Detail of the student project

List
Topic:Evoluční algoritmy a aktivní učení
Department:Katedra kybernetiky
Supervisor:prof. Ing. RNDr. Martin Holeňa, CSc.
Announce as:Diplomová práce, Semestrální projekt
Description:Evoluční algoritmy jsou v posledních 20 letech jednou z nejúspěšnějších metod pro řešení netradičních optimalizačních problémů, jako např. hledání nejvhodnějších dokumentů obsahujících požadované informace, objevování nejzajímvějších informací v dostupných datech či další typy optimalizačních úloh, při nichž lze hodnoty cílové funkce získat pouze empiricky. Protože evoluční algoritmy pracují pouze s funkčními hodnotami optimalizované funkce, blíží s k jejímu optimu podstatně pomaleji než optimalizační metody pro hladké funkce, které využívají rovněž informace o gradientu optimalizované funkce, případně o jejích druhých derivacích. Tato vlastnost evolučních algoritmů je zvláště nepříjemná ve spojení se skutečností, že empirické získání hodnoty optimalizované funkce bývá obvykle značně nákladné i časově náročné. Evoluční algoritmy však lze podstatně urychlit tím, že při vyhodnocování funkční hodnoty optimalizované funkce používají empirickou optimalizovanou funkci jen občas, zatímco většinou vyhodnocují pouze její dostatečně přesný regresní model. Právě přesnost modelu určuje, jak úspěšnou náhražkou původní empirické funkce bude. Proto se po získání každé nové generace bodů, v nichž byla empirická funkce vyhodnocena, model zpřesňuje opakovaným učením zahrnujícím tyto body. Lze však jít ještě dále a již při volbě bodů pro empirické vyhodnocení brát kromě hodnoty empirické funkce také v úvahu, jak při opakovaném učení modelu přispějí k jeho zpřesnění. Takový přístup se označuje jako aktivní učení. Používání aktivního učení k urychlení evolučních algoritmů je však teprve v úplných začátcích a měla by ho podpořit i navržená diplomová práce.

Student se nejdříve seznámí s principy optimalizace pomocí evolučních algoritmů i s principy urychlení evoluční optimalizace empirických funkcí pomocí regresních modelu. Poté se důkladně seznámí s aktivním učením, zejména s aktivním učením regresních modelů. Některé metody aktivního učení regresních modelů implementuje pro některé regresní modely používané k urychlení evoluční optimalizace empirických funkcí a v tomto kontextu také otestuje. Na základě prostudované literatury i výsledků testování navrhne jednu až dvě modifikace existujících metod, které opět implementuje a otestuje.
Responsible person: Petr Pošík