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Abstrakt

Tato práce se zabývá vývojem metody vhodné pro detekci tremoru u pacient̊u s

Parkinsonovou chorobou. Detekce je založena na signálech subtalamického jádra, zaz-

namenaných prostřednictv́ım elektrod použ́ıvaných pro hlubokou mozkovou stimulaci.

Hlavńı část této práce je věnována zkoumáńı rozličných vlastnost́ı zaznamenaných

signál̊u subtalamického jádra a srovnáváńı jejich vlastnost́ı na nahrávkách s tremorem

a bez něj. Na základě provedených pozorováńı je navržena řada př́ıznak̊u, vycházej́ıćıch

z časových, spektrálńıch autokorelačńıch a daľśıch vlastnost́ı zkoumaného signálu. Tyto

př́ıznaky jsou následně testovány na reálných datech a jejich význam vzhledem k detekci

tremoru je ověřen pomoćı klasifikačńıho procesu.

Výsledky hodnoceńı př́ıznak̊u i klasifikace ukazuj́ı na velký význam spektrálńıch vlast-

nost́ı zkoumaných signál̊u, přičemž frekvenčńı pásma 0–1 Hz a 3.5–5.5 Hz se ukázala jako

zvlášť významná. Na mnoha datech byl pozorován vysoký pod́ıl energie v oblasti posledně

jmenovaného pásma, jehož frekvence velmi dobře koresponduje s frekvenćı tremoru, po-

zorovanou v souběžných EMG signálech. V klasifikačńım procesu bylo dosaženo velice

dobrých výsledk̊u pro 3 z 5 pacient̊u, kdy senzitivita dosahovala až 94% při specificitě

rovné jedné. Pro zbylé dva pacienty podala metoda naopak velice špatné výsledky, což

může být zd̊uvodněno velice ńızkým množstv́ım dat, které bylo na hranici proveditelnosti

použitých metod.
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Abstract

This diploma thesis deals with development of a suitable method for detection of

tremor in patients with Parkinson’s disease. The detection is based on recorded local

field potentials of the Subthalamic nucleus (STN), captured through an electrode of a

deep brain stimulation device.

The main part of this work is dedicated to research of various properties of the STN

signal, compared on tremor and non-tremor recordings in different patients. Features

based on temporal, spectral, statistical, fractal and autocorrelation-related discovered

properties of the signals are developed and implemented. Evaluation and comparison

of the features is done on the available data during a classification process, using short

sections of preprocessed signals.

The results show great importance of spectral properties of the signal, which corre-

sponds with previous research in this field. In particular, the frequency bands 0–1 and

3.5–5.5 Hz proved great significance to the problem, the latter corresponding with the

tremor frequency found in the simultaneous EMG recordings. Classification based on

multiple features showed very good results for 3 out of 5 patients, reaching up to 94%

sensitivity with specificity equalling one. On the contrary, the method did not work with

the two remaining patients, possible reason being substantial lack of training data.
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Abbreviations

PD Parkinson’s disease Chronic neurological disorder, affecting mainly

motor function of the diseased. Tremor, akinesia

and rigidity are among the most common symp-

toms.

DBS Deep brain stimulation Therapeutic method based on application of elec-

trical impulses to the structures in the human

brain.

BG Basal ganglia Brain structure positioned mainly in the midbrain,

involved also in modulation of movement. A dys-

function of this structure causes the Parkinson’s

disease.

STN Subthalamic nucleus Structure in the brain, functional unit of the Basal

ganglia, involved in the modulation of motor func-

tions. A target structure for DBS in Parkinson’s

disease.

GPi Globulus Pallidus Structure of the Basal ganglia, alternative target

of DBS in Parkinson’s disease patients.

LFP Local field potentials Summarized activity of the neuronal tissue in a

specific region as captured by an electrode pair.

L-dopa Levodopa Dopamine precursor, medication used for conven-

tional treatment of the symptoms of the Parkin-

son’s disease.

ROC Reciever operating char-

acteristic

Graphical plot of binary classifier system proper-

ties, used for system evaluation.

AUC Area under curve Area under the ROC curve, used for simple evalu-

ation of classifier properties.

FDR Fisher discriminant ratio Measure used to characterize difference between

two probability distribu tions, taking both mean

and variance into account.



Chapter 1

Introduction

Over the last decades, technology has become an essential part of modern medicine, being

present in nearly all branches of this rapidly developing field. Besides the common techni-

cal areas of health care such as diagnosis, surgical and therapeutic tools, communication

and other, technical devices can also assist in applications where traditional procedures

fail or are completely unsuitable. Dating back to the 60’s when the clinical application of

implantable heart pacemakers was introduced, the chronic electrical stimulation of human

tissue became an assistive method of that kind, supporting life of thousands of patients.

Several decades later, when the electrical stimulation of the heart had already become a

common procedure, the benign effects of a similar stimulation of the human brain were

discovered for motor, psychiatric and other neurodegenerative disorders. It was shown

that the application of electrical stimuli to specific structures in the brain can reduce or

even eliminate symptoms of these severe diseases and help the patients lead normal lives.

To accomplish this, special implantable devices have been developed, delivering electrical

impulses directly into the brain. These devices, commonly referred to as the Deep brain

stimulators (DBS), have found their way to clinical application over the years. However,

the mechanisms of their positive effects still remain mostly unclear.

Just as any other implantable device, the DBS suffer from the great limitation of bat-

tery life, implicating the need of re-implantation in a period of circa 2 years. Even though

the device itself is placed in the chest cavity and no neurosurgery is involved during the

re-implantation process, the repeated surgery of the unchanging region of the body brings

many complications and discomfort. And this is true especially in elderly patients—the

most common recipients of this therapeutic method. In case of the DBS for Parkinson’s

disease, which is the main topic of this work, the uninterrupted stimulation is unnecessary

for a great group of the patients, as the symptoms occur only at times. Contrary to the
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CHAPTER 1. INTRODUCTION 3

possibility of switching the device state manually, available in the current stimulation de-

vices, an automatic detection of the onset of the symptoms could be developed, switching

the device on just when necessary—on demand. Although the occurrence of the disease

onset in the activity of the stimulated brain structures is yet to be proved, it is believed

that the signals of these structures, recorded through the stimulation electrodes, could be

used for the detection. Such a solution could significantly improve the battery lifespan

of the device. This way, the beneficial effects of the method could be preserved without

need of extra inputs or modifications to the surgical procedures.

This work tries to offer a procedure to accomplish this task for one of the severe symp-

toms of the Parkinson’s disease: tremor. The work has been conducted in cooperation

with Kevin Warwick and Jon Burgess from the University of Reading, who provided their

current knowledge on the topic and the recorded patient data, used in the study.

First of all, the basic information on Parkinson’s disease and Deep brain stimulation

is provided in this introductory chapter. Then, the process of sorting and preprocessing

the data is described in Chapter 2.

The process of looking for suitable features of the brain signals is described in Chap-

ter 3. The examination of the possible approaches to the detection is based partly on

current scientific findings about the brain signals, partly on my own research of the data.

The result is formed by a feature set, covering several different domains, including tempo-

ral, spectral, statistical and other. Both successful and unsuccessful research is presented

in this chapter.

The evaluation of the developed features is performed in Chapter 4, where the features

are subjected to experiments with the patient data, evaluating their classification power

with regard to the tremor. The patient data is divided into small sections, for which the

features are calculated and which then form training and testing samples for a subsequent

classification process.

First, the features are tested individually on the whole dataset, providing an overall

information about them. Later on, a subset of features is selected and tested using

training data for single patients. In the end, the results of both steps are combined,

presented and discussed together with the classification results.

In Chapter 5, the results and achievements are summarized, weaknesses are discussed

and further research together with possible improvements to the outlined methods are

proposed.

References to the implemented methods, performing the respective tasks, are given

throughout the text. All the methods have been implemented for the purpose of this
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work, unless stated otherwise.

1.1 Parkinson’s disease and the Deep brain

stimulation

The Parkinson’s disease (PD) is a chronic neurological disorder, affecting mainly elderly

patients over the age of 60, however can be found in younger people too. The most

common symptoms are connected with motor functions and include:

• Tremor; shaking incontrollable movement of a body part, usually a limb (hand, arm

or leg), occurring when the person is awake and in a still position

• Muscle rigidity (stiffness)

• Bradykinesia; Slow, difficult movement, especially when the patient moves from

resting position

• Gait disorders; problems with stability

From the physiological point of view, the PD is caused by lack of dopamine, a neu-

rotransmitter in a brain structure called the basal ganglia (BG). In PD, the dopamine

producing cells in substantia nigra (a part of the basal ganglia) deteriorate, making the

dopamine production insufficient. This causes an impaired function of other basal ganglia

parts, such as the subthalamic nucleus, an important part of the motor system.

In spite of the ongoing research of PD causes, the actual reasons of this disorder are

unknown. Late reports show connection between PD and exposition to specific chemicals

(toxins) as well as genetic predispositions. This is true especially in patients with early

developed symptoms [15].

The standard treatment of PD is based on supplying patients with dopamine precursor

replacements such as Levodopa (l-dopa), which is effectual in preventing some of the PD

symptoms. Nevertheless, after a few years of l-dopa application, the positive effect goes

off and side effects such as hypotensia, arrythmia or nausea become more significant,

which grounded the research for new and progressive methods.

One of the possible ways to treat the symptoms of the disease is the Deep Brain

Stimulation. In this treatment, electrical pulses are delivered to the brain using an
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electrode implanted in a part of the Basal Ganglia, usually the Subthalamic nucleus or

the Globulus pallidus. This requires an advanced neurosurgery, due to the deep position

of the target structures in the midbrain. However, the method gives another chance to

the patients who have lost the response to the medication or for whom the standard

therapeutic procedures are unavailable due to various contraindications. Moreover, fewer

side-effects have been identified with the DBS than with medication.

The DBS system consists of the simulator itself, implanted in the chest cavity, and the

implanted electrode, connected to the device. The connecting wires are hidden under the

patient’s skin and are attached to the device using special connectror, allowing exchange

of the device if needed. The electrode consists of four pins in a row, spaced 5 mm

apart. Once the electrode is in place, the medical experts search for appropriate electrode

combination and stimulation pulse setting. The settings with the best symptom-reducing

effect is chosen.

The signals, recorded from the electrodes of the DBS device, capture the summarized

electrical activity of the neuron population between them, called the Local field potentials

(LFP). These signals are different from the microelectrode recordings—a type of recording

used during the operation—due to the different electrode sizes and spacing.



Chapter 2

Data

Description of the dataset is provided in this chapter, including the process of selecting

and preprocessing the input files.

The original data files for this study come from the Theatre of Radcliff infirmary,

University of Oxford, UK. The recordings were done during the peri-operative period

when the deep-brain electrodes are already in place and the patient is overseen at hospital.

It is the period prior to the implantation of the DBS device. The recordings were taken

during several sessions in the years 1999 to 2006.

2.1 Data content

Each of the recordings comes in a text file and contains several signals, including recorded:

• LFP - Local Field Potentials of the Basal ganglia

• surface EMG from flexor and-or extensor forearm muscle

• accelerometer signal from the forearm

and is accompanied by a document, describing recording conditions.

As stated in Chapter 1, the deep-brain electrode is implanted in the basal ganglia

(Subthalamic nucleus or Globulus Pallidus) and consists of 4 electrode pins, spaced 5 mm

apart. This provides 3 electrode pairs, when only the neighboring electrodes are consid-

ered. In some patients, provided with a bilateral implant, 6 channels are hypothetically

available, 3 for each hemisphere. For some patients all the possible signals are available

in the recordings, while only one or one per file is at disposal for others.

6



CHAPTER 2. DATA 7

As for the supportive signals, at least one corresponding EMG signal is present in each

file, providing information about the movement of patient’s forearm. Two EMG signals

are usually available, one for flexor and one for extensor forearm muscle. Signal from

an accelerometer, attached to the patient’s forearm is also available in some recordings,

providing more information about patient’s movement. The supplementary signals were

recorded from the opposite side of the body than the LFP signals, due to the crosswise

connection of the motor paths in the human body.

The document attached to each file contains description of the recording conditions,

patient information and information about the channels in the data files.

2.2 File selection

At the time of recording, not all the data were intended for tremor detection, which made

most of the obtained files unusable for the purposes of this work. There were files recorded

during different modes of patient movement (no movement, active movement of the wrist,

wrist moved passively by the physician), different settings of the stimulation device (off

or stimulating into different electrodes) and also recordings taken from different parts

of the Basal Ganglia (STN or GPi). This provided a very wide range of conditions,

varying from patient to patient. The original idea at the beginning of this work was to

include as much data as possible, covering various recording conditons. Nevertheless, the

selection was reduced to specific conditions later on. The decision was based partly on

insufficiency of the data for such a general task, partly on the huge variability of the data

across different conditions, which would make the original task almost unfeasible. The

required recording conditions were restrained to:

• Signals exclusively from the STN.

