Detail of the student project

List
Topic:Rolling shutter benchmark
Supervisor:RNDr. Zuzana Kúkelová Ph.D.
Announce as:PTO
Description:CMOS sensors that are used in the vast majority of today’s consumer cameras and smartphones use the rolling shutter (RS) mechanism to capture images. The key difference is that with the global shutter, the entire image is exposed to the light at once, whereas when using the RS the individual image rows (or columns) are captured at different times. When RS camera moves while capturing the image, several types of distortion such as smear, skew or wobble appear. A perspective camera model is no longer valid in this case. Therefore standard methods based on the perspective model may result in problems e.g. in calibration, 3D reconstruction and structure-from-motion.
Recently several algorithms for calibrating RS cameras have been proposed. These algorithms are usually evaluated on a very limited set of images (videos) without ground truth. While there exist many benchmark datasets with ground truth camera calibrations and positions for perspective cameras, such datasets for RS cameras are still missing. The goal of this project is to create a benchmark dataset for RS cameras. The students will collect images/videos for different camera setups (a single RS camera, a stereo rig, two cameras with different rolling shutter directions or different frame rates, different types of camera movements (translations, rotations) during the image exposure….). Ground truth calibrations will be obtained using standard calibration methods, using a global shutter camera, and controlled motion.
Students will evaluate different state-of-the-art methods for RS calibration on the newly proposed dataset. Based on the obtained results, the student will try to address challenging configurations (degenerate configurations) for different RS models.
Date:11.02.2019
Max.number of students:4
 

Warning: the registration to the PTO can be canceled only by supervisor.
Responsible person: Petr Pošík