2. Basic Terminology 

The evolution strategies can be divided into several main categories:  

• Genetic Algorithms (GA) 
• Genetic Programming (GP) 
• Learning Classifiers Systems (LCS) 
• Evolution Strategies (ES) 
• Evolutionary Programming (EP) 

As the EC use an analogy of natural evolution, they has similar terminology with 
natural genetics, so here are some of the most important terms: 



 9 

• Genome: 
o unambiguous representation of one solution 
o gene sequention of constant length 
o in the ideal case all of the genome combinations should be acceptable 

 
• Gene: 

o elementary units from which are chromosones made 
o each of genes is located at its place called locus (allele) 
o it is equal to one bit in many applications 

 
• Fitness: 

o definition of quality measure assigned to genome 
o computing of fitness function cannot be to costly  

 
• Individual: 

o the entire representation of one solution 
o contains the genome and a value of the fitness function 

 
• Population: 

o defined set of individuals used for computation 
 

• Reproduction: 
o creating offspring from parents by combining their genomes in some 

manner 
o used for creating new individuals in the population 
o also called breeding 

 
• Crossover: 

o method of combining parents to produce (one or) two offsprings 
o for example we can use one or two point crossover 

 
• Mutation: 

o random small modification of newly generated offspring 
o used for avoiding premature convergency in the population 

 
• Island: 

o spatially separated part of  the Evolutionary Computation 
o by default one island holds one its own population 

 
• Migration: 

o transfer of selected amount of individuals from one island to another 
o usually the strongest ones are selected for the migration 

 
• Evolution model: 

o defined method for creating new population from the old one 
o two main possibilities: 

 steady-state 
 generatioal (I use only generational one here) 

 
• Genotype: 

o information stored in genome  (the genome of animal) 
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• Phenotype: 

o what the information in genome means decoded  (animal itself) 
 

• Elitism: 
o the size of elitism specifies how many of the best individuals from the 

actual population will be copied into the new generation without any 
modification 

o this means that defined number of best individuals won‘t be lost 

 

The other terms used here are written at the end of this thesis, for more detailed 
explanation you can read some available literature. 

In my thesis I use Genetic Algorithms, which are characterized by representing 
individuals as consecutions of characters chosen from a commonly finite alphabet [4]. 
The alphabet can be composed only from ‘0’ and ‘1’ in the case of bit-vector genome. 
 

2.3. Methods Used in Evolutionary Computation 

In the EC there are some common methods and approaches used for selecting 
individuals, their combination, mutation etc. I will describe here only the most 
important ones.   

 

2.3.1 Selection methods 

At first we need some method for selecting individuals, selection is done for several 
purposes. First, the most important is selecting the individuals for their reproduction. 
This selection method should be stochastic, but also based on the fitness value. These 
two attributes should prefer selection of better individuals, but also give a chance to 
the bad ones, which is very important for keeping the population diverse. Another 
kind of selection is selecting of best/worst individuals in the population, that is used 
for selecting elites, selecting the individuals for migration, and selecting the worst 
individuals to be replaced by newly incomming ones from the others islands. (In case 
that we are using some kind of Parallel Genetic Algorithm.)  

Tournament Selection 

The most frequently used selection method is called Tournament Selection, which 
connects both of the mentioned conditions and the selection is based on the fitness 
value and a random selection together. 

For example if the tournament selection has specified size 3: 

1. Three individuals are chosen from the population randomly. 
2. From these three is chosen the best one. 



 11 

The important property is that when using this selection method, every individual has 
a chance to be selected (reproduced). 

Roulette wheel selection 

This is simplier, but not so good selection method, which also prefers best individuals 
to the worse ones. The individuals own the place directly proportional to its fitness:  

 

Figure 2.3.a – Roulette selection principle 

[3] 

 

After that the random position on the wheel is chosen and so the probability of 
selection of each individual is: 

€ 

Pi =
f i

j=1

PopSize

Σf j
 

Where 

€ 

fi  is the fitness value of i-th individual, and Pi  is the probability of selection. 
This method is also known as fitness proportiate selection. But this selection method 
is not suitable when there are big differences in the fitness values; it also has 
comparatively big error. 

Best selection 

Simply selects a defined number of the best/worst individuals from the population. 

 

2.3.2 Crossover 

When having two selected parents, we need to combine them to produce new 
offsprings having some (hopefully) better properties. If the one-point crossover is 
selected, we simply get two genomes of parents and partitione them in randomly 
selected location. Then the new offspring is composed from two parts, each taken 
from different parent. 
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Figure 2.3.b – One point crossover 

The purpose of using crossover is exploration of state space. By combining two good 
individuals, the GA is trying to generate new and better individual, which provides 
good direction of exploration. 

 

2.3.3 Mutation 

A mutation has the same purpose as a mutation in the natural selection. This method 
prevents the population from the premature convergence; it enables the algorithm to 
be more robust. Thanks to this the algorithm is less suspectible to get stuck in a local 
optima. 

The principle is that each of the genes is mutated with some small probability. In the 
GA this means change of character. In case of bit-vector genome, the mutation means 
usually simple bit flipping. 

 

Figure 2.3.c – Example of mutation  

 

2.3.4 Breeding Procedure 

The mutation is usually applied to the offspring just produced by the crossover, the 
crossover is applied at two individuals chosen using some of the selection methods, so 
the breeding procedure has the following form: 
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Figure 2.3.d – Breeding procedure 

 

2.4. Simple Genetic Algorithm 

The simplest way to start with the Evolution Computation is a Simple Genetic 
Algorithm (SGA). It contains one population holding some constant amount of 
individuals. The individuals are often composed of bit-vector genome (with no 
constraints) and simple (single-multiobjective) fitness value stored for example as a 
floating-point variable. In case when we are using generational evolution model, the 
algorithm is as follows: pick individuals from the old population, breed them (i.e. 
create offsprings), evaluate and place into the new population. This is repeated until 
some stopping criterion is reached.  

 

 

Figure 2.4.a – Generational evolution model  

 

 



 14 

Simple generational Genetic Algorithm procedure: 

1. Choose initial population 
2. Evaluate the fitness of each individual in the population 
3. Repeat until termination: (time limit or sufficient fitness achieved) 

1. Select best-ranking individuals to reproduce 
2. Breed new generation through crossover and/or mutation and give birth 

to offspring 
3. Evaluate the individual fitness of the population 
4. Replace worst ranked part of population with offspring 

Figure 2.4.b – SGA generational procedure 

[1]   

Note: typical number of newly produced individuals is: population size - elitism 

 

2.5. Spatially Structured Evolutionary Algorithms 

2.5.1 Motivation 

In the real nature, there are many separating factors between the individuals, for 
example rivers, forests etc. The panmictic population is one where all individuals are 
potential partners. This assumes that there are no mating restrictions, either genetic or 
behavioural, upon the population, and that therefore all recombination is possible. [9]  

The common approach to simple, one-island, Evolutionary Computation uses a 
panmictic population. 

But Darwin realized long ago that the population should have a spatial structure, 
which has an influence on population dynamics. For instance he remarked how, when 
they were isolated on islands, some species evolved differently from others that lived 
in more open environments. [7]  

So if the separating factor is removed and the individuals can „meet“ freely each 
other, the population become more uniform, with a decrease in genetic diversity.  

 

2.5.2 Description 

In order to improve the functionality of EAs, there were evolved Spatially Structured 
Evolutionary Algorithms. These algorithms have the same functionality as the EAs, 
with the difference that their population is divided into a number of separated parts. 
Each part is called an Island. On each island there is one population containing some 
constant amount of individuals. As in the nature, the strongest individuals are usually 
capable of migration between particular islands. Being partially separated, individuals 
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on each island evolve in slightly different ways. So this feature partially eliminates 
the flaw of classical EAs using panmictic population - premature convergence of 
population.  

Here are the main differences between classical EAs and this improvement: 

• One population is said to be palced on an Island. 
• There is defined several islands in a topology. 
• The topology defines how the particular islands are interconnected. 

o That means that for each island is defined sevral target islands where 
to send the chosen migrants. 

o Each island can have zero, or an arbitrary number of target islands. 
• There is specified migration interval defining how many generations to wait 

between sending chosen individuals to other islands. 
o When running synchronous island topology, there is usually defined 

only one migration interval, all of the islands are allowed to run only 
as fast as the slowest one, so the migration starts on all of the islands at 
the same time. 

o When running asynchronous island topology, each island has its own 
migration interval, so that the migration starts at any time. 

So on each of the islands resides one panmictic population, which sends some number 
of its best individuals to some other islands. 

Again, the special case of Spatially Structured EAs is Island model PGA, which I use 
for comparison with CGA. Compared to comon GAs, Parallel Genetic Algorithms 
proved many advantages, for example the solution is found faster in many cases, the 
second and more important advantage is that these algorithms have bigger overall 
population diversity, so they are even more robust. For more information i.e. [5]. 