• No movement present during the recording (patient at rest)

• Stimulation off during and prior to recording.

Another factor that resulted in exclusion of more files was the lack of description,

which made the determination of recording conditions impossible in some cases. Some of

the files also lacked some of the crucial signals (LFP or at least one corresponding signal)

and had to be excluded as well.
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The original file set contained 231 mostly unsorted files with description. Applying

the restrictions specified above, only 33 files met the conditions to be included in the

dataset. The main reasons for file exclusion were1:

• Movement or DBS present (around 50%)

• Crucial signals missing (STN or EMG, around 20%)

• Lack of information (description missing, unclear etc, less than 20%)

• Unclear data (unable to specify tremor and non-tremor periods, around 10%)

The loss of data the restrictions caused is significant. However, the impact was consid-

ered carefully and the requirements were set in order to retain the maximum number of

patients with suitable data. From the 14 patients in the original file set, 10 were included

in the file set, as some of the patient had a GPi implant, and some lacked documentation

for all the files.

2.3 Data sectioning

Once the dataset was selected, the individual files could be described for further use. The

conditions changed during the recording in some cases; some recordings contained tremor

onset or changes to the movement and stimulation mode, so that only a part of these

files could be used. In order to use the maximal possible amount of data, even single

file sections were used where possible. To achieve this, markers have been attached to

the files at positions specified either by the documentation (stimulation on or movement

started at certain moment) or the corresponding EMG signal2.

The signal artefacts observed at the beginning and end of some recordings, as well as

some other factors (e.g. changes of the recording conditions) were also removed from the

useful sections in order to achieve higher consistency of the data. Figure 2.1 shows an

example of time series from an original file, prior to any preprocessing.

1Reasons presented in order of the percentage of files excluded.
2To carry out the tremor detection from the EMG signal, it had to be preprocessed first. The

preprocessing was done according to thestandard method used in prosthesis control [12], including 50 Hz

filtering, rectification and smoothing using the moving average filter. This way an envelope EMG signal

was produced, showing the tremor activity.
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An important note, implying further design of the classifier algorithm, is on the nature

of the tremor onset: As can also be seen in the Figure 2.1, the onset of a tremor is rather

a dynamic process, than a discrete event at a discrete time. A section of a special type

was therefore placed around the tremor onset in order not to mix the tremor and non-

tremor properties in the sections. Nevertheless, the period shortly before the onset was

the only non-tremor section available in some cases and the section could not be made

long enough to cover the whole onset-related development. This might have had negative

impact to the classification process, as described in Chapter 4.

50 100 150 200time [s]

before onset® tremor onset® tremor®

Ch. 1: LFP signal

50 100 150 200time [s]

before onset® tremor onset® tremor®

Ch. 2: LFP signal

50 100 150 200time [s]

before onset® tremor onset® tremor®

Ch. 3: LFP signal

50 100 150 200time [s]

before onset® tremor onset® tremor®

Ch. 4: EMG flexor

Figure 2.1: An example of an unprocessed file (Patient 9, file 28), with

added section descriptions as plotted by the function parkin-

sonian plot data.

The Table 2.1 shows the numbers of files and sections for each of the patients after the

selection. Unfortunately, the data is missing in either tremor or non-tremor class for 5 out

of 10 patients. This means these patients can not be fully included in the classification

process. Nevertheless, the data of these patients can be used for general analysis and
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estimation of qualities of the feature set.

Loading of the data and the sectioning process are carried out by the following im-

plemented functions and scripts:

parkinsonian file load.m - loading a text file

load files.m - instructions for the file loading function, containing information about

channel and other settings for each of the selected files

parkinsonian plot data.m - time, spectral and spectrogram plots of the signals of

one file

Table 2.1: Overview of the final dataset, showing number of sections and

file of specific content for each patient.

patient files sections

id initials LFP ch. total T NT onset total T NT onset

1 be 1 6 1 5 8 2 6

2 ep 1 3 3 6 6

3 ma 1 5 3 2 5 3 2

4 dc 1 3 3 4 4

5 CG 3 4 4 2 4 10 4 2 4

6 DS 6 1 1 1 1

7 GA 6 1 1 4 4

8 rb 1 4 4 8 8

9 RB 3 2 2 2 2 6 2 2 2

10 sw 1 4 2 2 4 2 2

total 24 33 22 15 6 56 19 31 6

2.4 Preprocessing

Investigation of the dataset showed that several preprocessing and normalization steps

were necessary before the data could be evaluated.
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2.4.1 Unification of the sampling frequency

First, the sampling frequency varied from 250–1000 Hz, which made further preprocess-

ing and feature calculation uneasy. Therefore all the data was downsampled to 250 Hz,

using the Matlab function resample. This function applies appropriate low-pass filter-

ing prior to downsampling [14]. The downsampling routine for the whole parkinsonian

files, including also recalculation of section markers etc. is implemented in function

parkinsonian data resample.m

2.4.2 50 Hz noise filtering

Second issue, faced during the data processing, was a very high level of 50 Hz noise in

most recordings. The high energy carried by this frequency overrode any useful signal in

most recordings. For the purpose of the first analyses, the data was preprocessed with a

narrow notch filter (remove50.m). Once it was clear that all the designed features work

only with frequencies up to 20 Hz, he preprocessing step has been changed to a 50 Hz

Type II Chebyshev low-pass filter. The filtering was done using zero-lag filtering Matlab

function filtfilt.m.

2.4.3 Amplitude normalization

Another property, varying highly across the dataset was the amplitude scale of the signals;

The recording level was not specified for any of the input files. This was probably also

caused by the high amount of noise, which changed the overall signal amplitude rapidly

in many files. Once the noise was removed, the amplitude normalization turned out to

be necessary, as the signal levels varied in several orders across the set. To perform this

task, the parkinsonian data normalize.m function was implemented, normalizing the

mean value of the rectified signal to one3. All the sections containing useful signal were

used together for calculation of the normalization coefficient. The whole signal was then

normalized. The normalization was done for each channel separately

3The mean value of the signal is subtracted prior to rectification.
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2.5 Data containing structures

The data has been loaded to a MATLAB structure array, carrying all available informa-

tion about the original file, numbers of channels in the original text file and section con-

tent. Each item in the dataset can contain any number of channels and section. The origi-

nal text files can be loaded using the already-mentioned function parkinsonian file load.m.

When the preprocessing process is done, the sections of a desired type, can be ex-

tracted using the function parkinsonian data getsections.m. The sections produced

contain only one LFP channel each, bound together with all corresponding signals and

information about the original file. For example: 6 section files are produced from a

preprocessed data file of 3 LFP channels and 2 sections. These section files are further

divided into small portions, used for feature calculation and classification, as described

in Chapter 4

2.6 Chapter summary

The process of data selection and preprocessing has been described in this chapter. De-

scription of the consequent analyses of the data can be found in the next chapter, ded-

icated to feature calculation and implementation. However, it can be derived from the

first rough views of the data that some changes obviously occur during the tremor onset

in the STN signals. It should therefore be possible to track the onset using the methods

of artificial intelligence.



Chapter 3

Features

Correct feature selection is fundamental for achieving good results in a detection or

classification task. Nature of the features can range from very simple to very complex

ones, using advanced calculations or transforms. In processing of well known signals, basic

features or properties that lead to successful detection results are usually known. The

detection task then consists of finding correct combination of these features, improving

them or searching for new ones, that would substitute the current methods or utilize

other aspects of the signal of interest. Many proved features or feature sets exist in

biomedical engineering for signals such as ECG or EEG or EMG that have been known

and researched for many years.

In case of this study, deep brain stimulation for Parkinsonian disease is a relatively

young topic, with the main outbreak dating to 1990’s [2]. To record electrical signals of

the basal ganglia, an electrode implantation inlcuding complicated surgery is necessary.

Therefore, very little research of these signals had been done before the positive effects of

electrical stimulation of this brain structure were discovered. Anyway, even after the deep

brain stimulation found its way among respected treatment techniques for the PD, it took

several years to start research of the signals. Particularly, there is a growing knowledge

about electrical activity of the STN signal, even though no generally applicable method

has been found for tremor detection.

The research done so far, consisted of tracking changes in the signal spectrum during

tremor onset [16]. This method is successful for some data, but not robust enough for

being generally applicable. As a result of this, further research is carried out, investigating

different aspects of the STN signal, part of which is also this thesis.

The original aim was to cover the widest possible area of different approaches to create

varied feature set and avoid important signal properties being missed. Basic domains, in

13
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which the features were searched included:

• Time domain: Common signal descriptors such as amplitude, energy etc.

• Statistics: Statistical moments of different orders.

• Frequency: Energy in different bands, shape of the frequency spectrum.

• Signal theory: Shannon entropy.

• Autocorrelation function-based features

• Other: fractal dimension, sample average etc.

After obtaining the whole dataset it was found that a great number of features will

have to be left out due to necessary amplitude normalization (see Section 2.4.3). This

included mainly d.c. component and absolute amplitude based features, which are usu-

ally the first-choice parameters in signal processing tasks. This caused a significant loss

of information, carried by the data and should therefore be avoided during the signal-

recording sessions to come.

The following section focuses on individual features, describing motives for including

them in the feature set, as well as the development process with attempted methods used.

The name of respective function implemented is given at each section. Some of the simple

features are implemented directly in the main function parkinsonian get feature.m,

which is used for obtaining any (or all) of the features from an input sequence.

3.1 Time domain

Examination of the actual values of the signal as they come in time is the first-choice

method for most detection or signal processing tasks. This approach does not usually

require any transformation of the input data and is therefore easy to accomplish with

simple means. Not any different in this application, the simple properties of the sig-

nals should be researched first, prior to introduction of more sophisticated and complex

methods.

The main problem of the time–domain methods arises from the amplitude normaliza-

tion, described in Chapter 2. The absolute values cannot be compared across different

files nor patients. Despite these facts, several time-domain features were implemented.
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Only those features, less dependent on the exact amplitude value were implemented,

while several others (peak-to-peak value and mean value) were excluded from the feature

set.

3.1.1 Short-time energy

Signal power, or short time energy is first of the features implemented. It calculates time

average of energy, according to the formula (for discrete series of N samples and sampling

frequency fs):

Pf =
fs

N

N∑
n=1

|f(n)|2 (3.1)

and is implemented directly in the parkinsonian get feature.m method

3.1.2 Zero crossing rate

The zero-crossing rate calculates the time-weighted number of times the signal value

crosses zero. This means the sampling frequency is taken into account. In simple cases,

this feature can give a rough measure of the prevailing frequency in the signal without the

need of more sophisticated calculations. Another advantage is that it can be calculated

in real time. The feature is implemented in the function zerocross.m and is weighted

by the length of the sequence and the sampling frequency.

3.1.3 The first differential

Another possibility is the first differential that can be roughly and simply calculated as

the difference between values of the consecutive samples in the series. Two features were

implemented, based on the first differential:

• Maximum of the first differential on the segment: maxdiff

• Average of the first differential on the segment: avgdiff

Both features are length-invariant and implemented direcly in the parkinsonian get feature.m

method.
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3.2 Statistics

Another possibility is to ignore the time order of the values and view the sequence of

interest as a set of numbers. Based on this idea, the statistical moments can be calculated,

taking only the signal values and number of their occurrences into account. Due to the

normalization, which removes the mean value from the series, this basic property cannot

be used. However, the moments about the mean (or standardized moments) of different

orders can be calculated. Variance, the second order moment, representing the expected

square deviation from the mean is calculated according to:

σ2 = E[(X − µ)2], (3.2)

where X is the series, µ is the mean value µ = E[X], and E is the expected value

operator.

Skewness, the third order moment about the mean, representing the skew of the

distribution is calculated according to Matlab manual [14]:

y =
E[(X − µ)3]

σ3
, (3.3)

and kurtosis, representing further properties of the distribution (envelope shape),

calculated as follows [14]:

k =
E[(X − µ)4]

σ4
. (3.4)

The Matlab native functions were used to calculated the values of these features.

A well specified distribution is assumed during the calculation of these features, which

requires a relatively high number of samples. Apparently, the higher order moment is

used, describing finer properties of the distribution, the higher number of samples is

neeeded. It is therefore very probable that only the variance will give reasonable results

for short signal segments, while the result of the higher moments will be closer to random,

with no actual information about the distribution.