 

2.5.3 Common Topologies 

There are some commonly used topologies in PGAs, each of them has some specific 
properties, I will briefly describe some of them here. 

A complete graph 

It is also called Mesh graph or fully interconnected, in this case there is every island 
connected to each other. This topology affords the fastest propagation of best 
individual to the other islands. We can need this when solving some dynamic 
problems. But the number of migrants shouldn’t be too big, for keeping up some 
separation between particular populations. The edges in this graph are bidirectional. 
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Figure 2.5.a – Mesh graph 

A star graph 

The other topology has one center and other leaf islands.  

 

Figure 2.5.b – Star graph 

Ring graph 

The islands are interconnected to the ring topology. The edges of this graph can be 
one, or bidirectional. When we need faster propagation of individuals between islands 
we use bidirectional edges. 

 

Figure 2.5.c – Ring graph 

Grid graph 

This graph has usually bidirectional edges. 

 

Figure 2.5.d – Grid graph 
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Chapter 3   

Cascade Evolutionary Algorithm 

3.1. Motivation 

Despite its qualities the Parallel Evolutionary Algorithms suffers from unwanted 
premature convergence of population. Because of this they are unable to escape from 
a potential very strong local optima and thus to reach some solutions of given task. 
Regardless of the circumstances, all of the populations in the common PEA always 
converge to some optimum. The Cascade Evolutionary Algorithm, proposed in this 
thesis, is trying to fix this partial flaw by injecting new, randomly generated, 
individuals into the custom EA island topology and thus maintain the population 
diversity. 

Again, the functionality and principles of CEA will be presented here on the CGA, 
the special case of EAs. At first the principle of CGA will be described, then a several 
experiments will be performed in order to configure single parts of the algorithm, 
such as a number of islands in the topology, a migration frequency and a number of 
migrants. After that the CGA will be configured using a results from the previous 
experiments. This configured CGA will be compared to some similar PGA with 
islands connected to one directional ring topology, which will represent the current 
PGA configurations. Finally these results will be sumarized and I will try to decide 
whether this new approach has better properties than the standard ones. 

 

3.2. Introduction 

The idea of such algorithm is preventing of the premature convergence in the entire 
island topology by attaching an island used for permanent generating of random 
individuals and injecting them into the topology. This feature itself can’t be much 
contributive, because the new individuals have significantly worse fitness than the 
current ones. These new immigrants would have only very small chance to stay in the 
population with high average fitness. A particular solution could be in increasing the 
number of immigrants, but it decays the averadge fitness on a target island. The other 
solution is in sending some improvement of random individuals, which we can 
generate and after that enhance for example using another evolutionary run – on 
another island. So the best solution here seems to be in attaching some several islands 
into a queue. Let’s say that on the left side there is some kind of input and the island 
on the right side is the output of entire topology.  
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3.3. Description of the Cascade Genetic Algorithm 

The main features of CGA are: 

• Sequencing the islands in a linear topology with islands connected by one 
directional links. 

• Introduction of one island attached at the beginning of this topology, which 
permanently generates new random solutions. 

 

Figure 3.3.a – CGA topology example 

 

In this linear topology there is an island A meant to be a generator of random 
solutions, and an island D is proposed as an output evolving the best individuals in the 
topology. All of the islands, from second to the last one, combine their evolved 
solutions with newly incomming individuals from the predecessor populations. As 
going along the topology, divergent populations with higher and higher average 
fitness values are expected. 

So the CGAs principle has the following form: 

• Island A generates random individuals and sends them onto the next island 
• As going through the topology, individuals are improved by the evolution 
• The last island recieves entirely new, but evolved, genetical material  

I hope that the main advantage of this approach is a fact, that into the last island is 
injected absolutely new genetic material all the time of evolutionary run, so the 
topology should hold the necessary divergence in the population much longer than the 
common ones. For example in the Mesh topology where all of the islands are 
interconected, there occurs partial waste of migration bandwidth and a loss of the 
populatin diversity. When some of the islands finds better solution than the others and 
send it to them, the descants of this migrated individual may occupy the whole 
population on the target islands, so that the migration is not effective anymore. 

 

3.4. Implementation 

Experiments and the algorithms were implemented and tested in a programing 
language Java 1.5. In the hope to save some work the ECJ 18: A Java-based Evolutionary 
Computation Research System was used, which is very sophisticated Java library 
containing various functions. For real-time graph plotting was used SGT: Scientific 
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Graphics Toolkit. For post-processing of the experiments was used well known Matlab. 
[15] [16] For more information about the implementation, please check the 
Attachment.  

 

3.5. The Principle of Function 

As explained in the previous chapter, the CGA has two or more islands, where the 
first island (I will call it island A) generates new individuals. The following islands 
should be evolving these individuals to higher level. Finally, on the last island (island 
D) there are the best results expected. In this island should be the biggest selection 
pressure, and the population should contain highly evolved individuals with good 
average fitness.  In this chapter I will describe the CGA topology containing four 
islands for simplicity. 

 

3.5.1 The Island A 

The island A sends newly generated individuals on the island B once after a certain 
number of generations. Island A sends the entire population, so that all of the 
individuals on the island B are replaced. 

In order to achieve better results, the island A generates completely random 
individuals only after sending its entire population to the island B. In the remaining 
time only generates new random individuals, and if they are better than some in the 
current population, they are replaced. So even the island A itself generates random, 
but relatively strong, individuals which are then more evolved by the following 
islands. The rest of topology has similar parameters to the classical PGAs. 

So the function of the island A looks like as follows: 

1. check whether the entire population should be sent: 

- if no: 
o randomly generate new individuals (the number of generated individuals 

is equal to the size of population on the island) 
o for each new individual: 

 evaluate them 
 check if it has better fitness value than the worst one in the actual 

population 
• if yes:  replace them 
• if no:  throw it away 

- if yes: 
o send the entire population 
o generate the entire population randomly 

2. go to 1. 
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For this purpose in the ECJ there was implemented custom Evolution Model (EM), 
composed from breeding sources and breeding pipelines. 

The breedng source is equal to some selection method, and the breeding pipeline is 
something which modifies the genome or an individual in some manner (e.g. 
mutation, crossover or whatever..)  

This EM nicely describes the function of the island A: 

 

Figure 3.5.a – Custom Evolution Model 

Best Selection: 

• Consecutively selects and puts forward the entire sorted population (in this 
case from the best to the worst one. 

Mutation: 

• Mutates the individual on the input with given probability and sends to the 
output. 

• The mutation probability is the probability of bit-flipping for each of genes. 
• In this case Pmut= 0.5, so the mutation is equal to a random generating. 

Evaluation: 

• Evaluates the individual for the comparision purposes. 

Compare/Replace: 

• If the first individual was recieved (in the actual generation), copy the old 
population into a temporary place. 

• Compare the individual on the input with the temporary popualtion and 
replace if if is better than some of the current ones. 
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Source Switcher: 

• This block holds as the breeding source the source 0. 
• Once after the specified number of generations it switches the actual breeding 

source to the source number 1, at the end of generation switches back to the 
source 0. 

 

3.5.2 The Rest of Islands 

The rest of the islands in the CGA topology have a common functionality and a 
commonly used EM, which is also default in the ECJ. So it looks as follows: 

      

Figure 3.5.b – Common Evolution Model 

 

So on these islands there is running a classical GA. The only differences are that on 
the island B there is entirely new population in some defined time period and the 
island D is on the end of the topology, so it doesn’t send migrants to any other island. 
In this EM, there is used a tournament selection, a crossover and the mutation with 
some very small probability of course.  

The migration is defined in this manner: 

• Select defined number of best individuals on the island. 
• Send them to the target island (the chosen individuals stay on the source island 

also). 
• On the target island: select the corresponding number of the worst individuals, 

and replace them by newly incomming immigrants. 
 

Note: In the ECJ, there is the evaluation process is defined on some another place. 
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3.6. Expectations 

From the previously mentioned facts and hypotheses we can expect following 
behaviour of this algorithm. In case of using the synchronous island model and 
solving some static and difficult problem, the graphs of average fitness should look 
similar to this one: 

 

Figure 3.6.a – Expected Behaviour of CGA 

 

Each of the graphs represents the island drawn below. From the cogs on the average 
fitness we can see the migration intervals and also the reason why we should conect 
several islands into a queue. Finally, a new genetical material supplies the island D, so 
this island is able to find still better and better solutions.  

I suppose that too short topology may not find the ideal solution, because of decaying 
the average fitness by the island A. In the other hand, too long topology will require 
unnecessairly much procesor time and will be also too slow for dynamic problems. 
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Chapter 4  

Experiments 

4.1. Reference Tasks 

For configuring and quality comparition of Genetic Algorithms there are used some 
common reference tasks. Here are several kinds of these functions: 

• Real functions of n variables 
• Dynamic problems 
• Deceptive functions 
• Other binary problems 

I will describe those I have used for testing purposes. 

4.1.1 Real functions of n variables 

These functions are defined as one or more dimensional real continuous functions 
with one global and usually many local strong extremes. They are mainly used for 
testing exploration and a speed of GAs. For more information and other functions: 
[10]. Here are examples of these functions in the case of two input variables: 

Sphere function  

 

Figure 4.1.a – Sphere (De Jong’s function) 
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Rosenbrock’s valley 

 

Figure 4.1.b – Rosenbrock’s valley 
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Rastrigin’s function 

 

Figure 4.1.c – Rastrigin’s function 
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Schwefel’s function 

 

Figure 4.1.d – Schwefel‘s function  
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4.1.2 Dynamic Problems 

Oscilating Knapsack Problem 

This problem represents the situation when we have a small knapsack and many 
things to pack into it. Each of the things has its own value of interest and weight 
defined. The knapsack has some given maximum load. An actual set of things in the 
knapsack is coded into the genome. In the Oscilating Knapsack Problem there are two 
maximum loads defined which are swapped afrer some defined number of 
generations. In this simplified case the fitness value of each individual equals to a sum 
of its genes identical to the genes of the ideal solution. 

This problem is used for testing the reaction time of GAs to changes of the target 
solution. 
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Ošmera’s function 

Ošmera’s function is another dynamic problem. This function has nonmonotonic 
changes, which is also very important for assessing the properties of the GAs. The 
change appears every 20 generations. Here are the equations: 

€ 

g1(x, t) =1− e−200(x−c(t ))
2

  

€ 

c(t) = 0.2(|[t /100]− 5 |+ | 5 − ([t /20]mod10) |)  

• Variable t specifies actual generation in a range between 1and 1000. 
• c(t) is actual ideal solution 
• The variable x is represented by a bit-string of length 31 and normalized to 

give a value in the range between 0 and 2. 

The goal is to keep on tracking the value of c(t) and minimize the function g(x,t). For 
more information please look at [14]. Here is a picture of the Ošmera’s function. 

 

 

Figure 4.1.e – Ošmera’s Function 

 

 

4.1.3 Deceptive Functions 

These functions were developed specially for GA testing purposes, the testing is 
based on a schema theorem, explained for example in [11] and [3]. 

Input into these functions is a binary string of length 4. For simplicity we can say that 
the GAs are attracted by the genomes with high fitness. But these genomes are not 
similar to the idelal solution. Opositely, similar solutions to the ideal one have very 
low fitness, so these problems are significantly difficult for GAs. More information in 
[5]. 
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DF3  - Deceptive Function 3 

 

Figure 4.1.f – Deceptive Function 3 

 

PDF – Partially Deceptive Function 

 

Figure 4.1.g – Partially Deceptive Function 
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4.1.4 Other Binary Problems 

Royal Road 

In the Royal Road problem there is the ideal solution composed from particular 
blocks of defined length. Each block contributes the number equal to its length to the 
fitness value only if all the genes have value of 1. Here is the example with 10 blocks 
of length 16. So the ideal genome has 160 bits and all of them have value of 1. The 
fitness of such ideal genome is also 160. For more information use [13]. 

 

 

Figure 4.1.h – Royal Road problem 

[3] 

Hiff 

The Hierarchical If and Only If problem is composed from a tree of local optimas, 
sorted from a weak to the very strong ones.  Here is the principle of function: 

 

Figure 4.1.i - Hierarchical If and Only If problem 

Leaf nodes, corresponding to single genes, contribute to the fitness by 1, each inner 
node is interpreted as 1 if and only if its children have both the same value, in such 
cases the inner node contributes to the overall fitness by a 2n, where n is the actual 
depth in the graph (i.e. distance from the actual node to its antecedent leaves). 
Otherwise the value of node is interpreted as zero and its contribution to the fitness is 
zero. So this problem has two ideal solutions: entire genome is composed from ones, 
or zeroes. For for more information please look at [12] or [14].  
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4.2. Basic Configuration of CGA 

It is a well known fact, that the configuration of any EA is a bit difficult and doubtful 
task and this case is not any exception, so the major parameters of this topology will 
be set up experimentally at first. The other, less important, parameters were set up 
defaultly before the experiments. In the following text I will consider these 
parameters as a default, if I won’t specify something different. 

Table 4.2.a – Basic Configuration of CGA topology 

The parameter value units 

Number of islands 4 islands 

Migration interval 20 generations 

Number of migrants 25 % population 

Number of migrants A -> B 100 % population 

Number of evaluations 200’000 evaluations 

Number of generations 1500 generations 

Island model synch. synch./asyn. 

Wait before first migration 20 generations 

Selection type best/worst outgoing/in 

 

The CGA topology is configured to quit when it reaches the maximum number of 
generations, or the maximum number of fitness evaluations. The generation 
restriction was set big enough, so we can compare the topologies with the different 
number of islands correctly. The selection type row specifies that the outgoing 
individuals are those best, and individuals to be replaced are the worst ones. 

Table 4.2.b – Basic configuration of the problem 

The parameter value units 

The individual bit-vector  

Genome length 128 bits 

Problem DF3  

Fitness simple doubles 

Normalize fitness no  

Stop when the ideal individual found no  
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Table 4.2.c – Basic configuration of common island 

The parameter value units 

Population size 50 individuals 

Elitism 1 individuals 

Crossover type 2 points 

Crossover probability 80 % 

Mutation probability 100/genome length % 

Selection type Tournament  

Selection size 2 Individuals 

Seed random  

Send the number of evaluations yes  

Send the num. of evals. modulo 1 generations 

 

Table 4.2.d – Basic Configuration of the island A 

The parameter value units 

Population size 50 individuals 

Elitism 0 individuals 

Crossover type 1 points 

Crossover probability 0.0 % 

Mutation probability 50 % 

Selection type Best selection  

Seed random  

Send the number of evaluations yes  

Send the num. of evals. modulo 1 generations 

Source switching modulo 20 generations 

Wait before the first soure switching 0 generations 
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The island topology implemented in the ECJ library is unable to count the number of 
fitness evaluations. One of my modifications adds to the ECJ ability to stop the 
evolutionary run after exceeding the specified maximum number of fitness 
evaluations. This value is counted across the entire island topology. 

The inter island communication works in the following way: each of the client islands 
sends number of evaluated individuals to the server, which summarizes these values 
and checks whether the maximum of evaluations haven’t been exceeded. If yes, the 
server tells to all of the islands to stop computing and shut down. The parameter Send 
the num. of evals. modulo specifies how often to send these information. Note, that 
too frequent sending of this information is a big load for the server’s comunication, 
and the entire (especially synchronous) evolutionary run is getting slower. For more 
information look at the attachment. Note: The 25% of the population is meant to be 
12 individuals in this case. 

4.3. Experimental Setting up of CGA main parameters 

So I am going to set up the main parameters of the cascade GA topology. Those 
interested parameters are now: number of islands, number of migrants and a migration 
interval.  I will perform the tests for various configuration of each particular 
parameter and decide which of them is the best choice. After that I will configure the 
entire CGA using these three found parameters. The problem could be that each of 
them works well separately, but their combination can behave worse than each of 
them. Testing of all the possible combinations would be very difficult. So I will 
choose some acceptable values of these parameters and each of them I will test on 10 
runs of CGA. These tests will be performed on the DF3 problem, which is difficult 
enough to give some interesting results.  

Note: when considering the default genome length and the length of the DF3 funtion, 
the maximum value of the fitness function is: 128/4*30 = 960.  

Note: Each of the following tables holds the best fitness values reached on given 
islands. Unless specified otherwise, all of these values are obtained from ten 
evolutionary runs. 

 

4.3.1 Number of Islands 

There were these numbers of islands chosen: 4, 6, and 8.  

CGA with 4 Islands 

Table 4.3.a – Number of Islands - 4 

 Island A Island B Island C Island D 
Best fitness 636 862.4 922 926.7 

 

approximate number of generations: 1000 
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For the ilustration of the CGA topology functionality here are the graphs of average 
and the best fitness values on the particular islands. Note: these gaphs comes from one 
typical run of CGA, the values are not average as usual. For better readability, I have 
cropped the X-axes to the maximum number of 500 generations. 

 

 

 

Figure 4.3.a – DF3 task solved by 4-island CGA (typical run) 

On the island A there is switching between breeding sources visible, it means between 
random, and pseudo random generating of individuals. From the graph of island B we 
can see the migration interval. The islands C and D are similar to each other. 
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CGA with 6 Islands 

 

Table 4.3.b – Number of Islands - 6 

 Island A Island B Island C Island D Island E Island F 
Best Fitness 623.8 858.6 913.1 921.2 928.5 931.8 

 

approximate number of generations:  668 

 

CGA with 8 Islands 

 

Table 4.3.c – Nmber of islands - 8 

 A B C D E F G H 
Best fit. 619.2 859.3 913.8 922.9 925.8 930.7 935.1 939.4 

 

approximate number of generations:  502 

 

CGA with 10 Islands 

Because of the best results given by the 8 island topology, I was interested in the 
behaviour of 10 island topology. 