3.3 Frequency spectrum

The frequency spectrum is a common means used for examination of time series, widely

used in biomedical signal processing. Several frequency bands are specified in the human
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brain, which can be used for determination of current functional state of this organ. It

is therefore very sensible to research the spectral properties with regard to Parkinsonian

tremor. Moreover, the spectral properties have already been used for tremor detection

and they were proved successful for specific conditions [16]. This study can compare the

detection power of the spectral properties to other possible approaches and provide more

information about their actual significance.

3.3.1 Spectral properties of the STN LFP signals

Before the frequency based detection a note about the observations in spectral domain

on the data, together with remarks of other researchers on this topic will be presented.

Previous research on the spectral properties of the LFP signals

An ongoing research of the signals of Parkinsonian patients’ basal ganglia is aimed to

different symptoms of the Parkinson disease. Among the numerous publications on the

BG activity, only little literature is available for Parkinsonian tremor.

The spectrum of the activity of the Basal Ganglia can be classified into 3 groups:

<8 Hz, 8–30 Hz and >60 Hz, according to recent findings [1]. The best characterised

group of oscillations is in the range 8–30 Hz, reported to be of an akinetic character,

i.e. inversely related to motor activity. Some studies[23] discuss a synchronous activity

in this frequency range, commonly referred to as beta activity as a cause of bradykinesia

and akinesia—other symptoms of the Parkinson disease. Also, this range is reportedly

strongly modulated by voluntary movement activity and medication[11]. According to

other studies [17] this frequency range appears not to be related to tremor.

As for the high frequency range, some researchers report dependency of activity in

this range and response to levodopa [1] and the connection with the motor symptoms

remain unclear.

The activity at low frequencies around 4 Hz have been reported to be correlated with

the occurrence of tremor in the intraoperative microelectrode recordings. However it has

been found not to be a strong feature of the LFP signals [1]. The authors suggest that

capturing of these low frequencies may be affected by the asynchrounous character of

the BG neurons’ activity. The correlation between the tremor frequency in the globulus

pallidus—another DBS target in PD patients—has been also reported [10], although

highly position-dependent.
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As for the tremor detection, the frequency spectrum was used for this purpose by K.

Warwick et al. [16]

Summarized, the oscillations in the activity of the BG neurons seem to be little un-

derstood and although the scientfic evidence suggests connection between specific effects

found in the signal spectrum and specific symptoms of the Parkinsonian disease, no clear

decision can be made about the occurrence of tremor related features in the BG LFP

signals.

Spectral properties observed on the dataset

An analysis was done on the dataset, comparing frequency spectra of tremor and non-

tremor data. Regarding the frequency ranges specified in the previous section, no sig-

nificant activity was observed in the high frequency range >60 Hz, as well as in the top

of the beta range, approximately above 20 Hz. Therefore, the further examination was

focused on the range below 20 Hz. The examination was undertaken on the spectra of

the individual LFP channels and sections, which can also be plotted by the function

parkinsonian plot data.m.

Normalized spectra, averaged over the sections of both tremor states are shown in

Figure 3.1. First, the spectra were calculated for each section, the sum was normalized

for the frequencies under 20 Hz. Then, the result was avaraged with its respective class.

The spectrum was produced by the function parkinsonian plot avgspectra.m, which

also implements plotting of multiple sections’ spectra in a 3D plot.

The most remarkable notice was that a significant peak around 4.5 Hz was present

in most of the tremor recordings. The central frequency of this narrow (less than 1 Hz

wide) peak varied from about 3.5 to 5.5 Hz among the different patients and correlated

well with the frequency found in the corresponding EMG recording. Moreover, peaks at

multiples of this frequency (tremor frequency) were observed in some of the files. This

could be interpreted as harmonics of the tremor frequency. The multiple sharp peaks in

this frequency range can also be seen in Figure 3.1. Not all the patients’ LFP signals

exhibited this peak, but it can be seen as a predominant factor in the tremor recordings.

Moreover, this band was not present in any of the non-tremor signals. In patients with

more LFP channels avaiable, the peak was usually dominant in one of the channels, while

lower or missing in the other.

Further, some activity has been observed around 15 Hz in both tremor and non-tremor

files, which makes it a weak feature with regard to the tremor occurrence. Generally
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Figure 3.1: The averaged normalized spectra for tremor and non-tremor

data.

speaking, the non-tremor recordings had rather flat spectrum with a high peak below

1 Hz, which was probably caused by the normalization, combined with the lack of activity

at other frequencies. The 0–1 Hz and primarily the tremor frequency were observed as

the strongest features with respect to tremor.

3.3.2 Energy in spectral bands

The first way used to utilize the spectral properties of the signal, was calculating the

discrete Fourier transform of the signal and computation of the energy in selected spectral

bands. It was important to decide, how wide should range of the frequencies be and how

narrow bands should be used as single features. As discussed in the previous paragraphs,

the main information content was observed in the frequency range 0–20 Hz. However low

this may seem, the traditional EEG does not usually work with frequencies over the beta

range (12–30 Hz). In accordance with the first observations of the spectral properties of

the data, only the range 0–20 Hz was included to the feature set.

Based on the information above, the Fourier spectrum was divided into the following

bands and respective features:
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Table 3.1: Frequency bounds of the spectral features

feature name frequency

[Hz]

specbands1 0–1

specbands2 1–2

specbands3 2–3,5

specbands4 3,5–5,5

specbands5 5,5–7

specbands6 7–10

specbands7 10–12

specbands8 12–16

specbands9 16–20

Special attention was paid to the tremor frequency range, as well as to the low fre-

quency ranges. This was the reason for the uneven widths and precision of different

bands.

In order to make the comparison of energy in different bands possible, the spectrum

was normalized to sum to 1 on the 0–20 Hz range. Moreover, the sum of the energy in

the bands was divided by the band width to provide a width-independent measure.

3.3.3 Other spectral properties

Apart from the comparison of energy in different frequency regions, the spectrum can

also be viewed as a whole and a specific tendency can be searched.

Repetition in spectrum

During the analysis of the data, a significant repetitive character was observed, appearing

as harmonics of the tremor frequency (e.g. peaks at around 4, 8, 12 Hz). On the other

hand, no such property was observed on the non-tremor data. This lead to an idea

of creating a feature that would extract the repetitive property of the spectrum. The

following was conducted:

Fourier transform can be used when searching for repetitive components in a time
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series. An analogous approach could perhaps be used to extract the repetitive information

from the spectrum. This concept is used in the speech processing and is called cepstrum,

calculated according to the following formula:

C = |F{log10F{x}}| , (3.5)

where x denotes the original signal and F the Fourier transform.

To provide an output that would be easy to evaluate, Shannon entropy was calculated

from the cepstrum in the next step. Presumably, a signal with no repetitive character in

the spectrum will have flat cepstrum, which will then lead to a lower entropy.

This method is relatively complex and would require high computational power to be

done in a real-time application. Inclusion of this feature to the feature set should be seen

as an attempt to unveil other possible properties of the tremor problem. These could be

later developed in another implementation of a simpler method, based on the same signal

properties.

The feature is implemented under the name specrep in the specrep.m function. The

implemented function sigentropy, used for the calculation for Shannon entropy is de-

scribed in 3.4.

Character of the frequency spectrum

As seen in Figure 3.1, the non-tremor recordings exhibit rather flat spectra in average.

On the contrary, more peaks are visible in most tremor recordings. Based on a similar

idea as the previously described specrep feature, this characteristic can be extracted by

calculation of the entropy of the spectrum. The calculation is done only for spectrum

under 20 Hz, and is implemented in the function specentropy.m.

3.4 Information theory

Another possible way of gaining information from the time series is by the use of in-

formation theory. One feature, the Shannon Entropy, was implemented, calculating the

expected information contents of the message, according to [18]:

H = −
N∑

i=1:N

p(xi)logbp(xi) (3.6)
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The problem, faced when applying this theory to waveforms is that the idea is suited

for a sequence of symbols, rather than a discrete waveform. Applied to short portions of

a LFP signal, counting ca 500 samples (2 s chunk), each value is with high probability

observed only once. This is based on the high number precision used and leads to the

same value of entropy for any chunk. To prevent this the series was quantized to evenly

spaced intervals prior to calculation of entropy.

The number of quantization steps was experimentally set to 40, which provided the

best distribution of the output values on the 2 s chunks. The base of the algorithm in

(Equation 3.6) was selected as 2, pi was calculated from the number of occurences within

the chunk.

Both steps are implemented in the function sigentropy.m.

3.5 Sample average

According to findings, presented in Section 3.3.1, a significant peak in frequency band

3.5–5.5 Hz can be seen in most tremor recordings’ spectra. At the same point in this text,

correspondence between this energy in STN and EMG signals is also described. The idea

of sample average presumed, that the STN signal exhibited specific features within single

tremor cycles. In other words: a specific tremor waveform or pattern could be discovered.

This would be achieved by averaging the signal over single tremor cycles, which—given a

sufficient number of cycles—might result in removal of all the tremor non-related activity

and production of a representative pattern. This could then be used for tremor detection.

The idea of sample average was successfully applied in EMG onset detection [8]. It is

also a basic of brain evoked potentials analysis of the EEG [3]. In both applications

the synchronizing signal is external, given at a moment specified by the examiner, which

makes the starting point better specified.

The following part of the text describes the research carried out on this matter that

was later considered unsuccessful and was discontinued. This parameter is not included

in the final parameter set.



CHAPTER 3. FEATURES 23

3.5.1 Overview of the Sample average detection method

To create the average waveform, identification of the individual tremor cycles had to

be done first. Originally, the corresponding EMG signal was used for this purpose,

owing to the easily detectible tremor cycles it contained. Once the high occurrence

of tremor frequency was found also in the STN signals, the detection was modified and

based directly on the STN signal. This solution was thought to be more reliable and

straightforward.

3.5.2 Sectioning process

The detection is carried out by searching for a peak in the Fourier spectrum within the

tremor frequency range specified above. This detected peak or more precisely its position

and complex value were used to create a new spectrum with the length of the original

one, filled with zeros. The detected peak, together with its complex conjugate on a

symmetrical position in the vector, formed the only non-zero elements of the created

spectrum. The sequence was transferred back to time domain, using inverse Fourier

transform. This way a sine signal was created, specifying tremor cycles in the original

STN time-series (red line in Figure 3.2). Taking a closer look at the signal in the upper

plot of the figure, we can see the tremor period varies over time slightly in the STN

signal, which might cause inaccuracies in the subsequent averaging process. To avoid

this, the signal was smoothened with an equally-weighted moving average filter of order

10 (dark blue line). Then, the peaks were found in this smoothed signal around the

maxima of the sine wave. The resulting positions were used as reference points to create

signal sections. Even though the sections produced contained in most cases useful signal,

transient effects or other non-standard behavior can be found in most signals. These

would cause undesired distortion, if added to the average. Outlier sections can be detected

by its length, which significantly differs from average one. This is caused by a failure of

the peak detection on a non-standard signal. The cycle-searching method is implemented

in the function Parkinsonian findtemcycle.m.

3.5.3 Averaging process

The averaging process starts with the first selection, determined by the first peak in the

calculated sine function and detected period length, which is taken as the first average.
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Figure 3.2: Example of cycle detection in LFP signal.

In each step, the start of next section is searched around the position of next expected

period start. The signal is compared to current sample average using vector distance

(Equation 3.7) and position is found with maximum value of this measure. If the maxi-

mum exceeds a taken threshold, section is added to the average, starting at the position

where the maximum match was recorded, otherwise is thrown as an outlier. The process

continues until the end of the signal. Inlier, outlier and average sections, calculated for 2

different patient’s LFP signals are shown in Figure 3.3.

d =
a · b
|a||b| (3.7)

Weakness of this method is selecting the first section as a temporary average. This

may lead to undesired results in cases, where the first section is formed by an outlier. For

the testing purposes, the signal was always chosen to start with a regular tremor cycle.

The averaging process is implemented in the function parkinsonian averagecycle.m.

3.5.4 Detection

The detection was carried out by sliding the sample average (or pattern) over the signal

and calculating the vector distance (Equation 3.7). For successful use of this similarity
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Figure 3.3: Averaging carried out on 2 different LFP sequences.

measure, it is necessary to have additive value removed from both signal sections, as this

affects the result significantly. The mean value was therefore removed prior to calculation

of the vector distance. It is the same method, as the one was used in the averaging

process for measuring section distance. The result of this sliding process is in ideal case

an alternating waveform, having maxima at every start of a tremor period, symbolizing

a maximal match. Values of the detection output between these peaks are lower, which

comes from the nature of the method. For detection, only the peaks should be taken

into account, as they symbolize the real match with the pattern. A low peak amplitude

or no visible peaks symbolize a low match with the pattern, while high values and great

peak-to-peak difference symbolize a good match.