Table 4.3.d – Number of Islands - 10 

 A B C D E F G H I J 
Best: 614.1 856.6 902.7 915.7 922.7 927.4 930.3 935 939.5 940.7 
 

approximate number of generations: 402 

 

From these results we can see that the best number of islands for the DF3 function is 
the last one, 10. But the difference between result given by 8 and 10 island topology 
is very small and I think, that the other properties of the topology with 10 islands will 
be singnificantly worse, for example for solving dynamic problems it could be 
absolutely useless. So for the final configuration I will use just 8 islands. 
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4.3.2 Number of Migrants 

The tested numbers of migrants are: 5, 10, 25, 40 and 45 individuals, where the 
population size is constantly set to 50 individuals. 
I will test these parameters on the default CGA topology. 

Note: these numbers do not specify the number of migrants from the island A, it is 
always 100% of the population. Average number of generation is always 1000 here. 

5 migrants 

Table 4.3.e – Number of Migrants - 5 

 Island A Island B Island C Island D 
Best fitness 626 862.7 922.6 929.7 

 

10 migrants 

Table 4.3.f – Number of Migrants - 10 

 Island A Island B Island C Island D 
Best fitness 627.3 862.8 915.1 924.8 

 

12 Individuals 

Table 4.3.g – Number of Migrants - 12 

 Island A Island B Island C Island D 
Best fitness 636 862.4 922 926.7 

 

25 migrants 

Table 4.3.h – Number of Migrants - 25 

 Island A Island B Island C Island D 
Best fitness 632.2 869.7 928.1 933.9 

 

40 migrants 

Table 4.3.i – Number of Migrants - 40 

 Island A Island B Island C Island D 
Best fitness 625.5 870.9 935.5 940.7 

 

 



 35 

45 migrants 

Table 4.3.j – Number of Migrants - 45 

 Island A Island B Island C Island D 
Best fitness 621.8 864.2 938.4 942.8 

 

We can see that the migration of a 90% of the population is here the best solution, so 
I will include this parameter in the future tests. 

 

4.3.3 Migration Interval 

Finally, we need to find out the ideal migration interval, this parameter is depended 
on the number of migrants, so the only difference against the default configuration is 
the result from the previous experiment: number of migrants = 45. 

The analyzed migration intervals are now: 10, 20 and 50 generations. 

10 generations 

Table 4.3.k – Migration Interval - 10 

 Island A Island B Island C Island D 
Best fitness 644.3 807.2 928.9 936.3 

 

20 generations 

Table 4.3.l – Migration Interval  - 20 

 Island A Island B Island C Island D 
Best fitness 621.8 864.2 938.4 942.8 

 

50 generations 

Table 4.3.m – Migration Interval - 50 

 Island A Island B Island C Island D 
Best fitness 624.6 899 934.7 938.4 

 

The result is that when we are migrating too frequently, the islands don’t have enough 
time to evolve some good individuals. When using too big migration interval, there is 
not enough divergent population in the topology.  

So the new migration interval = 20 Generations. 
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4.4. Configured CGA vs. PGA 

4.4.1 CGA configuration 

So I have confiured the CGA topology using these new values obtained from the 
previous chapter. For sure I present here the new configuration table. 

Table 4.4.a – The Configured CGA topology 

The parameter value units 

Number of islands 8 islands 

Migration interval 20 generations 

Number of migrants 90 % population 

Number of migrants A -> B 100 % population 

Number of evaluations 200’000 evaluations 

Number of generations 1500 generations 

Island model synch. synch./asyn. 

Wait before first migration 20 generations 

Selection type best/worst outgoing/in 

 

The other parameters of the CGA are unchanged. Now this configuration can be 
considered as the final one, so I will start with testing on some of the other tasks for 
the best review of all the CGAs properties. 

 

Figure 4.4.a – CGA configuration 
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4.4.2 PGA Configuration 

For the comparision purposes I have configured another similar island GA. This PGA 
will be configured as a common parallel GAs used to be, but I tried to keep as many 
parameters the same as in the configured CGA as possible. The PGA uses one 
directional ring with the same number of islands as in the CGA. 

 

Table 4.4.b – Configuration of PGA topology 

The parameter value units 

Number of islands 8 islands 

Migration interval 20 generations 

Number of migrants 90% population 

 

The other parameters are similar to the default configuration of the common island in 
the CGA topology. 

 

Figure 4.4.b – PGA configuration 

 

4.4.3 Tests 

Here are the tested tasks: DF3, HIFF, Ošmera’s function, Rastrigin’s function, 
Schwefel’s function. In each of the tests there is the table with two rows, first row 
describes the results given by CGA, and the second one represents the PGA topology. 
The values are again the fitness value of the best individual found on the particular 
island. These values are average over the 10 evolutionary runs. 
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The configuration of Schwefel’s function is in the table. The configurations of other 
real functions were similar with respect to the recommended range for input variables. 

 

Table 4.4.c – Real Function Configuration - Schwefel 

The parameter value units 

The individual bit-vector  

Genome length 60 bits 

Problem Schwefel  

Lower Bound -500 double 

Upper Bound 500 double 

Number of input variables 2  

Tolerance for the ideal solution 1e-9 fitness 

 

This mean that each of the genes is divided in two parts, so each of the input variables 
is coded using 30 bits into the specified range. So that the GA cannot generate 
forbidden solutions, i.e. numbers out of range. 

The HIFF problem has the genome length by default 128 bits. 

Configuration of the both the GAs is a bit changed when solving the Ošmera‘s 
function. This problem is dynamic with change of the optima every 20 generations, 
so the migration interval is set to the lower value of 5 generations. 

The other parameters are the same as the default ones. The average nuber of 
generations is always 490 here. 

 

DF3 

Table 4.4.d – CGA vs. PGA - DF3 

 A B C D E F G H 
CGA 618.5 851.3 927.1 932.8 935.3 788.8 941.7 944.3 
PGA 946.8 946.4 946.2 946.7 946.6 946.6 946.8 946.6 

 

Ideal fitness:  960 
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HIFF 

Table 4.4.e – CGA vs. PGA - HIFF 

 A B C D E F G H 
CGA 285.8 444.2 721.8 733.6 757.6 768.8 786.4 796 
PGA 814.4 814.4 814.4 814.4 814.4 814.4 814.4 814.4 

 

Ideal fitness:  1024 

Schwefel’s function 

Table 4.4.f – CGA vs. PGA – Schwefel’s function 

 A B C D E F G H 
CGA 

-837.110017 
 

-837.965566 
 

-837.965769 
 

-837.96576 
 

-837.965765 
 

-837.965769 
 

-837.965769 
 

-837.965769 
 

PGA 
-837.965758 

 
-837.965809 

 
-837.948019 

 
-837.94800 

 
-837.965805 

 
-837.965725 

 
-837.963980 

 
-837.958985 

 

 

Ideal fitness:  -837.9658 

Ošmera’s function 

In this case the comparision of best fitness is useless, so I will bring out the graphs for 
each of the islands.  

On the first set of graphs there will be the Ošmera’s function compared to the best 
individual found in the actual generation. These values are taken from one typical 
evolutionary run. On the Y-axis there are the values of the Ošmera’s funciton, and the 
X-axis represents the number of generations. 

The second set of graphs will contain series with an absolute distance of the best 
solution found on a particular island from the actual value of Ošmera's function. 
These values will be average from 10 evolutionary runs. 

 

Table 4.4.g – Additional Configuration table for the Ošmera’s problem 

The parameter value units 

Migration interval 5 generations 
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CGA   - The Ošmera's function compared to the best solution 

 

Figure 4.4.c – Ošmera’s function solved by the CGA (typical run) 
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PGA   - The Ošmera's function compared to the best solution 

 

Figure 4.4.d – Ošmera’s Function solved by the PGA (typical run) 
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CGA  - The absolute error of the best solution found 

 

Figure 4.4.e - absulute error from ideal solution on CGA topology (average values) 
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PGA  - The absolute error of the best solution found 

 
Figure 4.4.f - absulute error from ideal solution on PGA topology (average values) 
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4.5. Smaller CGA topology vs. PGA 

Because of not very good results given by the CGA toplogy with 8 islands, it was 
decided to test some smaller CGA topology with bigger migation, here is the 
configuration table: 

 

4.5.1 Smaller CGA Configuration 

Table 4.5.a – Smaller CGA Configuration 

The parameter value units 

Number of islands 4 islands 

Migration interval 20 generations 

Number of migrants A -> B 98 % population 

Number of migrants B -> C 98 %  population 

Number of migrants C -> D 25 %  population 

 

 

4.5.2 Smaller PGA Configuration 

Table 4.5.b - Smaller PGA configuration 

The parameter value units 

Number of islands 4 islands 

Migration interval 20 generations 

Number of migrants A -> B 90 % population 

Number of migrants B -> C 90 %  population 

Number of migrants C -> D 90 %  population 

number of migrants D -> A 90 % population 

 

 

 



 45 

DF3 

Table 4.5.c - DF3 task solved by Smaller Topologies 

 Island A Island B Island C Island D 
CGA 625.8 918.3 927 935.4 
PGA 937.6 937.6 937.8 937.8 

 

HIFF 

Table 4.5.d - HIFF task solved by Smaller Topologies 

 Island A Island B Island C Island D 
CGA 293.2 609 636.8 983.2 
PGA 717.2 717.2 717.2 717 

 

4.6. CGA topology for Dynamic Problems 

The CGA topology proved to very useful for solving dynamic problems. But both of 
the previous topologies wee too long, so I have assembled only two-island CGA 
topology, and I will test its behaviour on the Ošmera’s problem. The results will be 
compared with the similar PGA topology. 

 

4.6.1 Small CGA Topology 

Table 4.6.a – Small CGA for Dynamic Problems conf. 

The parameter value units 

Number of islands 2 islands 

Migration interval 5 generations 

Number of migrants A -> B 95 % population 
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4.6.2 Small PGA Topology 

Table 4.6.b – Small PGA Topology for Dynamic Problems conf. 

The parameter value units 

Number of islands 2 islands 

Migration interval 5 generations 

Number of migrants A -> B 95 % population 

Number of Migrants B -> A 95 % population 

 

Here are the resulting graphs from the tests made on the Ošmera’s function. These 
coarses are typical ones because of distorsion caused by potential averaging.  

 

CGA 

 

Figure 4.6.a - Ošmera’s Function Solved by the Small CGA Topology (typical run) 
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PGA 

 

Figure 4.6.b – Ošmera’s Function Solved by the Small PGA Topology (typical run) 

 

For better readability here are graphs of absolute error. This error is meant to be the 
absolute distance of the best solution from the actual value of Ošmera's function. 
These values are average across 10 evolutionary runs. 

CGA 

 

Figure 4.6.c - CGA - absulute error of the best solution found (average values) 
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PGA 

 

Figure 4.6.d - PGA - absulute error of best solution found (average values) 

 

4.7. Discussion 

Configuration of CGA 

In the beginning I tried to configure the CGA topology by testing the influence of 
particular parameters on behaviour of whole algorithm. This is simplified, but also 
inexact, approach. I found out that the longer cascade topologies shows better results 
despite the smaller number of generations. I verified that the number of migrants and 
the migration frequency should be big enough to sustain the population divergency 
and for a good propagation of newly generated individials through the entire 
topology. In the other hand when the migration is too big, the immigrants decay the 
average fitness in the topology.  

Experiments 

The experiments performed on such configured CGA showed that the last island in 
the topology was qualified as the output from the topology correctly. In this island 
there can be the best individuals found. And now I will try to judge the assumption 
that this topology holds its populaitons divergent enough. The experiment results 
showed that the CGA has similar qualities as the common PGA, but the output is 
usually a little worse. On the DF3 problem, there are almost identical results, but on 
the HIFF problem there are bigger differences, which shows that the common 
approach is better decision in this case. Theese two algorithms show the similar 
results when solving the dynamic problem. In order to reach some better results I 
configured a smaller CGA topology including only four islands with huge migration 
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and tried to compare with the similar PGA. Despite the use of too big migration, 
which downgraded the PGA noticeably, the results on the DF3 problem were similar. 
The HIFF function showed here that the PGA was not configured very well. The 
experiments also showed that when solving real functions of two variables, both of 
the algorithms achieve the satisfactory results after several generations. 

So I think, that the divergence in the populations in the CGA is bigger than on some 
common PGAs, but with the combination of fitness decay caused by the new 
immigrants, the results are almost comparable. I assume that this fact may be caused 
by the inexactly set parameters of CGA, but solving this problem would require much 
more experiments with the configuration. 

During the course of the experiments I noticed that some short CGA topology could 
be very useful for solving dynamic experiments. So I composed a small CGA 
topology including only two islands and tested it on the Ošmera’s dynamic problem. 
This small two-island configuration proved very good behaviour compared to the 
common similar PGA topology. The island A supplied the target island B with the 
sufficient number of divergent individuals, so the topology had very short reaction 
time and tracked the ideal solution with high precision. 

 

4.8. Conclusion 

The aim of this thesis was to propose and review the Cascade Genetic Algorithm, but 
the most difficult part lied in use of very sophisticated Java library for evolutionary 
computation - ECJ, understanding and improving them for this specific purpose. 

Testing of CGA demonstrated that this approach is not so good as I supposed. The 
commonly used parallel topologies shows slightly better results, but I think this 
doesn’t mean that the idea of cascade topology is wrong, but something small is just 
missing. 

This small thing could be for instance some modication of selection method, able of 
selecting one parent from new immigrants and one parent from original residents of 
given island. This feature could provide better population diversity by improving the 
combination of old and new solutions. 

Another solution could be in use of some different topology based on the cascade 
principle, for instance something like this: 
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Where an islands A would have the similar purpose, as the island A in the CGA and 
an island C could be the output. In the island C there could be mixed divergent 
individuals comming from several independent sources at the same time. 

But a bright future for some kind of CGA I see in solving dynamic problems, where 
this approach provides considerably better results than the common PGAs. 
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Attachments 

This chapter is a brief description of the things I’ve implemented in Java and things I 
have modified or added in the common version of ECJ. For example in order to 
setting up new functions, the custom ECJ obtained many parameters used for 
configuring the evolutionary run. I will mention them and their meanings here also. I 
will also try to describe some of the small bugs in the original ECJ project. At the end 
I will describe where the experiments mentioned in this thesis (and many other) are 
stored. Finally, I will describe the simple way to launch these experiments.  

Attachment A:  List of ECJ modifications 

Here is the short list of upgrades I‘ve made on the custom ECJ library. It is sorted by 
the importance of classes in the library. This list could be useless for many purposes, 
but if somebody would like to continue with this work, I hope this could be helpful. 

A.1.  Upgrades 

IslandExchange:  

- repaired error in inter-island synchronous comunication: 
o some send individuals were not accpeted by the target mailbox 

occasionally, so that the island didn’t recieve any immigrants. These 
lost idividuals were used to appear in the mailbox in some random 
further generation 

o So the target island sometimes recieved nothing, and sometimes 
recieved two groups of immigrants despite its synchronous 
communication. 

o Serious problem is recieving two groups of immigrants when 
migrating one half or more population, because population on target 
island is going to be deleted completely 

o Solution is that we can force the islands to wait for some new 
immigrants (i.e. at least one) by parameter force-recieve (which is set 
true by default) 

o note.: this parameter must be set to false in the island A in the CGA 
topology  

- added check if number of incomming individuals is not bigger than population 
of island 

- unsolved selection methods – Island can possibly become unresponsible when 
selecting too big part of population 

o in myBestSelection it is sloved correctly 
- added ability of selecting worst N individuals to be replaced by new 

incomming immigrants (EvaluateII) 
- adding statistics about number of fitness evaluations across all Islands in given 

topology  
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- added stopping criterion for number of fitness evaluations across the all of 
islands in the topology (handled by th server thread) 

- added variables:  
- sendEvalsModulo, sendEvals, P_SEND, P_SEND_MODULO, 

EVALUATED, force-recieve, P_FR, forceRecieve 
 

IslandExchangeServer: 

- added ability to count fitness evaluations remotely reciaved from islands 
- added ability to stop entire evolutionary run when maxNumOfEvals exceeded 
- every island counts number of fitness evaluations, and sends it to the server, 

value is temporary and zeroed by method preBreedingExchangePopulation in 
IslandExchange after every send 

- myFitness.numOfEvals++ is called in particular implementations of problem 
- partially solved problem with slow synchronization when counting fitness 

evaluations: when the server founds at least one message containing number 
of evaluations, switches itself to a faster mode, that means that the sleeping 
time between messages accepting and processing is cuted down to one 
millisecond (stored in a variable FASTER_SERVER) 

- added ability to define whether the server should print out its messages to the 
command line (these are starting: „Server: „) 

- added variables:  
- P_MAX_NUM_OF_EVLS, GOODBYEII, alreadyReadGoodByeII, 

EVALUATED, maxNumOfEvals, numOfEvals, FASTER_SERVER, 
mySleep, printServer 

 

IslandExchangeMailbox: 

- Improved catch of  IO Exception  
- This exception was written on the end of ER, when someone tried to 

shutdown the mailbox, and mailbox was trying to comunicate with an 
source island. 