3.5.5 Experimental results, discussion

The detection was done on tremor onset data with special attention to peak values of

the detection function output. First of all, the pattern was calculated for the tremor

part of the signal to be used for detection on the whole file. The testing file contained

non-tremor, tremor onset and tremor part. It was found that the value of the detection

function exhibits unrecognizably similar behavior in both resting and onset part of the

data (Figure 3.4). This was most probably caused by strong higher frequency content in

the signal, represented basically by a signal around 16 Hz. To improve the result, this

frequency could be removed, but removing all frequencies above, say, 12 Hz would cause

a crucial loss of shape information and the most of the information would be lost.

A decision was done not to continue the sample average research, as no promising
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Figure 3.4: Detection with sample average on tremor onset signal.

properties can be seen in the data. Moreover, further development of the averaging

function would require great effort, while no great improvement in the results was to

be expected. Anyway, the research done can not be considered thorough enough to

reject the existence of a—no matter if patient-dependent—tremor pattern. Considering

the results, better outcome would probably be achieved using wavelet transform which

provides means for this type of analysis. Neverheless, the wavelet transform was not

included in the feature set, as it is being researched thoroughly by others, working with

the same data.

3.6 Autocorrelation function based features

Examining the signal of interest, the autocorrelation function can provide new point of

view and unveil specific properties of the series. Despite its relatively high computational

complexity for longer signals and calculation in the full range, the use of autocorrelation

in real-time application can be considered thanks to the constraints described further.

As seen in the frequency spectra of the original signals across the dataset, there are
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specific components with high energy, that also affect the shape of the autocorrelation

function. Several courses of the autocorrelation function, selected as representative for

the dataset are shown in Figure 3.5.
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Figure 3.5: Selected examples of autocorrelation function courses for

tremor and non-tremor data.

Apart from the shapes common for both groups, which can be considered outliers

(the number of these courses formed a reasonably small part of the dataset), a specific

tendency can be noted on the tremor data: For most cases the autocorrelation function

exhibits a peak at the lag in the region between 45–75 samples, while the values are lower

in the region 10–40 Hz. The former range points to a significant periodic character of

the input sequence at the equivalent frequencies ca 3.3–5.5 Hz, the latter ca 6–25 Hz,

calculated for 250 Hz sampling frequency. It seems that the tremor frequency based

periodicity is dominant in tremor recordings, while not present in any sample from the

non-tremor set. Based on these facts, a feature can be implemented, utilizing the observed

character of the autocorrelation function.

The short-period cycles, apparent in both datasets in the figure, correspond to the

frequency of ca 16 Hz. Higher energy around this frequency was observed in both datasets,

as described in the Section 3.3.1. Although these oscillations may cause difficulties in

the detection process, filtering out this frequency band would cause great harm to the
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original signal and was therefore not implemented. Low pas filtering at less than 15 Hz

would cause a high loss of the autocorrelation function precision by removing the higher

frequency information. On the other hand, the band-pass filtering would require a narrow

filter, which would lead either to a long lag or a phase shift, distorting the autocorrelation

function as well. These facts were taken into account during the implementation of the

two following autocorrelation-function based features.

Two different implementations were done, producing two features: acpeaks and acra-

tio. Both of them utilize the same properties of the signal and both were included in the

final feature set, as their evaluation is better done by the feature selection algorithms.

3.6.1 Implementation

The first implementation, acpeaks, is based on finding peaks in the autocorrelation func-

tion in the lag region 45–73 samples (the values were taken from the observation of the

autocorrelation function on the data). The peak value is divided by the average peak

value in the lower lag region. This way, the output value of the feature for a given

signal segment is produced. Summarized, a lower number indicates rather non-tremor

behaviour, while a higher value means the opposite.

The problem of this first implementation is its dependency on the peak detection,

which might not be a robust and flexible solution. Thus, the autocorrelation function

can probably provide detection information even in cases where no peaks can be found,

but a specific character is present. In this function, the output value is set to one when

some peak is found in the tremor region and no peaks can be detected for lower lags,

indicating a tremor behaviour. On the contrary, zero is the output for the cases when no

peak can be detected in the tremor region. Apparently, this is not an optimal solution and

the method should be generalized to provide more robust results. This was attempted in

the next implementation: acratio.

In the second implementation, no peaks were searched in the autocorrelation function.

The detection is based on the maximum of the function in the region of interest, divided

by the average value in a lower, neighboring region, as represented by the following

equation:

rACR =
max(Rt)

mean(Rl)
, (3.8)

where Rt is a vector of the values of the Autocorrelation function in the determined
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tremor region (45–73 samples) and Rl contains values of the autocorrelation function in

a neighboring lower region (28–44 samples). The rACR element is directly the output of

the method.

This second implementation should provide more robust detection, however, the so-

lution presented here serves as a proposal for a future implementation, based on a wider

dataset.

An important note can be done, regarding the target application, which works in real

time; the maximum lag, that has to be calculated in the autocorrelation function is 73

for both feature implementations, which makes the calculation reasonably faster.

Both implementations were tested on the whole original sections and a simple clas-

sification was done, setting a threshold for the function output to determine the tremor

state. Both methods were very successful, correctly classifying up to 80% of the sec-

tions. The more specific acpeaks implementation reached better results and both were

included in the feature set, to be evaluated using unbiased methods. The result of this

simple test is very general and the actual success of these features can be evaluated only

from the classification results of the experiment. However, the high success means some

significance to the detection task exists.

The features are implemented in the functions:

parkinsonian feature acpeaks.m

parkinsonian feature acratio.m

3.7 Fractal dimension

Another approach to the STN signals is considering them to be a chaotic output of a

nonlinear dynamic system. In other words, we do not treat the signal of interest as

completely random but we expect an underlying structure, carrying information about

current brain function. Research projects done on his topic [7] show, that for many

biological processes, such as neural tissues or vascular system, the chaos theory can

provide new level of understanding or assist at specifying properties of the system.

Among other complex variables, describing nature of a chaotic system, the fractal

dimension can provide a basic measure of the system chaoticness by calculating a non-

integral dimension of the assumed fractal. The deviation of the calculated dimension

and that of a space-filling (conventional) object can then provide basic idea of the system
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nature in terms of chaos theory. However, usage of fractal dimension estimates is relatively

common in processing of other biomedical signals, such as ECG (Hearth Rate Variability

[13]). The iterative algorithms described below calculate estimates of fractal dimension.

Different fractal character was found for example in patients during epilepsy seizure

[7], which can be—with is temporary and brain disorder related character—considered

similar to Parkinsonian tremor.

3.7.1 Box-counting dimension

The box-counting dimension (also called Minkowski–Bouligand dimension or Kolmogorov

capacity) is the first of the two fractal methods implemented. It is based on iterative

splitting the object (signal in this case) to boxes of given size. In each iteration , the size

of the box is changed exponentially and the input object is all split into boxes with side

the current length. Then, the number of boxes containing the object and total number

of boxes in the particular step are counted and stored. The algorithm goes from one box,

covering the whole data, to boxes of unit size, containing one data point each. When

boxes are counted for the whole range of selected side lengths, local dimensions can be

calculated according to:

Dc ≈ M log2(N(r))

M log2(r)
, (3.9)

where r is box size and N(r) number of boxes for the respective box size. When

calculating the overall fractal dimensuion estimate, additional conditions have to be taken

into account to utilize the part of boxcount series, for which the result is senzible [9]. The

choice of logartithm base as 2 is due to the selected step of box sizes [9].

In one-dimensional case, the algorithm searches for boxes covering all non-zero ele-

ments of the input sequence, while for two-dimensional case boxes covering the area of

the object are counted. The researched signal is a sequence of numbers and has to be

treated as 2D object. The algorithm was adapted for waveforms, assuming the function

to be continuous and therefore crossing every value between maximum and minimum on

the specified interval. To make the algorithm work properly for waveforms, the input

sequence is first normalized into unit square. The overall dimension is estimated in an

interval, meeting the conditions mentioned above.

The method is implemented as boxcountwf.m.
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3.7.2 Sevcik fractal dimension estimate

Another estimate for fractal dimension was implemented, based on work by Carlos Sevcik

[19]. It is intended specially for waveforms and therefore no adaptations are necessary.

The algorithm consists of mapping the input sequence into a unit square, calculating the

length of the curve and calculating the dimension as follows:

D = 1 +
ln(L)

ln(2 · (N − 1))
, (3.10)

where L is the calculated length of the curve in normalized coordinates (unit square)

and N is number of samples of the input discrete waveform.

The curve length is calculated as Euclidean distance between consecutive points in

the input sequence.

The method is implemented as fractdim.m

Both implemented methods were tested for different lengths of LFP signals with

stable results, which differ between both function within reasonable range. First tests of

distribution of fractal dimension done on the whole dataset show slightly higher fractal

dimension number for tremor signal.

3.8 Chapter summary

The implementation of all the features in the feature set was presented in this chapter.

These features will be further tested in the next chapter, using the experimental data,

and the results will be discussed. This way, one or more suitable approaches to the tremor

detection can be found, based on classification a test on the data. A complete list of the

implemented features follows.

3.8.1 List of the implemented features

Temporal

• power : Signal power

• zerocross : Zero-crossing rate

• avgdiff : Average of the first differential
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• maxdiff : Maximum of the first differential

Statistics

• variance

• skewness

• kurtosis

Spectral

• specbands1–9 : Energy in the spectral bands

• specrep: Entropy in spectrum

• specentropy : Entropy in cepstrum

Information Theory

• entropy : Information entropy of the signal

Auto-correlation

• acpeaks : Comparison of peaks in the autocorrelation function

• acratio: Comparison of values of the autocorrelation function

Fractal dimension

• fractdim: Waveform fractal dimension estimate

• boxcount : Box-counting fractal dimension estimate



Chapter 4

Classification

In terms of this study, the classification process serves as an assessment tool for evaluation

of the designed features. As described in Chapter 3, the tremor-indicating of the STN

signals are unknown. Thus, the discriminative properties of the implemented features are

unknown either, unless a classification process is carried out.

This chapter describes the methods used for individual feature evaluation, feature set

selection, classification and related tasks, needed for the classification process. Discussion

of important aspects of the detection problem can be found at the beginning of the

chapter.

4.1 General considerations

When searching for a suitable classification method for the onset problem, it is necessary

to keep respect to the goal application: real-time detection of parkinsonian tremor in the

patient’s brain. Addressing the facts about the DBS process, there are several important

issues that should be considered. This includes the following subsequently discussed facts:

• Tremor onset should be detected with the shortest lag possible

• Detection has to be done in real time and should be reasonably fast to provide

sufficient time for the starting stimulation to take effect.

• STN signal can have specific properties for each patient. Classifier can therefore be

trained as patient-independent or specifically for a given patient.

33
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• Multiple signals are present for some of the patients: 3 pairs produced by 4 neigh-

boring electrodes, 6 signals for bilateral implants. The optimal electrode selection

is a priori unknown.

4.1.1 Onset detection

Going through the dataset characteristics, shown in Table 2.1, a significant lack of tremor

onset recordings is apparent in the dataset. It seems reasonable to use short sections of

the input signal, similar to those, that would be used in a real application. These sections

would be used for feature evaluation and determination of the differences between tremor

and non-tremor periods in the signal. Due to the impossibility of determining an exact

moment of tremor onset (see Section 2.3), the onset sections can not be used in this

approach. Instead, determination of suitable features can be done, that can later be

developed to an onset detection algorithm on suitable data.

4.1.2 Real-time

To provide a fast system response, the feature set has to be calculated only from a

specified number of last samples. This number should be reasonably low to capture

the possible tremor onset as soon as possible. These classified sections can overlap,

which would probably be the method of choice for practical application. For the training

phase, described in this text, the use of non-overlapping sections was chosen in order to

maintain independency of the input samples. As there is no need for fast response in the

parameter assessment and connected classification, this approach should make no harm

to the results.

The following method was chosen for the classification: the input data, formed by

the marked sections of files with recordings of simultaneous channels that count usually

tens of seconds, were cut into short series of just several seconds, providing data closer to

those in real application. These sections are referred to as chunks in the following text,

as well as in the Matlab source codes.

Using shorter time sections of the signal should capture fast changes in the signals

that might be overseen if longer signals were used.