- Method mailbox.shutDown() is called on the end of evolutionary run 
typically, and at this time are other islands closed usually. So when the 
exception happens, we will take a look whether the evolotuionary run 
is on the end, and if yes, we just return without any warnings. 

 

EvolutionState: 

- added subclass myFitnessInfo 
- added public instance of myFitnessInfo named myFitness containing: 

- countEvals  – tells to the server whether to count evaluations 
- numOfEvals  - actual number of unsent evaluations (island) 
- useMyFitness  - whether we are using myFitness  (realFunctions) 
- min,max - maximum range for fitness values  (printing) 
- bordersDefined-whether these ranges were set 
- maximise - whether it myFitness should be  maximised, or 

minimised (unused by now, for highliting ideal fitness in graphs) 
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- dynamic - whether the solved problem is dynamic 
- MyName - the name of each island (graph and stats) 

- these values are used mainly by these classes: 
- IslandExchanger 
- myMatlabStatistics 
- printBest 
- RealFunction, and all implementations of problems (sets min,max..) 
- dynamic problems – we cannot copy unevaluated elites here! It is 

handled in SimpleBreeder in method loadElites, if the problem is 
dynamic, elites are copied to new population, but they are marked as 
unevaluated. 

- Added ability to shut down the entire evolutionary run from „maximum 
number of evaluations exceeded“, independently on „found ideal individual“ 
reason. Added variables are: 

- quitOnRunCompleteII  - specifying whether to quit if maximum of 
evaluations across the entire topology was exceeded 

- P_QUITONRUNCOMPLETEII – string specifying ncessary parameter 
- So the quitOnRunComplete and the quitOnRunCompleteII are completely 

independent on each other. 
 

SimpleEvolutionState: 

 
- added second use of method evaluatePopulation (EvaluateII) 

- EvaluateI is not surrounded by pre and postBreedingExchange 
statistics, so it is not as exact as it should be 

- added variable: 
- forFirstFound – indicates whether the ideal solution was found for the 

first time, if yes and quitOnRunComplete=false do not print it again 

 

Individual: 

- adding public variable myFitness for saving original, untransformed value of 
fitness for correct plotting (because of problems with using negative-values of 
fitness)  

o used mainly in class RealFunction (where wee need minimisation of 
function with negative values, so the transformation was necessary) 

 

VectorSpecies: 

- added to parameter mutation-prob ability to recognize string „1/genome-
length“, which automatically determines the value of mutation probability 

- if this string used, VectorSpecies prints it out to standard output 
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BitVectorIndividual: 

- in method defaultMutate(..) added parameter Probability, giving the ability to 
specify custom mutation probability. (Probability, that each gene in entire 
genome will be bit-flipped.)  
 

SimpleStatistics: 

- printing the name of each island added to the command line  
 

A.2. New Classes 

myBestselection: 

 
- selection method, that can select exactly N best / worst individuals from 

population 
- solved few problems with possibly island freezing when selecting main part of 

population 

 

myFitnessInfo: 

- some additional data to EvolutionState, holds information about: 
- number of evaluated individuals (between sending to server) 
- whether to use myFitness (original fitness function) 
- bounds for fitness values (Fitness or myFitness) 
- if these bounds were defined  
- whether we want to maximise myFitness 
- whether we want to count number of evaluations across all of the 

Islands (whether to send numbers about evaluations is locally stored in 
every particular island as a sendEvals ) if this is set to false, server 
counts (eventually incomming) number of evaluations, but don’t 
inform islands about it 

- in this application it is public variable accesible by: state.myFitness... 
 

A.3. New Breeding Pipelines 

myVectorMutationPipeline: 

- has almost the same behavior as (vector/breed/) VectorMutationPipeline 
- added parameter: mutation-prob, specifying its own mutation probability 
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mySourceSwitcher: 

- has similar function as (breed/) GenerationSwitchPipeline 
- has two sources, by default it simply connects source 0 with output 
- it waits offset generations and after that (with period given by switch-

modulo) switches to source 1, after one generatio it switches back to the 
source 0 

SmallEvaluator: 

- it is little hack, because it in fact substitutes the classic SimpleEvaluator by 
evaluating newly bred individuals (because we need them here evaluated) 

- on input it has some individuals, and it just copies them to output and if they 
are not evaluated, evaluate them  

- it is implemented in order to ability of comparision newly bred individuals 
with some other (the current ones in our case) 

- in its own setup() method it makes its own pointer to initialized instance of 
SimpleProblemForm (e.g. Osmera, some child of RealFunction, HIFF, DF3, 
PDF, etc..) and after that it’s able to call required evaluate() method 

SourceComparator: 

- breeding pipeline with one official source, but in fact it has two sources, the 
second one is current population 

- in method prepareToProduce() it copies entire current population to its output, 
and in evaluate() method it merges newly incomming individuals with the old 
population (actually stored on output array - inds[]) 

myBreedBestSelection: 

- it‘s adapted myBestSelection (by deleting one of overloaded methods 
evaluate()) in order to correct function as BreedingSource 

- there was problem with returning value (index pointing to individual in 
population vs. number of produced individuals) 

- note: in prepareToProduce() method it starts to remember the number of 
produced individuals, and increases it every produce() function, so this 
selection method is able to produce consequently entire population 

 

A.4. New Plotting and Exporting Classes 

PrintBest: 

- prints out an online graph with two fitness series: best Individual from 
population and average fitness in population 

PrintOsmera:   

- prints out an online graph with two fitness series: Osmeras function, and the 
best individual from population 
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PrintPopulation:   

- prints out an online graph with two fitness series: the fitness values of an even 
population, the fitness values of an odd population, on the x-axis there are 
numbers of individuals in the population 

myMatlabStatistics: 

- simple class for exporting data to text file readable for example by matlab 
- mainly copied from ecj’s SimpleShortStatistics 
- exports for every subpopulations following variables: 

 generation number 
- if(export-original-fitness=true || useMyFitness =false): 

 mean fitness in actual population 
 best fitness in actual population 

- if(useMyFitness = true) 
 mean myFitness in actual population 
 best myFitness in actual population 

- if (state.myFitness.iAmServer=true && state.myFitness.countEvals) 
 number of evaluations across the entire population 

 
- note: starting script (usually containing Island D) is configured that after 

pressing the enter key (on the end of evolutionary run) copies all exported 
*.stat files to the Matlab’s path 

- ability to print fitness values to the command line (and to switch on/off them) 
- ability to print out the best found individual and its fitness to the command 

line, after some termination condition found 
- ability to print out the osmeras function and the function values of the best 

individual in each of generations 

A.5. Implemented Tasks 

my 

- PDF 
- DF3 
- Ošmera’s problem 
- Knapsack (static/dynamic) 
- Royal Road problem 

AbstractRealFunction childs: 

- Sphere 
- Rastrigin 
- Rosenbrock 
- Schwefel 

upgraded: 

      -    Hiff problem 
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Attachment B:  Added parameters 

Some new added parameters follow, so if you don’t know what is written in the 
parameter files, you could find the explanation here. For the meaning or use of basic 
parameters and parameter files please check the ECJ documentation and tutorials 
[15].  

B.1. Exchange 

- num-of-evaluations  (base = ec.exchange.IslandExchange) 
 int 

- maximum number of fitness evaluations (if not specified, it wont 
become the stopping criterion, also if quitOnRunComplete = false, 
exceeding of num-of-evaluations will bring up only notification) 

- should be specified in server *.params file 
- placed in Topology folder 

- count-evals   (base = ec.exchange.IslandExchange) 
 boolean 

- tell to server whether to count evaluations or not 
- if flase, server still counts incomming numbers from islands, but will 

not send them back any otification (f.e. about exceeding the maximum 
number of evaluations) 

- placed in Topology folder 
- it is equivalent to quitOnRunComplete – if we want to shut down the 

evolutionary run from number of evals exceeded: this and 
quitOnRunComplete must be equal to true 
 

- eval-send  (base = ec.exchange.IslandExchange) 
 boolean 

- parameter for each island specifying whether to send the numbers of 
fitness evaluations or not  

- placed in Apps folder 
 

- eval-send-modulo (base = ec.exchange.IslandExchange) 
 int 

- how often to send information about number of evaluations [in 
generations] 

- must be specified in particular island *.params files (because it is 
parameter of islandExchange on island, not on server)  

- placed in Apps folder 
 

- select   (base = ec.exchange.IslandExchange) 
 ec.selectionMethod 

- the selectionMethod to select outgoing inividuals from island 
- placed in Apps folder 

- select-to-die   (base = ec.exchange.IslandExchange) 
 ec.selectionMethod 
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- the selectionMethod used to select individuals to be replaced by new, 
incomming, from different islands 

- placed in Apps folder 
- pick-worst (base = ec.exchange.IslandExchange. select || select-to-die) 

 boolean 
- whether to pick best or worst individuals (by selectionMethod) 
- placed in Apps folder 

- print-server  (base = ec.exchange.IslandExchange) 
 boolean 

- whether to print servers messages to the command line 
- messages as: incomming communication from islands, synchronization 

status, etc.. 
- force-recieve  (base = ec.exchange.IslandExchange) 

 boolean 
- this parameter is important only in synchronous inter-island 

communication and defines whether the island will wait for some 
individuals in its own mailbox 

- tahnks to this is repaired error in the ECJ’s communication, and the 
entire island topology works correctly and its results are reproducible 

- the problem is that each of islands sends its best individuals and after 
that they are asking for synchronization. But the server checks only 
whether all of the islands are already waiting for synchronization, so 
we cannot be sure that migration ran throuhg correctly, and the 
individuals are waiting in target mailboxes. In fact, they weren’t there 
at the time many times, so that the target island had nothing to 
immigrate. This behaviour caused that after some time there appeared 
twice more immigrants than expected. (in many cases this situation 
caused deleting the whole population on the island) 

- this problem is solved this way: 
 each of islands sends its best individuals 
 asks for synchronization 
 while in the mailbox there are no immigrants: 

• checks if the exchanger wants to quit 
• try to immigrate individuals 

 continue 

EvolutionState: 

- quit-on-run-complete-from-number-of-evaluations-exceeded   (base = „ec“) 
 boolean 

- specifies whether to shut down the entire evolutionary run when 
specified number of evaluations was exceeded 

- note.: this paramter is independent on quit-on-run-complete parameter 

 

VectorSpecies: 

- mutation-prob  (base = ec.vector.VectorSpecies) 
 float  (in basic) 
 String  (added) 
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- This parameter is specified as string „1/genome-length“, then is 
mutation automatically computed as 1/genomeSize in VectorSpecies 
initialization and the result is printed out on standard output 

B.2. Plotting and Exporting 

- printBest    (base = ec.my.Source.util.myDisp) 
- my plotting function which plots two lines: best (red) and average 

(blue) fitness in each generation   
- example of use: 

 stat.num-children = 1 
 stat.child.0 = ec.my.Source.util.myDisp.PrintBest 

- function is incomplete and should be rewritten :-) 
- print-best   (base = ec.my.Source.util.myDisp) 

 boolean 
- whether to print out line with best fitness values  
- default value is true 

- print-mean   (base = ec.my.Source.util.myDisp) 
 boolean 

- whether to print out line with mean fitness value  
- default value is true 

- dynamic-x-axis  (base = ec.my.Source.util.myDisp) 
 boolean 

- whether to X-axis dynamically adapt to range of generations number 
- true: at start is on X zero, and range increases with num. of generations 

- dynamic-y-axis (base = ec.my.Source.util.myDisp) 
 boolean 

- whether to Y-axis dynamically adapt to range of Y values(fitness vals.) 
- true: all the time of run, Y axis renge is set exactly to range of Y vars. 

- lock-y-axis-to-borders (base = ec.my.Source.util.myDisp) 
 boolean 

- whether to Y-axis automatically adapt to maximum possible range of 
fitness values 

- these data are stored in myFitness.min/max 
- if !myFitness.bordersDefined, and axis is not dynamic, its range will 

be automatically set to <0,1> 
- lock-y-max-to   (base = ec.my.Source.util.myDisp) 

 double 
- manually defines the maximum value on Y axis 

- lock-y-min-to   (base = ec.my.Source.util.myDisp) 
 double 

- manually defines the minimum value on Y axis 
- note: graphs have ability to automatically enlarge even over specified 

borders, although it shouldn’t be necessary.. 
- lock-y    (base = ec.my.Source.util.myDisp) 

 boolean 
- we can define by this, that we want to lock y axis boundaries to initial 

values (using for example lock-y-min-to) 
- if true, axis y is not adapted to any of range changes 
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- wait    (base = ec.my.Source.util.myDisp) 
 int 

- defines how many miliseconds to wait after printing-out the actual 
graph 

- warning: this parameter forces to wait entire island, so if asynchronous 
comunication it changes conditions of  entire evolutionary run 

- counter   (base = ec.my.Source.util.myDisp) 
 int 

- defines how many geneations to wait (from start of run) with y axis 
borders set to dynamic 

- so it dynamically adapts counter generations   
- round-function  (base = ec.my.Source.util.myDisp) 

 int 
- it switches between rounding functions (to y axis range) 
- at this moment it has range <0,4> where number 4 is best by then, but 

this is not complete and 100% stable unfortunately.. 
- number 3 = doNotAdapt() 

- print-my-fitness  (base = ec.my.Source.util.myDisp) 
 boolean 

- if state.myFitness.useMyFitness=true, we can select whether to print 
out myFitness, or Fitness 

- default: printMyFitness = state.myFitness.useMyFitness 
- my.name  (base = „“ ) 

 String 
- names of particular islands in the graphs  

 
- printOsmera   (base = ec.my.Source.util.myDisp) 

- two lines: Osmera’s function (blue) and the best individual in each 
generation 

- remain is the same as printBest 

myMatlabStatistics: 

- export-original-fitness   (base = ec.my.Source.util.myMatlabStatistics) 
 boolean 

- if myFitness is used (state.myFitness.useMyFitness=true) we can 
secify if we want export also these values (best and mean Fitness) 

- placed in Problem folder 
- gzip     (base = ec.my.Source.util.myMatlabStatistics) 

 boolean 
- whether to comress results 

- file       (base = ec.my.Source.util.myMatlabStatistics) 
 String 

- the name of file to create  
- placed in Apps folder 

- gather-full  (base = ec.my.Source.util.myMatlabStatistics) 
 boolean 

- extended statistics about times and so on 
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B.3. Task parameters 

Knapsack Problem: 

- oscilating  (base = ec.my.Source.Knapsack) 
 boolean 

- whether this problem will be dynamic or not 
- static-generations (base = ec.my.Source.Knapsack) 

 int 
- how often to switch between the targets [generations] 

- target   (base = ec.my.Source.Knapsack) 
 String <1,0> 

- specification of target solution 
- simply write f.e.: „1010101....1“ of length n, where n is genome-size 

- target2   (base = ec.my.Source.Knapsack) 
 String <1,0> 

- optional second target solution (if oscilating = true) 
- fitness.normalize (base = ec.my.Source.Knapsack) 

 boolean 
- whether to normalise fitness betwen <0,1> 

 

Osmera Problem: 

- Osmera  (base = ec.my.Source.Osmera) 
- implementation of Osmera’s dynamic problem 

 

Real Functions: 

- RealFunction (base = ec.my.Source.RealFunction) 
- lower-bound  (base = ec.my.Source.RealFunction) 

 double 
- definition of lower bound for input variables 

- upper-bound  (base = ec.my.Source.RealFunction) 
 double 

- definition of upper bound for input variables 
- number-of-variables (base = ec.my.Source.RealFunction) 

 int 
- how many input variables will the real function  have 
- genome-size % number-of-variables must be zero 

- tolerance  (base = ec.my.Source.RealFunction) 
 double 

- tolerance from ideal fitness to be considered as ideal individual 
- name   (base = ec.my.Source.RealFunction) 

- name of the concrete real function fol solving 
- the specified function must be child of AbstractRealFunction 
- example of use: 

 eval.problem.name = ec.my.Source.util.Rastrigin 
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- listing of implemented real functions: 
 Rastrigin 
 Sphere 
 Schwefel 
 Rosenbrock 

- use-my-fitness  (base = ec.my.Source.RealFunction) 
 boolean 

- whether to use myFitness with original values of fitness function (as 
defined in [10] , not transformed to positive maximised fitness) 

- default = false – as default is transformed fitness (graphs,txt exports..) 
 
 

RoyalRoad: 

- part_length  (base = ec.my.Source.RoyalRoad) 
 int 

- length of one RoyalRoad part [in bits] from definition 
- number_of_parts (base = ec.my.Source.RoyalRoad) 

 int 
- how many parts will RoyalRoad contain 
- its rather for control, because part_legth*number_of_parts has to be 

equal to genome-size 
- part_cost  (base = ec.my.Source.RoyalRoad) 

 int 
- how much to add to fitness if the part contains only ones 
- it is optional parameter, by default: part_cost = part_length 

-  fitness.normalize (base = ec.my.Source.RoyalRoad) 
 boolean 

- whether to normalise fitness between <0,1> 
 

HIFF: 

- k   (base = ec.my.Source.HIFF) 
 int 

- branching coefficient (how many branches from one) 
- it’s optional parameter, by default k=2 

- p   (base = ec.my.Source.HIFF) 
 int 

- depth of the HIFF tree 
- it must be equal to:  k-th sqrt(genome.size) , where k is branching 

coefficient 
- rc   (base = ec.my.Source.HIFF) 

 int 
- contribution to fitness  
- contribution of element in depth x will be: rc^x  ( x is from: <0,k> ) 
- it’s oprional parameter and by default rc=2 
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Attachment C:  ECJ found bugs 

There was several of small and harmless bugs in the ECJ, which can be forgotten, but 
this chapter written because of comparatively important one, mainly in the application 
such is this. Many of those smaller ones I’ve unfortunately forgot so I will mention 
here only some of them. But as usual, one of the question is whether these mistakes 
were present before my upgrading of ECJ or not.. 