The difference between file, section and chunk is clarified in Figure 4.1.
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Figure 4.1: Clarification of the terms section and chunk as used in this

text

4.1.3 In-section signal dependency

In spite of the advantages the assessment of shorter signal chunks brings, considerations

have to be done to keep the classification results consistent. Dividing the data into

subsets is often required during the classification process, e.g. in creating training and

testing subsets. A higher level of consistency (or similarity) can be expected across chunks

coming from one signal section (sibling chunks), compared to those coming from other

sections. Furthermore, all the sibling chunks form just one input file in the dataset. Based

on this, a decision was done not to separate the sibling chunks and keep them together

when dividing the data.

This policy was kept especially during the classifier training, while the implementation

would be very complicated for the feature selection process and was therefore not under-

taken. Anyway, this should not make any great harm to the results, as the classification

output is assessed in the end.

The automatic chunk creation is implemented in parkinsonian chunks cut.m

4.1.4 Patient-specific detection

One of the important general issues to consider is whether to attempt design of a universal

classifier, suitable for any possible patient, or whether to try creating a patient-specific

solution. The original idea at the beginning of this project was to create a classifier that

would be as universal as possible, being trained on various patients in different situations.

However, once the dataset sorting process was finished it turned out, that the quality of
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the dataset is insufficient for such a general task. Moreover, this task would probably

be too complex and complicated, given the low level of general preliminary knowledge

on this topic and thus, just a smaller task of classification of signals from patients in

resting state was chosen. Anyway, handling data coming from different patients is still

an important issue in this task and deserves more study.

Recalling the aim of the work, the task is to detect starting tremor in the signals of

patient’s brain, which is clearly a patient specific task. On the other hand, the designed

solution should be versatile, giving reasonable results for the widest possible range of

patients. Small adjustments or personalisation would be no problem. Based on this, a

feature set should be selected with respect to the highest possible versatility, while the

classifier parameters should be trained specifically, for each patient separately. Alter-

natively, groups of patients could be identified together with specific feature sets. The

classification would then consist of assigning the examined patient a previously specified

group and therefore a feature subset. This approach would probably be optimal in case

more different types of tremor STN activity were found and several patient groups could

be identified. In this case the data is insufficient for such task (number of patients too

low) and the patients involved are therefore viewed as one group. A general feature set

is selected for all the patients and a subset of is is chosen further specifically for each

patient.

Summing up the considerations done in the previous paragraph, the method selected

consists of first selecting a set of significant features on the whol dataset. Then, a subset

of features is selected for each patient specifically.

4.1.5 Presence of multiple channels

As already mentioned in Chapter 2.3, 3 or 6 input channels in some recordings, produced

by the pairs of neighbouring electrodes. Making a comparison of the size of the STN and

the difference between the electrodes’ tips, it is clear, that only some of the electrode

pairs contain information about the target brain structure. The other electrodes may

be placed outside of the target structure in the brain and therefore be of no significance

to the problem. In this study, being given a number of input signals, the selection of

a signal with highest tremor significance is a priori unknown. However, the situation is

not too different in the practical application of DBS. In real application, the electrode

pair for stimulation is searched experimentally [21], even though more information about

the exact electrode placement is available, provided by medical imaging techiques used
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during the implantation.

To solve the problem of multiple available signals, it was assumed that one optimal

signal exists for each patient, having the highest significance with respect to tremor

detection. To find this channel, separability measures are calculated for each available

channel and all features. Subsequently, the signal with the best rating is selected.

This problem becomes more complex for cases when the channel has to be selected

for more patients with multiple available channels at the same time. The solution is

described in the Section 4.2.4.

4.2 Description of the classification process

This section describes the classification process step by step, with references to the im-

plemented functions.

To carry out the per-patient feature selection and classification, a PRTools pattern

recognition toolbox for Matlab, developed by the researchers from TU Delft [6] was

used. The methods implemented in this toolbox were combined with newly implemented

functions for classification result assessment and other related tasks.

The chart in Figure 4.2 shows the whole classification process, as implemented in

classification.m. The individual steps of the algorithm are described in the following

sections.

4.2.1 Input to the classification algorithm

The input to the algorithm, as shown in Figure 4.2, is formed by marked sections of

preprocessed data. All the files, carrying also information about the content in different

sections, are all first downsampled, LFP signals low-pass filtered, normalized in amplitude

and cut into sections, according to the file description. The whole preprocessing process

is described in Chapter 2.

4.2.2 Cutting the sections into chunks

According to Section 4.1.2 earlier in this chapter, the classification is done on short sec-

tions of the input signals, called chunks. These are produced automatically from the pre-
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Figure 4.2: A flowchart showing the classification process.
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processed signal sections using the implemented function parkinsonian chunks cut.m.

The chunks are stored in a data structure, carrying information about the original pa-

tient, file, channel and position along with the signals. Every chunk contains only one

LFP channel, which means more chunks are produced for one specific moment in patients,

where more simultaneous channels are available. This is done due to an easier handling

and assessment of the individual chunks and is taken into account in the consequent

processing. Apart from the LFP channel, every chunk also carries corresponding EMG

and accelerometer signals, if applicable. Even though this structure contains a lot of

redundant information (e.g. the section information could be derived from the original

file and position, as well as the patient can be derived from the file of origin), it turned

out to be useful, avoiding references to multiple data structures.

As for the chunk length, the number of samples necessary for the calculation of the

features has to be taken into account. This is true especially for the features based

on spectral bands, where the number of samples affects the precision of the calculated

spectrum. The number of samples used affects the accuracy of the result and should

therefore not be too low. Apart from spectral based features, the statistical features—

the higher moments especially—are reasonable only for higher numbers of samples that

makes the approximated distribution function more precise. On the other hand, a problem

of overseeing of some short-time effects arises for longer signal chunks.

Considering these aspects, multiple chunks lengths were tested and results compared.

The main decision was then done between 1 s and 2 s chunks, as shorter chunks can not

provide sufficient number of samples for feature calculation and, on the other hand, using

longer chunks causes the dataset too small for some patients, making the classifier design

impossible. Better classification results were achieved for chunks 2 s long, numbering

500 samples per chunk. This number seems reasonable to maintain sufficient accuracy

of feature calculation, as well as fast response and was therefore chosen for the final

evaluation. No chunk overlapping was used, as it would bring dependencies to the training

set and make the assessment of the results more complicated.

4.2.3 Feature calculation

Having all the data cut into short segments—chunks—the set of observations is ready to

be transferred from the time domain to the feature space. This is done by calculating

the whole set of 23 features for each individual chunk. Calculated features are then

transferred to a matrix, suitable for PRTools toolbox, as well as subsequent steps of the
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classification process. In this matrix form, every observation is represented by one row

of all the calculated features, while the corresponding class (tremor or non-tremor) is

carried in a special vector. It is necessary to keep in mind, that there are important

dependencies in the training set produced, formed by the parallel corresponding LFP

channels and multiple chunks, produced from one section.

Normalization of all the calculated feature values was done as a part of the classi-

fication process, recalculating the feature distributions to zero mean and unit variance,

which is desirable for an easier cross-feature evaluation and comparison.

The feature calculation and normalization process is done by the implemented func-

tions:

Parkinsonian get feature.m

Parkinsonian feat tomatrix.m

normfeatures.m

4.2.4 Significant feature selection

The set of designed features,described in the previous chapter, was based on the knowl-

edge of the dataset, as well as on existing solutions for other biomedical signals. However,

the actual relevance of the features is not known, unless tested on real data. A number of

tests has to be done on the individual features, that will unveil their relevance to tremor

detection. This can be achieved by characterization of their separability capabilities by

different measures. That is, how well can the respective feature distinguish between the

two target classes. Not only should the feature value be significantly different for the

tremor and non-tremor samples, but it should be consistent on each of the classes as well.

The output of this process will be a subset of features, having a proven significance to

the task. At later stage, this set can serve as a set of general descriptors for the tremor

task, from which a small number of features can be selected for each individual patient.

In order to make the resulting feature set versatile, all the available files were included

in the evaluation process. This condition should reduce the number of features necessary

to calculate, as well as ease the consequent per-patient feature selection.

The feature selection method consists of two main steps:

1. Selection of one LFP channel per patient

2. Selection of the significant features on the resulting set

The implementation of these two steps is described in the following paragraphs.
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Multiple-channel issue

One of the important issues, which had to be solved during the feature selection, was the

already-mentioned presence of multiple channels in some patients (Section 4.1.5). It was

necessary to select only one channel per patient to achieve a realistic evaluation of the

individual features. Recalling the characteristics of the It is presumed, that the relevalce

of some of the channels is significantly low, while higher for others. The solution to

this problem was to base the channel selection upon separability measures, determined

by suitable features. Obviously, the optimal channel selection should be indicated by

the highest class determination capability of the features. At this point, another problem

comes into account: The suitable features are yet to be selected. Moreover, there are more

patients with multiple channels available and the selection becomes even less specified.

The proposed solution consists of calculation of feature separability measures for all

possible channel selections on the whole set and then choosing the selection with the

highest possible ranking. As the feature selection is still to be done, the evaluation is

based on four features with the highest rank for each channel combination. The channel

selection with the highest average value of the 4 best features is then selected. The

selected comparison criterion was the AUC, as it provided easy-to-interpret evaluation

measure. For a better understanding of the channel selection process, the Figure 4.3

shows channel assessment values for all possible channel selections. Maximum value for

each series is marked with a red cross. Except for the worst feature measure, that plays

mostly just illustrative role in this figure, the other three measures give relatively stable

results. The average of the best 4 features was selected as the representative value for the

channel set and the set number 110 was selected. The apparent periodicity of the results

is caused by the channel-set generation method1. The total number of channel selections

is given by the multiple of all the possible channels for each patient (see Table 2.1), which

gives a total of 324 possibilities.

The channel selection process is implemented in the following functions:

parkinsonian select patchans.m

parkinsonian get patlfpchannums.m

generateposvectors.m

featauc.m.

1Only some of the neighboring samples differ in the selection of one channel.
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Figure 4.3: The results of the AUC measure over all possible channel se-

lections. The connecting lines serve shown just for improved

readability of the figure.

Statistical comparison methods

The task of selection of suitable feature features is complex and has no ideal solution.

Statistical assessment of the feature values is first of the possible approaches. It is based

on a presumption that probability density function (PDF) of a good feature can be viewed

as a combination of multiple PDFs, one per each target class. In case these distributions

overlap completely, the feature has no separating power. Assuming the pdfs to be a

normal (Gaussian) distribution, basic parameters—mean and variance—can be tested

for difference on the two classes. Several statistical methods exist to verify this property

with a specific confidence level. These methods are based on statistical hypothesis testing

and should provide relevant answer to the question of the parameter difference.

First, the paired t-Test was intended to be used. It is based on testing the hypothesis

that the feature values come from two normal distributions with different mean, one for

each target class. This can also be viewed as testing a difference distribution, produced

by subtraction of the two hypothetical distributions, for zero mean. Based on this test,

the hypothesis can be either verified or rejected at a selected significance level.

The main problem of the paired t-Test is that the two compared classes must be of
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the same cardinality, i.e. the same number of instances. This problem is very serious and

blocks use of this method for other cases. In this case, the tremor dataset contains unequal

number of sections per class and the t-Test can therefore not be used. Moreover, this

approach to statistical testing in classification application was reported to be unsuitable

[4]

The solution was found in another method—A Mann-Whitney-Wilcoxon test—which

is a non-parametric alternative to the paired t-Test and enables calculation for different

set cardinalities [20]. Generally speaking, the nonparametric methods are not based

on the assumption of normal distributions and are therefore more suitable for smaller

datasets, where this assumption is problematic. The Wilcoxon test compares ranks of

the data (order of values in this case) and tests the hypothesis that the data from the

two classes have equal means against the hypothesis that the means are different. The

output of this test is a p-value, providing a confidence measure of the comparison. The

Matlab implementation of this method, ranksum.m was used for the value calculation.

The last statistical method implemented was Fisher discriminant ratio, comparing

mean values and variances over the two classess, according to [22]:

FDR =
µ1 − µ2

σ2
1 + σ2

2

(4.1)

This feature was implemented in function fdr.m, but was excluded from the feature

assessment due to disputable assessment of the output values for small sets. Eventually,

the Wilcoxon rank-sum test remained as the only statistical method involved.

Other comparison methods

Apart from the discussed statistical comparison methods, which provide information

about the relevance of the particular features, the AUC measure was implemented to

assess the actual classification strength. It is based on the calculation of the Reciever

operating characteristic (ROC curve), which compares the true positive rate (sensitivity)

to the false positive rate (1 - specificity). The ROC curve is a common measure of the

class discrimination properties[22], which can be evaluated from the area below the curve

– AUC. This value will converge to 0.5 for a feature with low discrimination capability,

while on the contrary, the value will be closer to one for a good feature. The parameter

is calculated using the implemented function featauc.m.
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Figure 4.4: Calculated ROC curves for 3 selected features with different

discrimination abilities.

Combined feature evaluation

To gain an overall view of the individual feature performance, a combination of both

approaches was chosen. The adopted significance criterion requires specific level of confi-

dence at the Wilcoxon test (upper bound of the p-value) and minimum value of the AUC

at the zame time. This ensures the feature is both significant and has exhibits practical

separability properties as well. The actual values, together with the feature selection

results are presented in the next section.

The function parkinsonian feature assess.m was implemented to assist feature

assessment measures calculation for multiple features.

4.2.5 Outlier removal

The position of outlier removal in the algorithm may be considered disputable, as the

position before feature normalization would be expected. Nevertheless, to classify a

sample as an outlier, it is necessary to compare its value (i.e. the value of the respective

feature vector) to the rest of the dataset. At this point, a needles loss of samples could

be caused in case some of the features, used for outlier identification, had no significance

to the problem.

On the other hand, the position before the patient reduction (next subsection) serves
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to gain a higher level of generalization, so that the individual observation can be compared

with a more general set than just the reduced set of the patients, suitable for classification.

The outlier removal is carried out by a comparison of the feature values on individual

features from the significant feature subset. Then, the value of each sample is compared

to the distribution of the rest of the data, while single distribution per each class is

presumed. The difference from mean is expressed as a multiple of standard deviation

of the particular class. To maintain sufficient consistency of the set, a criterion has

to be adopted to exclude unusual observations with extreme values. These properties,

indicating extraordinary conditions during the recording, which could negatively affect

the classification process. It seems reasonable to compare not only a value of one feature,

but to employ multiple features. The actual threshold and group size chosen is presented

along with the outlier numbers in Section 4.3.1.

The outlier removal process is done by the function

parkinsonian filter outliers.m.

4.2.6 Patient selection

This step serves to set aside data of the patients that lack data in one of the two target

group and are therefore unsuitable for the classification process. This is done with the

help of the function parkinsonian get patnumsections.m.

The need of at least two sections in each class arises from the classification process,

described further: when one of the sections is left out for classifier testing, at least one

section of the same class must remain in the training dataset.

4.2.7 Patient cycle

This section of the chart in Figure 4.2 refers to a cycle, where classifier is trained and

evaluated for each individual patient. Due to the lack of data (chunks coming from the

same section are considered dependent and are kept together – see Section 4.1.3), the

leave-one-out method was selected for the classifier evaluation.
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4.2.8 Leave-one-out cycle

The method consists of a main cycle, in which the data is divided into a testing set of one

section, and the rest, providing the training data. The classifier is trained on the training

set and the classification of the testing sample is recorded. All possible selections of the

sets are tested iteratively and the classifier error is calculated according to the gathered

information. This method should give a good error estimate and is suitable especially for

small datasets, due to the high computational complexity (high number of folds) [22]

In terms of this study, one sample is represented by all observations coming from the

same section. As there are very few sections for each patient, this approach seems to be

very suitable with a maximum actual number of 8 iterations per patient (Patient 1). A

special implementation of the classifier evaluation is needed, due to the presence of multi-

ple samples in each section. In this case, the number of erroneously classified samples was

calculated for each algorithm fold and the overall error was weighted by the total chunk

number. Together with the class information about the testing sample, this information

can serve to calculation of all the main error measures.

4.2.9 Feature selection

The selection of a general set of features, suitable for the tremor detection, was selected as

described in Section 4.2.4. This selection was based on the whole dataset, which should

provide the output set with higher versatility and applicability for other possible patients,

not covered by the data. This selection does not reflect the dependencies within the set,

as only individual features were assessed. And there are obvious dependencies in the test,

for example the features acpeaks and acratio describe the same property of the signal,

only with little different means. To carry out the classification successfully, a selection

of features with little dependencies is desired. Moreover, the number of features in the

significant feature set is relatively high (14 features), while only few of them should be

sufficient to carry out the detection for the particular patient. Summarized, the described

aspects lead to an effort to select a low number of highly significant features with low

level of a reciprocal dependency, suited for the given patient specifically.

Many methods exist for this purpose, based on different approaches and assessment

methods. In this work, the algorithm of sequential backward feature selection was

adopted, which is implemented in the PRTools toolbox under the function featselb.m

[6].
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The backward algorithm starts with the full feature set. Firstly, value of a selected

criterion is calculated for the entire set. In the next step, all possible subsets with one

removed feature are produced and the criterion calculated. A subset with the best ranking

is selected and the process continues until a desired number of features is achieved [22].

To proceed with this algorithm, two decisions have to be made and the following has

to be selected:

• Assessment criterion

• Feature number

A great majority of feature set assessment methods the PRTools toolbox offers was

tried and the sum of estimated Mahalanobis distances was selected, according to the clas-

sification results achieved. The Mahalanobis distance takes into account correspondences

in the vector elements through the use of covariance matrix and gives therefore more

realistic results for multiple feature estimation than would the Euclidean distance in the

same place.

The optimum number of features should be possible to find according to the recorded

results of the feature-set assessment, done during the backward selection algorithm. The

value of the calculated criterion for a group of specified size is shown in Figure 4.5. The

optimal feature number should be rather small (Occam’s razor), while its rank reasonably

high. The number should therefore be determined at the end of the steep part of the

graph in the figure. Apparently, the optimum point varies among different patients.

Based on the rules described, the optimum should be about 3 for patients 1 and 9, 5

for patient 3 and about 10 for patients 5 and 10. Nevertheless, after inspection of the

classification results for different settings of the feature selection algorithm, the number of

5 parameters together with Mahalanobis criterion were evaluated as the best combination.

This settings produced the best overall results.

To achieve an unbiased method evaluation, the feature selection is included in the

leave-one-out cycle, being done only on the training data in each step.

4.2.10 Classifier training

Once the set of features is selected, classifier training begins on the training samples.

Multiple classifier types were included into the process, listed as follows:

• Parzen classifier—a classifier based on Parzen window estimation [5]
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Figure 4.5: The intra-class Mahalanobis distance for the best groups of

the specified size, as calculated by the backward algorithm.

The connecting lines are shown to improve readability of the

graph (measured values at the integer points).

• K-Nearest-neighbors classifier with automatic selection of k

• Support vector classifier with linear kernel

• Neural network with one hidden layer of 3 units

• Binary decision tree with pruning

For a successful design of some of the classifier types, setting of prior probabilities is

necessary. In real case, these should be based on the probability of tremor occurrence,

i.e. the ratio of time with registered tremor occurrence to the time without. As this

probabilities are unknown and can not be derived from the dataset (the set consists of

selected periods from a longer-term signal), the probabilities for tremor and non-tremor

were assumed to be even. This should be reconsidered and corrected in further work on

this problem using wider data.

The training process, as well as the classifier evaluation was realized by the PRTools

toolbox. A brief description of the included classifiers can be found in the following

paragraph.
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Parzen classifier

This type of classifier is based on the probability density estimation by Parzen windows.

Each instance of the training set is fitted with a windowing function of specified parame-

ters over the feature vectors. This way an N-dimensional probability-density-function is

estimated, given a feature vector of length N. When this is done, a threshold is found,

dividing the target class (high densities) from the rest of the data. The properties of

the classifier depend highly on the selection of the windowing function used: a smaller,

more precisely specified windowing function will lead to better fitting of the classifier to

the training set, while better generalization properties will be found for wider functions

[5]. In this case, the selection of the windowing function was done automatically by the

PRTools toolbox, based on the training set.

PRTools: parzenc

K-nearest-neighbors

Nearest neighbor classifier divides the feature space into sections, based on the class of

the closest example of the training set. When a new instance is presented to the classifier,

it is assigned a class according to the section it falls in, based on its feature vector (i.e.

it is assigned the class of the nearest training sample). This is further generalized in the

k-NN form, where the classification is based not on the proximity of one, but multiple

training example, providing the algorithm with more stable results. Again, the successful

classification depends on the selection of k. This decision is done by the PRTools toolbox,

based on the leave-one-out error on the training set [6].

PRTools: knnc

SVC classifier

Support vector classifier (or ”Support vector machine”) is based on optimal fitting of a

specified kernel function to the training data. The optimality is given by the maximum

distance of the training samples to the dividing border, also taking penalties for possible

classification errors into account (when the dataset is not separable by the selected kernel

function). The function was trained with linear kernel, giving subjectively best results.

PRTools: svc
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Neural network classifier

The neural network classifier included in the set is based on a three-layer architecture

with one hidden layer of 3 elements. During the training, fitting of the output of the

classifier to the training examples is done by tuning weights of the individual network

elements with back propagation.

PRTools:bpxnc

Decision tree

In the decision tree classifier a specific parameter is chosen in each step of the algo-

rithm, creating several branches that are further developed. A binary decision tree was

included in the set, meaning there are two branches in each node. To maintain better

generalization, pruning was introduced into the process, removing nodes with insufficient

significance.

PRTools: treec

4.2.11 Classifier testing

When all the classifiers from the test are trained on the training data, testing on the

testing set starts. This way, the classifier is presented with unseen data (data it was not

trained on), which should provide estimation of the classifier performance in a real appli-

cation. As mentioned before (Section 4.1.2), one sample of the dataset is represented by

one section of the original data, divided further into shorter sections – chunks. Therefore,

despite the use of the leave-one-out method, the training set is formed by not one, but

several training feature vectors (instances). To calculate the errors, the testing set is

classified by each of the classifiers and the number of correctly and erroneously classified

samples is counted and stored. This is done by the implemented function classerror.m,

which uses PRTools internal classification function labeld.

4.2.12 Classifier evaluation

The evaluation of the classifier performance comes after all the cycles of the leave-one-out

method are finished and the error for each of the possible training-testing set selection

is known. As the instance numbers differ section to section (the original signal sections

have different lengths), it is necessary to take this fact into account. Therefore, the total
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number of incorrectly classified chunks is calculated for each class, divided by the total

relevant chunks count. This way, several common classifier performance measures are

calculated, including:

• Accuracy: TP+TN
P+N

• Sensitivity: TP
P

• Specificity: T
N

N and P refer to the total number of samples from the negative (non-tremor) and

positive (tremor) class, respectively, while TN and TP stand for the correctly classified

samples for each class.

Apparently, apart from the accuracy measure, this gives an overall measure for the

classifier performance, sensitivity will be of a great interest in the results evaluation, as

it describes the ratio of overseen tremor instances to their total number. It is more likely

to respect erroneously classified non-tremor samples (the DBS device runs without need)

to a reasonable extent, than overseen tremor, which would mean the stimulation device

does not fulfil its purpose when needed.

The calculation of the classifier evaluation metrics is carried out by the implemented

function classerrm.

4.3 Experimental results

Having described the dataset, feature calculation methods and aspects of the classification

process, the experimental results of these steps will be presented in this section.

4.3.1 Feature selection

The results of two corresponding steps are presented in this section: the general, individ-

ual feature evaluation, based on the whole data, and results of the feature group selection,

done during the iterations of the leave-one-out method on one patient training set.

When combined, the results from both feature selection steps provide valuable infor-

mation about the strength of individual features.
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Individual feature evaluation

The individual feature evaluation was done on the whole dataset, including data from all

the 10 patients. The aim of this step was to determine a general test of features, suitable

for the tremor detection task.

The feature evaluation was based on calculation of two feature performance mea-

sures: Wilcoxon test and AUC (Section 4.2.4). Only the features passing the following

criteria passed the process: Wilcoxon test result (P-value) lower than 0.001 (statistical

significance above 99.9%) and AUC above 0.6.

These criteria were considered as sensible with regard to the feature set and a suffi-

cient number of 14 out of 23 features passed the test. The evaluation results for the whole

feature set are presented in Table 4.1. The results of Wilcoxon test, Fisher discriminant

ratio and AUC are shown. The P-value represents the result from Wilcoxon test and can

be interpreted as a significance level. It is therefore important to evaluate mainly the

exponent of this parameter, which gives the basic information about the feature perfor-

mance. The division between features selected as significant and the rest is indicated by

the horizontal line. The fmax column informs about the upper frequency bounds where

applicable. A visualisation of the results is provided in Figure 4.6.

Making a short investigation of the result, a correspondence can be noted between

the different feature measures. While high value of AUC and FDR is required, a low

P-value signifies a high confidence of statistical relevance. It can be noted, that fea-

tures with high AUC usually have low P-value (high negative exponent) and also a high

FDR. Nevertheless, P-value together with FDR were considered sufficient for the feature

selection.