SimpleBreeder 

The ECJ was unable to solve the dynamic problems, with breed-elites set to value 
bigger than 0, correctly. Because the SimpleBreeder is working in the following 
manner: 

• Initialize the new population 
• Copy the elites into the new population 
• Breed, until the rest of the new population is filled 

After the breeding process the Evaluated flag was set to false, so the SimpleEvaluator 
made the new evaluation of each individual. But the elites weren’t bred and so they 
weren’t reevaluated. But when the dynamic problem changed its optimum, these 
(probable) ideal individuals became worse. 

This particular „problem“ was solved simply by indicating of dynamic problem in the 
parameter files, when the problem is marked as a dynamic one, the elites are also 
reevaluated every generation. 

 

IslandExchange - RunComplete 

There was small bug in a detecing whether the run is complete. There was the 
sequence written: 

• TRY to read the message from the server  
• Check whether the message was already accepted and the server is down 

already 
• CATCH exception and exit (this is catched when the server is down for 

instance) 

In cases when the server was down already, the second line of this function was 
unreachable, so the evolutionary run on the particular islands continued in running 
and writing warnings about weird communication, even in case that the server was 
turned off already. 

 

Island Exchange – synchronous communication 

The biggest found bug in the ECJ was this. It was occuring only in the case of 
synchronous communication and only from time to time. The problem is that the 
particular islands are running on different processes, even on each of the islands there 
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is running second thread called Mailbox (or even third thread called Server). This 
mailbox has simple purpose – wait for immigrants and store them. So we can see that 
this implementation of island model is totaly asynchronous. When trying to 
communicate asynchronously, there is no problem and one of  generations looks as 
follows: 

1. Evaluate 
2. Check whether to send some individuals 

o i.e. when the generation modulo migration interval == 0 
o if yes, send the individuals 
o if no continue 

3. Check whether to quit 
4. Breed the population 
5. Evaluate the population 
6. Try to recieve some individuals 

o i.e. just check whether some immigrants are sitting in the mailbox 
o if yes, immigrate them 
o if no, continue 

7. generation ++ 

Simple and nice, but the synchronous model has the different functionality: 

 

1. Evaluate 
2. Check whether to send some individuals 

o if yes: 
 send the individuals to other islands 

o if not: 
 continue 

3. Check whther to quit 
4. Breed the population 
5. Evaluate the population 
6. Check whether to recieve some individuals 

o if yes: 
 send the synchronization request to the server 
 wait for the OKAY message (telling that all of the islands have 

synchronized) 
 when the message came continue: 
 immigrate the individuals, i.e.: 

- look at the mailbox, if there are immigrants, import them 
- if there is nothing, continue 

7. generation ++ 

This seems to work properly too, but the problem is as follows: try to imagine this 
situation with two islands named A and B. The island B is the target island for the A. 
There is number of migrants set to the 50% of population and a migration interval is  
20 generations, then the sequence is: 

• A – sends the individuals 
• B - sneds  the individuals 
• A – asks for synchronization 
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• B – asks for synchronization 
• Server - accepts all of the synchronization requests, everything is allright, sends 

the OKAY message 
• The island B is trying to recieve new individuals, but there’s nothing in the 

mailbox, so the island continues its evolutionary run. (the problem here is, that 
the immigrants were sent by the island A, but they haven’t reached the target 
Mailbox on the island B yet) 

• ..... 
• generation ++ 
• .... 
• .. immigrants just arrived to the target mailbox in the island B 
• ...... 
•  
• now the same situation here, both of islands requested the synchronization 
• server is answering with the OKAY message (in this case, the immigrants from 

the island A came at the time) 
• Island B checks whether to immigrate some individuals, the answer is yes, there 

is 2x50% of its population size in the mailbox, the island is immigrating until the 
entire population is deleted. 

And this is very unwanted feature. Because the communication is synchronous, but 
the transfer of individuals is still asynchronous and unchecked. 

I’ve solved this by adding the parameter: force-recieve (look at the implementation 
notes/parameters) which forces an island to wait for some new immigrants after the 
synchronization. When there is nothing in the mailbox, the island sleeps a while and 
then retries to recieve some imigrants. This is repeated for some time, after that 
aborted and evolutionary run continues with warning written out. This problem is not 
completely solved, but it is functionable pretty well. (i.e. when the source island ends 
its evolutionary run because of exceed the maximum of generations, just turns itself 
off, but the the target island may wait for its immigrants some specified time, until it 
is allowed to continue.) 

 

Note: so in the CGA topologies, where the island A is not supposed to recieve any 
individuals, there is parameter force-recieve set to false. In all of the common islands, 
there is force-recieve parameter set to true by default. This parameter works only in 
the synchronou scommunication. 

Attachment D:  Experiments & Modifications  

On the enclosed CD containing all of the used material in this thesis, there is folder 
called “Bakalarka”, which is a Netbeans project folder containing all the source code, 
parameter files and the scripts used for launching particular experiments. 

All of the new (not modified) stuff is added directly into the ECJ library folder from 
many reasons, so the most interesting folder should be placed here: 
Bakalarka/ecj/ec/my/. It contains several subfolders and here is their purpose: 



 66 

• Source - Contains all of the added java classes (i.e. selection methods, breeding 
pipelines, implementation of functions etc.) 

o What is important: this and the other folders folder MUST contain also 
the actual *.class files. This couldn’t be obvious, because the Netbeans 
are compiling the java classes to the folder: Bakalarka/build/classes/. So 
if you modified some source code and you want to launch the 
evolutionary run, you should copy the newly generated *.class file to the 
appropriate location. (The provided scripts copies some specified subset 
of *.class to it’s appropriate place automatically.) 

• Alignment  - Here are parameter files storing the information about an 
arrangement of online graphs printed out during the evolutionary run 

• Problem  - Parameter files storing the configuration of particular 
implemented problems 

• Topology  - Parameter files specifying the configuration of various island 
topologies 

• Apps   - Parameter files for particular islands, every evolutionary run has 
it’s own parameter files for each of the islands, the *.stat files containing the 
results generated during an evolutionary run are also located here 

• Scripts  - Here are the *.command files used for launching particular 
evolutionary run (on Mac OS X) 

• Tests  -And finally in this folder there are configurations for all of the 
experiments mentioned in this bachelor thesis stored, including the launching 
scripts and some of the generated *.stat files 

All of the generated *.stat files sorted by the performed experiments are in the other 
folder called “Matlab”. 

D.1. Launching the Experiments 

The ECJ defines the hierarchical tree of *.params files for configuring the 
evolutionary run. I divided these files to three types: problem, island and topology. 
Each of the islands has its parent file from the problem domain, and one of the islands 
in the topology has also parent from the topology domain, this island is also the 
server. The main problem was that each of the islands is running on the different 
process, so the ECJ’s main class had to be launched for each of them. I solved this by 
the small system of *.command files. Each *.command file then launches the entire 
evolutionary run. These files are the special case of shell script files known from the 
OS Linux. I hope that these files could be used also under this OS, despite the fact 
that they are proposed to work under Mac OS X. 
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Each of the scripts: 

• copies necessary *.class files into the proper position 

• opens the needed number of new terminal windows 

• in each terminal window loads all of necessary java libraries 

• in each terminal window launches the particular island  

o (Using the following command: “java ec.Evolve -file $1”  ; where the 
“$1” represents the name of parameter file from the island domain) 

o So you can load any of the topologies also manually on an arbitrary 
operating system. 

 

Note: some other additional scripts are placed in: Bakalarka/ecj/start/StartScripts/. 

For more information about this please check the ECJ tutorials in [15]. 
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Used Abbreviations 

 

EC  - Evolutionary Computation 

ES  - Evolution Strategy 

GA  - Genetic Algorithm 

GP  - Genetic Programming 

SGA  - Simple Genetic Algorithm 

CEA  - Cascade Evolutionary Algorithm 

CGA  - Cascade Genetic Algorithm 

PGA  - Parallel Genetic Algorithm 

DF3  - deceptive function number 3  

PDF  - partially deceptive unction 

EM  - Evolution Model 

HIFF   - Hierarchical if and only if problem 

ECJ  - Evolutionary Computation Research System 

SGT  - Scientific Graphics Toolkit 

*.params file - a file containing the configuration of evolutionary run 

*.stat file - a file containing statistics about the evolutionary run 

*.comand file - a shell script file used for launching the experiments  
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