Note that the best features were coherently evaluated as very good by all the three

implemented metrics, reaching the confidence level of the order of min 85 and AUC 0.92

in the best case. Unlike the AUC and Wilcoxon test result, the Fisher discriminant

ratio was not as coherent with the other two ratings which was one of the reasons for its

exclusion from the assessment criterion.

It is worth to be mentioned that the selection of significant features was very stable

over the tested range of chunk lengths between 0.5–4 s, differing in maximum of one

feature. This fact points to a good level of time-invariability of the features. The rating

of the best feature was very high on the whole dataset and a high rate of selection of

these features during the feature-group selection is to be expected.

With the exception of the spectral band 3 (2–3.5 Hz), all the spectral bands passed
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the test, as well as the specrep feature, characterizing the repetitivity in the spectrum.

Both acratio and acpeaks features, based on the autocorrelation function of the signal,

passed the test with a very high ranking. From the other feature types, only the maxdiff

feature together with variance passed the test.

Average of the first differential together with fractal entropy estimates and higher

order statistical moments ended up at the end of the ranking table and the values achieved

show, that their excluxion from further testing is well reasoned.

Looking at the results once again, it is clear that no feature failed the adopted signif-

icance criterion only due to a low P-value. Anyway, except for the zerocross feature, all

the excluded features failed at both parts of the criterion.
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Figure 4.6: Individual feature evaluation results. Note the correspondence

between high P-values and low AUC (close to 0.5), as well high

FDR and high AUC (P-value very low in these cases).
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Table 4.1: Individual feature evaluation results (whole dataset)

id featurename fmax P-value FDR AUC

11 specbands4 5,5 8,52E-85 0,80 0,92

20 acpeaks 2,57E-72 0,97 0,89

8 specbands1 1 1,51E-46 0,67 0,81

21 acratio 1,14E-44 0,07 0,80

13 specbands6 10 8,36E-43 0,39 0,79

12 specbands5 7 1,28E-23 0,35 0,71

18 specentropy 1,47E-21 0,38 0,70

15 specbands8 16 2,37E-16 0,14 0,68

4 maxdiff 7,45E-16 0,62 0,67

16 specbands9 20 2,61E-12 0,14 0,65

14 specbands7 12 2,96E-11 0,22 0,64

17 specrep 2,21E-11 0,23 0,64

9 specbands2 2 1,02E-10 0,18 0,64

5 variance 2,31E-08 0,01 0,62

2 zerocross 2,11E-05 0,07 0,59

1 power 1,16E-03 0,04 0,57

10 specbands3 3,5 1,74E-03 0,19 0,57

7 kurtosis 1,52E-02 0,17 0,55

6 skewness 2,29E-01 0,06 0,53

19 entropy 2,62E-01 0,00 0,52

22 fractdim 2,86E-01 0,08 0,52

23 boxcount 5,25E-01 0,07 0,51

3 avgdiff 7,88E-01 0,03 0,51



CHAPTER 4. CLASSIFICATION 55

Feature group selection

Seeing that the individual feature selection ignored dependencies between the features, it

is interesting to mention the results of the feature group selection as done by the backward

algorithm during the cycles of the leave-one out method. A set of 5 features was selected

on the training set in each of the iterations, producing a total number of 27 selections.

Being done on rather small subsets of the training data (the selection is done on sin-

gle patient’s training sets), the table provides an important measure of the classification

power. As a product of a backward algorithm, the selections take also the in-set de-

pendencies into account. Different aspects of the generated feature-selection set will be

discussed further in this text.

The Table 4.2 shows the number of occurrences of the features in the total of 27 feature

selections done by the backward algorithm during the classifier training. The values of

the measures P-value and AUC done during the initial significant feature selection are

shown along for comparison. It can be noted that the rating of the best (mostly selected)

features in the original significance tests is very high with a high value of AUC and

high negative exponent of P-value. The full list of selected features can be found in

Appendix A.

Seen from the results in the table, the best features were acpeaks—a feature based

on autocorrelation function of the input signal, selected in more than 60% cases. It

was followed by specbands4, capturing the energy level in the parkinsonian tremor band

3.5–5.5 Hz. Considering the third most selected feature—spectral band 0–1 Hz—it is

apparent that the spectral properties of the signals played the most important role.

4.3.2 Outlier removal

Based on the observation of outlier counts for different features, the filtering criterion was

set to exceeding of the per-class standard deviation at least 3 times in at least 2 features

at the same time. This lead to removal of 61 outliers, out of which 25 belonged to tremor

and 36 to non-tremor class. The total number of chunks was 1671, making the removed

outliers 3.65% of the dataset. Outlier counts for different features and different criteria

are shown in Table 4.3. The distance of the sample value from the mean value of the

respective class, measured as a multiple of standard deviation was the measure calculated

for each feature separately. The number of outliers, for which the criterion of 3σ distance

was exceeded for a specific number of features is shown in the group column. No samples
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Table 4.2: The number of occurences of the specific feature in the feature

sets, selected in the leave-one-out-cycles, together with the re-

sults of individual feature evaluation from Table 4.1.

feature freq. [Hz] occurrences P-value AUC

20 acpeaks 17 2,57E-72 0,89

11 specbands4 3,5–5,5 16 8,52E-85 0,92

8 specbands1 0–1 13 1,51E-46 0,81

12 specbands5 5,5–7 13 1,28E-23 0,71

16 specbands9 16–20 13 2,61E-12 0,65

5 variance 12 2,31E-08 0,62

4 maxdiff 10 7,45E-16 0,67

15 specbands8 12–16 7 2,37E-16 0,68

18 specentropy 7 1,47E-21 0,7

21 acratio 7 1,14E-44 0,8

9 specbands2 1–2 6 1,02E-10 0,64

13 specbands6 7–10 6 8,36E-43 0,79

14 specbands7 10–12 5 2,96E-11 0,64

17 specrep 3 2,21E-11 0,64



CHAPTER 4. CLASSIFICATION 57

that would exceed the criterion at more than 3 features at the same time were found.

Table 4.3: The number of outliers, found for a certain criterion setting and

feature count, shown for different features.

single f. groups (3σ)

feature 3σ 4σ 1 2 3

4 maxdiff 8 7 0 7 1

5 variance 12 11 7 4 1

8 specbands1 0 0 0 0 0

9 specbands2 11 2 11 0 0

11 specbands4 14 5 11 3 0

12 specbands5 33 18 21 10 2

13 specbands6 35 14 26 9 0

14 specbands7 27 8 18 9 0

15 specbands8 41 29 13 23 5

16 specbands9 50 29 23 23 4

17 specrep 25 13 6 16 3

18 specentropy 2 0 0 2 0

20 acpeaks 0 0 0 0 0

21 acratio 13 9 7 4 2

number of outliers 271 145 143 55 6

4.3.3 Classification

Eventually, this section presents the classification done. The evaluation for each classifier

was calculated from all the leave-one-out cycles, carried out for each patient as described

in Section 4.2.12. The results of the test for each of the 5 patients with sufficient data

are shown in Table 4.4. The target (positive) class was tremor.

Evaluating the classification results from Table 4.4, accuracy, carrying information

about the total ration of correctly classified training samples, is the first parameter to

inspect. It can be noted, that the overall classification result, measured by this property
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Table 4.4: The overall classification results for different patients and clas-

sifiers

Patient classifier Accuracy specificity sensitivity

1

Parzen 0,982 1,000 0,923

k-NN 0,982 1,000 0,923

SVC 0,973 0,988 0,923

MLP 0,964 0,988 0,885

Tree 0,938 0,942 0,923

3

Parzen 0,875 1,000 0,769

k-NN 0,861 0,939 0,795

SVC 0,736 0,667 0,795

MLP 0,903 1,000 0,821

Tree 0,875 0,939 0,821

5

Parzen 0,657 0,200 0,733

k-NN 0,714 0,000 0,833

SVC 0,800 0,000 0,933

MLP 0,743 0,200 0,833

Tree 0,743 0,200 0,833

9

Parzen 0,210 0,358 0,118

k-NN 0,080 0,113 0,059

SVC 0,022 0,019 0,024

MLP 0,123 0,038 0,176

Tree 0,043 0,000 0,071

10

Parzen 0,969 1,000 0,941

k-NN 0,969 1,000 0,941

SVC 0,969 1,000 0,941

MLP 0,844 1,000 0,706

Tree 0,969 1,000 0,941
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was very high for patients 1, 3 and 10, moderate for patient 5 and very poor for patient

9.

However, considering the target application, sensitivity is the main parameter of in-

terest, showing the ratio of correctly classified tremor samples. A sensitivity value very

close or equal to one is necessary for a proper, applicable tremor detector. According

to the results, most of the tremor samples were correctly classified for patients 1,3,5,10,

while almost no tremor was detected for patient 9.

At last, specificity, the last parameter shown in the table, shows the ratio of correctly

classified examples from the non-target class—non-tremor. This value shows how well the

classifier performs on the non-tremor parts of the dataset and can be viewed as a measure

of the stimulation time that could be saved. The values of specificity were outstanding

for the patients 1, 3 and 10, while almost all non-tremor samples were misclassified for

the patients 5 and 9.

The best possible value of sensitivity was aimed during the classifier design process,

while keeping the specificity reasonably low. The classification results are discussed in

the following section.
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4.4 Experimental results discussion

After the listing of the experimental results, a discussion of these is undertaken in this

section. Descriptions of links and dependencies, observed in the classification results, are

given together with discussion of possible impact of the low amount of data, contained

in the dataset.

4.4.1 Aspects implied by the properties of the dataset

In agreement with the numerous notices throughout the whole work, the main problem

of the classification issue was the rest of the data. As seen in the table Table 2.1, the

number of sections was at the minimum limit—two sections for each class—for most of

the patients included in the set. The lack of the data even caused the exclusion of half

of the present patients from the classifier testing and their data was used only for the

feature selection.

The lack of the data affects the quality and precision of the error estimates too, as a

different classification of a single chunk changes the classifier error to the extent of several

percent, making the results unstable and decreasing their credibility considerably.

Another aspect—the unfixed amplitude scale of the data—induced loss of a number of

simple features, such as the peak-to-peak value, that belong to the first-choice parameters

during the processing of any signal. These parameters could be revealed to carry impor-

tant information of tremor and non-tremor states and help to achieve better classification

results. Although the absolute value of the signal can be highly patient-dependent, being

affected by the properties and exact position of the electrode tips used, the value could

be compared for each patient separately. Ideally, this could have been done in this work

as well, had the very high differences in amplitude scale across the different patients not

made the normalization necessary in order to work with the data as a consistent dataset.

4.4.2 Feature selection

There are several debatable aspects in both steps of the feature selection: The general

significant feature selection and the feature group selection done prior to the classifier

training. Firstly, the former will be discussed.
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Feature significance

As described in the process description in Section 4.2.4 of this text, the individual fea-

ture selection consists of two steps: selection of one channel per patient and the feature

evaluation itself. In both processes, the selection of a suitable criterion has very great

impact of the calculated results. The choice of a suitable criterion has to be done prior to

either of these methods can be performed. There is no clear solution to the selection and

the only relevant measure can be the estimated error of the classification process. As the

only way to finding the optimal settings of the criterion is trying all the possible methods

and values, the optimal setting is impossible to find, due to the very high computational

complexity of such task. Thus, the consideration of these aspects led to selection of AUC

criterion for both tasks, based mainly upon its simplicity and low demands on the set

size (no statistical assumptions necessary).

The selection of significant features is then supported by the Wilcoxon test, which

evaluates other aspects of the set. Nevertheless, the Wilcoxon test, as well as the calcu-

lation of AUC is based on the ordering of the instances according to their value, which

makes the results correlate very well. On the other hand, it also causes a lower credibil-

ity of the selection. The the significance of the selected method can be affirmed by the

comparison of Fisher discriminat ratio, based on a different assumption of a normally dis-

tributed probability density for each class. The values of this measure correlate well with

the results of the other measures, especially for the best rated features. The selection of

methods for feature significance evaluation can therefore be considered consistent.

Alongside with the aspects already mentioned, credibility of the feature selection

depends highly on the data, on which the selection is performed. To achieve the highest

possible versatility of the feature set, it was chosen to include all the available data and

not to perform the selection on training and testing set. This was reasoned mainly by the

lack of data in both classes for some of the patients, which would cause their complete

exclusion from the set, while they can provide important information that would be

lost. The step of significant features should be seen as an attempt to determine the set

of generally applicable features for the tremor task, rather than determination of exact

feature ranking. Even though some of the rankings presented seem impressively high

(e.g. the AUC and P-value for the three best ranked features), the method chosen cannot

satisfy criteria for a highly consistent test and the values should be considered relative.

However, a high significance of the best features in a real test is very expectable.

Generally speaking, the exclusion of the features with very low or almost no observed
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significance provides better performance to the classification and further feature-selection

algorithms, in which the number of available features commonly increases the number

of necessary calculations vitally. As such, this step provides an important link in the

process and also enables almost half of the dataset to be taken into account.

As for the channel selection, a big drawback of this method is not taking the actual

position of the electrode in the brain into account. This is caused by the lack of this

information in the input data and it is highly probable, that a channel selection, done

by an experienced physician could lead to better results. However, the rules for opti-

mal channel selection for tremor detection are not yet available, and thus the proposed

approach, based on estimation of the tremor-detection power of the individual channel

offers a consistent solution to the problem, being suitable for real application as well.

Again, the selection of a suitable measure comes into play, which can hardly be answered

without a test on wider dataset.

Similarly to the evaluation criteria, the adjustment of the individual features affects

the results as well. Due to the number of possible decisions in the whole process, the

tuning of the parameters of individual features becomes complicated, as the result is

influenced by many factors and a contribution of the single feature is hard to track.

Thus, the failure of some of the features in the significance test can be caused by their

improper setting.

Inspecting the actual values of the selected features, several notes can be done on

the ranking of some of the features. Firstly, both fractal features failed the test. This

can be caused by an insufficient length of the input sequence (2s chunk length creates

input sequences of 500 samples), as well as the simple insignificance of these features to

the task. The low sample level can also be reason for the failure of the higher statistical

moments (kurtosis, variance), as these fine properties of the probability density function

require a high number of samples to provide sensible results. On the contrary, the most

basic of the statistical features—variance—ended up as the last of the included features

and is therefore very likely, that the statistical features have simply no significance to the

problem. Further, entropy and power ended up at the end of the list as well. Unfortu-

nately, no general conclusions can be done about them, being the only features of their

kind. As for the highly ranked features, it is reasonable to evaluate these according to

the results in the feature group selection, which is done on more specific data and carries

more information about their actual importance.
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Features selected in groups

Several conclusions can be done about the features, based on the number of their oc-

currences in the classification sets. Unlike the feature significance measures, the group

selection was calculated only on training data for each patient and the consistency of the

selected feature groups over the iteration of the classification algorithm can provide a

lot of information about the stability of the method. The respect the adopted backward

algorithm pays to the feature dependencies is also important to be noted.

The first conclusion about the features, based on the occurrences in the Table 4.2 is

that the most selected features—acpeaks and specbands4—as well as the following ones,

reached a very high rating in the significant feature selection, done on different and wider

data, as well. Moreover, there were no completely unselected features and it can be

therefore concluded, that the significant feature selection is with these results in a great

correspondence and therefore seems to be done suitably.

The tremor frequency seems to play an important role in the dataset, according to

the features at the top positions in the occurrence table—-acpeaks and specbands 4 (3.5–

5.5 Hz)—which both utilize the tremor frequency. On the on the other hand, at least one

of the tremor-frequency based features (specbands4, acpeaks or acratio) was selected in

22 out of 27 cases, which indicates the tremor frequency is not a measure suitable for all

the recordings.

The question on presence of the tremor frequency in the Parkinsonian LFP signals

remains the greatest question of this work and should definitely be further researched on

wider data.

Generally, based on the feature evaluation data, the frequency spectrum has obviously

a key meaning for the tremor detection, with main points of interest in the tremor (3.5–

5.5 Hz) and lowest (0–1 Hz) bands. Other most important bands were identified in the

5.5–7 Hz and 16–20 Hz. The former could be caused also by the variance of the tremor

frequency from patient to patient. The main band of this apparent spectral peak was

registered mainly in the range 3,5-5,5 (a sharp peak at a frequency somewhere in this

range), but can probably differ even more for other patient. The main frequency of most

tremor recordings is carried by the tremor frequency and its harmonics. On the contrary,

the registered spectrum shape of the non-tremor recordings seemed to be very flat with a

high peak close to zero, which is probably caused by the lack of other spectral components

and the performed spectral normalization, recalculating the sum of the whole spectrum

to one.
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Inspecting the individual selected feature groups, the selection varies from one training-

testing set selection to another, which is probably caused by the lack of the data. Nev-

ertheless, there are high overlaps between the selected sets and just very few outlier sets

can be found, differing highly from the others for the same patient. The differences are

caused by the high differences between the training sets, composed of just very few sam-

ples. The same presumption can be derived about the classification error, which varied

highly between the different selections of the training set.

4.4.3 Classification

Before starting the discussion of the classification results, let us recall the aim of this

work. The final applied tremor detection device should reduce the time of stimulation

applied to the human brain stem by switching the stimulation on demand, only in periods

where necessary. A very important requirement is that the reduction of stimulation time

should cause no noticeable harm to the efficiency of the therapeutic process, meaning

that any starting tremor should be captured early enough for the stimulation to take

effect. This way, the patient experience should remain unchanged, while the battery life

of the device could be improved significantly.

In terms of the evaluation of the classification results, the reliability of the detection

can be estimated from the sensitivity parameter, which should be very close or equal

to one in order to meet the requirement of an unchanged patient experience. On the

other hand, the energy-conserving ability of the detection algorithm can be read from

the specificity measure. A high specificity would mean no unnecessary stimulation, while

high sensitivity would mean a great reliability of the system. Unfortunately, these two re-

quirements are antagonistic in classifier design: moving the decision hyperplane towards

higher sensitivity will cause lower specificity (more false positives) and vice versa. A

limit exists for each specific classification method and problem, causing a certain achiev-

able classifier performance that can not be exceeded, assuming a reasonable level of the

important generalization properties of the classifier are kept.

In order to satisfy the target application, the classifiers should be set for a very high

sensitivity, keeping just a reasonable level of specificity. This was attempted during the

classifier design process, even though not fully achieved. Comparing the results in 4.4,

a considerably good performance can be observed for patients 1,3 and 10, where the

sensitivity achieved was in the range of 0.82–0.94 while specificity was as high as one.

According to what was discussed above, the classifier threshold could be shifted in order to
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increase sensitivity at the expense of lower specificity. To achieve this shift, a specialized

classifier design would be necessary, altering the evaluation criteria. This step is rather

complicated and was therefore not carried out in this classification, which was designed

to give a rough overall idea about the possible results.

As for the other patients, the results were inferior for patient 5, for which all the

training samples were classified as tremor, causing the specificity goes to zero. This

means there would be no benefit in application of the method for this patient. Inspecting

the original LFP files, an important fact was discovered about the data of this patient:

all the sections used come from just two files – the ones available. Both these files record

a tremor onset, starting with a low tremor activity and ending with a full tremor. The

non-tremor section was taken from the signals before the assumed tremor onset, while

the tremor signal was taken from the recording later in time. As the tremor onset is a

process of certain duration and progress, determination of the exact onset point is hardly

feasible. Therefore an unused section was marked around the assumed onset to prevent

eventual contamination of the sections by the properties of the opposite class. However,

the determination of the tremor onset was done subjectively, based on the corresponding

EMG signals and it is possible that the differences between the two final sections produced

were to low for the general feature set to capture. This is a very optimistic explanation,

suggesting the tremor could be captured even before the available recording started. On

the contrary, the results can be simply caused by the lack or non-homogeneity of the

data.

Another patient with very poor results was patient 9, for whom the classifier performed

much worse than would a random guess, classifying almost all the samples incorrectly.

This reflects probable high inconsistency of the data for this patient, causing the prop-

erties of the training set change extremely from iteration to iteration. Inspecting the

original LFP time signals for this patient, no significant spectral components were found

in them and all the spectra exhibited approximately the same form, no matter which

class they originated from. At this point it is reasonable to question the proper recording

and description of the data was done, as the signals differ very highly from the rest of

the dataset. Unfortunately, no satisfactory answer can be offered, according to the in-

formation available. The last step of the classification process, which was intended to be

done, was the classification of the whole onset recordings for patients where the data was

available. In this process, original file would be divided into highly overlapping chunks,

indifferent of the tremor marks. Then, a previously trained classifier for the patient would

be used to classify the chunks and the output classification would be shown together with
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the time series. This way an easy-to-evaluate idea of the actual performance of the system

could be gained. Unfortunately, the classification results were very bad for the only two

patients, where the onset recordings were available (5, 9) and the intention could not be

carried out.

4.5 Chapter summary

In this chapter, classification has been carried out on the dataset, using the features

described in Chapter 3. The feature set was subjected to a two-fold evaluation: In the

first step, the features were evaluated individually on the whole 10-patient dataset and

their overall significance with respect to the tremor detection was estimated. In the second

step, the power of the features was evaluated according to the selection done on single

patient data in multiple runs of the classification cycle. The results of both classification

and feature evaluation have been discussed: the spectral bands 1 and 4, together with the

acpeaks feature were the most significant ones. The classification achieved good results

for patients 1,3 and 10, while for the patient 5 and 9 the results were poor and the method

failed.



Chapter 5

Conclusion

A novel approach to the detection of tremor in Parkinsonian patients’ recorded local field

potentials of the basal ganglia has been presented in this work. Features of different kinds,

including temporal spectral, based on the autocorrelation function, information theory

or fractal dimension estimation have been evaluated on a 10-patient dataset, selected out

at the beginning of the work.

According to the classification results, the classifier performance was very good for 3

out of 5 patients, with sensitivity up to 94% and specificity equalling one. The whole

suggested method seems to be a suitable solution for tremor detection. However, some

steps could be markedly simplified by additional knowledge about the origin of the files

(e.g. the channel selection). Further knowledge could also lead to the exclusion of gen-

erally unnecessary steps in the process, providing possibly more information about the

problem. The amplitude normalization of the time series can be seen as a good example

of such step.

Major role of spectral properties of the LFP signals has been confirmed by evaluation

of the single features as well as feature selection during the classification process. This

affirms the previous research on the topic [16]. The importance of the spectral properties

was found to be superior to other possible approaches, leaving the importance of the

signal variance and maximum of the first differential for discussion. Other approaches,

such as entropy or fractal dimension were found very improper for the task in this test.

A way of simple detection of tremor presence, based on the autocorrelation function,

has been developed and successfully acknowledged. The acpeaks feature, implementing

this approach was, the most frequently selected from all the available features. Its separa-

bility measure ranking reached high values as well. This approach should bring a simple

and reliable detection, given the tremor frequency is present in the LFP signals of the
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given patient. However, despite the very high occurrence of the tremor frequency in the

dataset, wide applicability of this theory is yet to be approved.

The lack of training data can be seen as a major drawback of this work, affecting

the accuracy of the classification results radically. Use of a wider dataset should provide

more relevant results, especially in the classifier and feature-group selection phase, which

suffered from the lack of data most. The results of individual feature evaluation, done on

a wide 10-patient dataset, and further evaluation training subsets correlated very well.

This indicates a probable good general applicability of the method to wider population.

5.1 Further work

Many of the problems discussed in this thesis were connected with lack of suitable data or

description. This affected the accuracy and made the evaluation impossible for some of

the patients. Furher work should therefore be done on wider data, including more patients

and more patient data as well. Another possibility, that could simplify the process, would

be obtaining more information about the recording conditions. More exact information

about the electrode position could provide better understanding and easier handling of

the signals.

As the most successful features were based on the occurrence of tremor frequency in

the STN signals, further work should be aimed to prove presence of this frequency in the

signals of more patients. Proving the presence of this frequency for at least a group of

patients would mean a relatively simple way to detect tremor exists.

Apart from further research on wider data, the reasons why the method did not work

for some of the patients should be further researched. Possible causes such as absence of

the tremor frequency or erroneous recording should be either proved or rejected.
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Appendix A

Selected feature groups

I



APPENDIX A. SELECTED FEATURE GROUPS II

Table A.1: Feature groups as selected by the backward algorithm in the

individual iterations of the leave-one-out method

Patient Selected features

1

4 11 14 20 21

11 12 18 20 21

11 12 18 20 21

4 11 12 20 21

11 14 18 20 21

4 11 12 17 20

11 12 16 20 21

8 11 12 18 20

3

8 9 13 15 16

5 11 13 14 20

5 8 12 16 20

5 8 16 18 20

5 8 16 18 20

5

8 9 11 12 16

4 9 11 12 13

8 12 15 16 17

4 5 8 12 16

4 5 11 12 15

4 9 11 12 15

9

4 5 8 11 15

4 8 9 15 16

4 5 8 14 18

8 11 14 16 20

10

5 13 16 20 21

5 8 9 11 20

5 13 15 16 20

5 13 16 17 20
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